Sleeping till NEXT Second - java

I am finding often the need to very often wait until the next second to do the next operation in a series. This slows down unit tests quite considerably. So here's my question:
Instead of doing Thread.sleep(1000) is there a quicker more efficient way to sleep until the second changes to the next second?
Say the time is 1:00:89
I sleep one second to 1:01:89
I would rather continuing executing when the time hits 1:01
or as close as possible.
Is this reasonably possible? ^_^

Well, you could do something like:
long millisWithinSecond = System.currentTimeMillis() % 1000;
Thread.sleep(1000 - millisWithinSecond);
It won't be exact, mind you - you may need to iterate, which is a bit messy.
However, it would be better not to have to sleep at all. Could you inject a "sleeping service" which would allow you to fake the sleeps out in tests? (I've rarely needed to do that, but I've often injected a fake clock to report different times.) What's the purpose of sleeping in the production code at all?

When you say "the second", do you mean the second of the system clock? You can get the current time in milliseconds via System.currentTimeMillis(), then subtract that from 1000 and sleep by that amount, but keep in mind that Thread.sleep() is not perfectly accurate, so don't be surprised if you overshoot by a bit.

Related

what if a Timer falls behind schedule

I am using a java.util.Timer class. I use it to execute repetitive tasks. (e.g. a polling mechanism that checks a status every second).
timer.scheduleAtFixedRate(new Poller(), 0, pollingInterval);
The problem case is: timers can fall behind. e.g. If they need to execute every second, and the task takes 2 seconds to execute.
The documentation says that the timer will try to catch-up. e.g. Suddenly if the tasks only takes half a second to execute, it will speed up.
First of all, I am wondering, is there a built-in way to detect if it's running behind.
But anyway, I am looking for a way to disable the catching-up behavior.
If it falls behind, I just want it to skip a couple of cycles.
(I've also used a ScheduledThreadPoolExecutor for similar tasks. It has more options, and maybe that can be the solution. But it's a bit too overwhelming to find it.)
EDIT:
Now that I think about it, I think the way to do it with a ScheduledThreadPoolExecutor, is to use the scheduleWithFixedDelay method, which uses an interval between task execution.
Still, is there a way to achieve the same with a Timer?
If you don't care if the timer falls behind, why not use a simple while loop with a Thread.sleep, such as:
while(condition) {
// do work here
Thread.sleep(1000L);
}
If this falls behind due to OS scheduling constraints, it will never try to make up the time that was lost. It will always delay for at least the amount of time you specify. Remember, simple is better than complex.

Java ScheduledExecutorService behind the scenes

How does things like scheduleAtFixedRate work? How does it work behind the scenes and is there a penalty to using it?
More specifically, I have a task that I want to run periodically, say every 12 hours. The period is not strict at all, so my first instinct was to check in every request (tomcat server) if it's been more than >12 hours since the task last executed and if so, execute it and reset the timer. The downside of this is that I have to do a small time check on every request, make sure the task is run only once (using a semaphore or something similar) and the task might not execute in a long time if there's no requests.
scheduleAtFixedRate makes it easier to schedule a recurring task, but since I don't know how it does it, I don't know what the performance impact is. Is there a thread continually checking if the task is due to run? etc.
edit:
In Timer.java, there's a mainLoop function which, in my understanding, is something like this (overly simplified):
while(true) {
currentTime = System.currentTimeMillis();
if(myTask.nextExecutionTime == currentTime) myTask.run();
}
Won't this loop try to run as fast as possible and use a ton of CPU (I know, obviously not, but why)? There's no Thread.sleep in there to slow things down.
You can read the code if you wish to work out how it works.
There is an overhead using ScheduledExecutorService in terms of CPU and memory, however on the scale of hours, minutes, second even milli-seconds, it probably not work worrying about. If you have a task running in the range of micro-seconds, I would consider something more light weight.
In short, the overhead is probably too small for you to notice. The benefit it gives you is ease of use, and it is likely to be worth it.

Is sleep method accurate in timing precision?

We all know of sleