I have a form with (at the moment) two fields and submit the following:
capture.id = 213
capture.description = DescriptionText
The target object 'capture' is immutable and I would like to provide a type converter to take both values and call the constructor. What I cannot seem to do is get by TypeConverter to be invoked.
If the input is simply:
capture = foo
Then the type converter is called, but obviously this isn't much use, is there away to make a ognl delegate the rest of the rest of the type conversation to me, perhaps passing in a Map of the parameters?
Any ideas? Is this even possible in struts2
versions: struts 2.0.14 & ognl 2.6.11
EDIT: I've done a bit of reading on this and my next attempt seemed to me to be a good plan. My theory was that using the Map syntax would make Ognl convert the values to a map and then call my converter with that map to convert it to my value.
capture[id] = 213
capture[description] = DescriptionText
Nope that doesn't seem make any difference at all.
The way I did this was to have the following in the JSP:
<s:textfield name="capture" value="capture.id" />
<s:textfield name="capture" value="capture.description" />
In the type converter, the String[] values parameter of the convertFromString method will contain both values needed to construct a new immutable capture. Provided that you are consistent with the text field ordering (or better yet, encapsulate it in a tag file), you can use the indexes of the values array to reliably get the appropriate field of the capture object.
The one weird part about this approach is that the convertToString method doesn't really do anything for you. You can return either id or description (or concatenate them together), but since you are using the values attribute in the JSP, it doesn't matter.
It seems the that the answer is no you can't do that with struts2.
I've posted this question on the struts2 mailing list and it seems that it just isn't possible to have multiple fields be presented to a TypeConverter.
The alternative solution suggested is to have mutable object with setters and then have some form of 'petify' method to prevent any future changes.
For my project I've actually implemented another struts Interceptor to implement my custom parameter binding behaviour.
Related
www.abcd.com/user/getuserstats.htm?userId=123123
In this api, the userId gets set to a field named userId in the Action class mapped to this action.
Now,for this
www.abcd.com/user/getuserstats.htm?listOfUsers=123123,456456,789789,42568,58963
I need to know how can we map this list of userIds in an ArrayList defined in the corresponding Action class so that it gets mapped as an ArrayList not as a String.
Note : I don't want to get a a string of userIds and convert it to ArrayList later.I want that the list of the userIds be automatically mapped into a list or an ArrayList. I am sure there must a way to achive that.
basically , i found that it can be achieved like this :
www.abcd.com/user/getuserstats.htm?userId=123123&userId=4578&userId=567&userid=987
these params will go into an arraylist already declared in the action class.
The values can be submitted in CSV format. Struts2 has a built-in type converter which is able to populate a property that is a collection such as list.
A workaround by using multiple parameters with the same name is possible but it works without using Struts2 type conversion. The last is one of the powerful feature provided by the framework and it is smart less not to use it.
More detailed explanation of this feature is here.
The values should be in the CSV format like in this answer.
That will also give you an idea about type of property which you
should bind to the hidden field. For example you can use List
or Integer[] for the property that set the values 25, 27, 28.
Struts2 has a built-in converter that converts such values to the list
or array automatically.
I have implemented some REST API with springMVC+Jackson+hibernate.
All I needed to do is retrieve objects from database, return it as a list, the conversion to JSON is implicit.
But there is one problem. If I want to add some more information to those object before return/response. For example I am returning a list of "store" object, but I want to add a name of the person who is attending right now.
JAVA does not have dynamic type (how I solve this problem in C#). So, how do we solve this problem in JAVA?
I thought about this, and have come up with a few not so elegant solution.
1. use factory pattern, define another class which contain the name of that person.
2. covert store object to JSON objects (ObjectNode from jackson), put a new attribute into json objects, return json objects.
3. use reflection to inject a new property to store object, return objects, maybe SpringMVC conversion will generate JSON correctly?
option 1 looks bad, will end up with a lot of boiler plate class which doesn't really useful. option 2 looks ok, but is this the best we could do with springMVC?
option 1
Actually your JSON domain is different from your core domain. I would decouple them and create a seperate domain for your JSON objects, as this is a seperate concern and you don't want to mix it. This however might require a lot of 1-to-1 mapping. This is your option 1, with boilerplate. There are frameworks that help you with the boilerplate (such as dozer, MapStruct), but you will always have a performance penalty with frameworks that use generic reflection.
option 2, 3
If you really insist on hacking it in because it's only a few exceptions and not a common pattern, I would certainly not alter the JSON nodes or use reflection (your option 2 and 3). This is certainly not the way to do it in Java.
option 4 [hack]
What you could do is extend your core domain with new types that contain the extra information and in a post-processing step replace the old objects with the new domain objects:
UnaryOperator<String> toJsonStores = domainStore -> toJsonStore(domainStore);
list.replaceAll(toJsonStores);
where the JSONStore extends the domain Store and toJsonStore maps the domain Store to the JSONStore object by adding the person name.
That way you preserve type safety and keep the codebase comprehensive. But if you have to do it more then in a few exceptional cases, you should change strategy.
Are you looking for a rest service that return list of objects that contain not just one type, but many type of objects? If so, Have you tried making the return type of that service method to List<Object>?
I recommend to create a abstract class BaseRestResponse that will be extended by all the items in the list which you want return by your rest service method.
Then make return type as List<BaseRestResponse>.
BaseRestResponse should have all the common properties and the customized object can have the property name as you said
I've got loads of the following to implement.
validateParameter(field_name, field_type, field_validationMessage, visibleBoolean);
Instead of having 50-60 of these in a row, is there some form of nested hashmap/4d array I can use to build it up and loop through them?
Whats the best approach for doing something like that?
Thanks!
EDIT: Was 4 items.
What you could do is create a new Class that holds three values. (The type, the boolean, and name, or the fourth value (you didn't list it)). Then, when creating the HashMap, all you have to do is call the method to get your three values. It may seem like more work, but all you would have to do is create a simple loop to go through all of the values you need. Since I don't know exactly what it is that you're trying to do, all I can do is provide an example of what I'm trying to do. Hope it applies to your problem.
Anyways, creating the Class to hold the three(or four) values you need.
For example,
Class Fields{
String field_name;
Integer field_type;
Boolean validationMessageVisible;
Fields(String name, Integer type, Boolean mv) {
// this.field_name = name;
this.field_type = type;
this.validationMessageVisible = mv;
}
Then put them in a HashMap somewhat like this:
HashMap map = new HashMap<String, Triple>();
map.put(LOCAL STRING FOR NAME OF FIELD, new Field(new Integer(YOUR INTEGER),new Boolean(YOUR BOOLEAN)));
NOTE: This is only going to work as long as these three or four values can all be stored together. For example if you need all of the values to be stored separately for whatever reason it may be, then this won't work. Only if they can be grouped together without it affecting the function of the program, that this will work.
This was a quick brainstorm. Not sure if it will work, but think along these lines and I believe it should work out for you.
You may have to make a few edits, but this should get you in the right direction
P.S. Sorry for it being so wordy, just tried to get as many details out as possible.
The other answer is close but you don't need a key in this case.
Just define a class to contain your three fields. Create a List or array of that class. Loop over the list or array calling the method for each combination.
The approach I'd use is to create a POJO (or some POJOs) to store the values as attributes and validate attribute by attribute.
Since many times you're going to have the same validation per attribute type (e.g. dates and numbers can be validated by range, strings can be validated to ensure they´re not null or empty, etc), you could just iterate on these attributes using reflection (or even better, using annotations).
If you need to validate on the POJO level, you can still reuse these attribute-level validators via composition, while you add more specific validations are you´re going up in the abstraction level (going up means basic attributes -> pojos -> pojos that contain other pojos -> etc).
Passing several basic types as parameters of the same method is not good because the parameters themselves don't tell much and you can easily exchange two parameters of the same type by accident in the method call.
Currently I have a class setup to be processed as an autobean:
public interface Asset extends Hit {
String getGuid();
String getHitType();
Map<String,Serializable> getMetadata();
}
I tried using Object instead of Serializable:
Map<String,Object> getMetadata()
but this seems to blow up when trying to access data (because it's not 'reified').
The Metadata map may contain other maps, strings, ints, etc. How do I retrieve data from an inner map of that metadata object?
Currently, if I call asset.getMetadata().get("title"); this returns a SerializableAutoBean and performing toString() or String.valueOf(obj) on that object returns the in memory object information and not the actually string value.
Can an AutoBean object be this dynamic, or do you specifically have to define every field?
AutoBeans aren't "dynamic" in the Java generics or RTTI sense.
In GWT, all types have to be known at compile time for anything which is auto-generated (which includes AutoBeans). This places restrictions on your designs which don't allow you to take full advantage of Java's language features (specifically, generics and other RTTI features). So, AutoBeans are not dynamic in the RTTI or Java generic sense. However, AutoBeans are simply a low-level way of wrapping your data, and you still have access to the data by using Splittables!
As stated in the previous comments, you can use Splittables for the parts of your JSON object whose type is not known at serialization/decode time. Sure, it would be nice to have everything happen at once, but nothing is stopping you from performing some post-processing on your data objects to get them into your desired state.
A really good way for someone to "Grok" what is going on with AutoBeans (and anything else which is autogenerated) is to look at the resulting generated code. The default location for maven is: ${project.build.directory}/.generated.
If you look in there after you've compiled, you should find the code which the GWT compiler produces for your AutoBeans.
I'm looking for clever ways to build dynamic Java classes, that is classes where you can add/remove fields at runtime. Usage scenario: I have an editor where users should be able to add fields to the model at runtime or maybe even create the whole model at runtime.
Some design goals:
Type safe without casts if possible for custom code that works on the dynamic fields (that code would come from plugins which extend the model in unforeseen ways).
Good performance (can you beat HashMap? Maybe use an array and assign indexes to the fields during setup?)
Field "reuse" (i.e. if you use the same type of field in several places, it should be possible to define it once and then reuse it).
Calculated fields which depend on the value of other fields
Signals should be sent when fields change value (no necessarily via the Beans API)
"Automatic" parent child relations (when you add a child to a parent, then the parent pointer in the child should be set for "free").
Easy to understand
Easy to use
Note that this is a "think outside the circle" question. I'll post an example below to get you in the mood :-)
Type safe without casts if possible for custom code that works on the dynamic fields (that code would come from plugins which extend the model in unforeseen ways)
AFAIK, this is not possible. You can only get type-safety without type casts if you use static typing. Static typing means method signatures (in classes or interfaces) that are known at compile time.
The best you can do is have an interface with a bunch of methods like String getStringValue(String field), int getIntValue(String field) and so on. And of course you can only do that for a predetermined set of types. Any field whose type is not in that set will require a typecast.
The obvious answer is to use a HashMap (or a LinkedHashMap if you care for the order of fields). Then, you can add dynamic fields via a get(String name) and a set(String name, Object value) method.
This code can be implemented in a common base class. Since there are only a few methods, it's also simple to use delegation if you need to extend something else.
To avoid the casting issue, you can use a type-safe object map:
TypedMap map = new TypedMap();
String expected = "Hallo";
map.set( KEY1, expected );
String value = map.get( KEY1 ); // Look Ma, no cast!
assertEquals( expected, value );
List<String> list = new ArrayList<String> ();
map.set( KEY2, list );
List<String> valueList = map.get( KEY2 ); // Even with generics
assertEquals( list, valueList );
The trick here is the key which contains the type information:
TypedMapKey<String> KEY1 = new TypedMapKey<String>( "key1" );
TypedMapKey<List<String>> KEY2 = new TypedMapKey<List<String>>( "key2" );
The performance will be OK.
Field reuse is by using the same value type or by extending the key class of the type-safe object map with additional functionality.
Calculated fields could be implemented with a second map that stores Future instances which do the calculation.
Since all the manipulation happens in just two (or at least a few) methods, sending signals is simple and can be done any way you like.
To implement automatic parent/child handling, install a signal listener on the "set parent" signal of the child and then add the child to the new parent (and remove it from the old one if necessary).
Since no framework is used and no tricks are necessary, the resulting code should be pretty clean and easy to understand. Not using String as keys has the additional benefit that people won't litter the code with string literals.
So basically you're trying to create a new kind of object model with more dynamic properties, a bit like a dynamic language?
Might be worth looking at the source code for Rhino (i.e. Javascript implemented in Java), which faces a similar challenge of implementing a dynamic type system in Java.
Off the top of my head, I suspect you will find that internal HashMaps ultimately work best for your purposes.
I wrote a little game (Tyrant - GPL source available) using a similar sort of dynamic object model featuring HashMaps, it worked great and performance was not an issue. I used a few tricks in the get and set methods to allow dynamic property modifiers, I'm sure you could do the same kind of thing to implement your signals and parent/child relations etc.
[EDIT] See the source of BaseObject how it is implemented.
You can use the bytecode manipulation libraries for it. Shortcoming of this approach is that you need to do create own classloader to load changes in classes dynamically.
I do almost the same, it's pure Java solution:
Users generate their own models, which are stored as JAXB schema.
Schema is compiled in Java classes on the fly and stored in
user jars
All classes are forced to extend one "root" class, where you could put every extra functionality you want.
Appropriate classloaders are implemented with "model change"
listeners.
Speaking of performance (which is important in my case), you can hardly beat this solution. Reusability is the same of XML document.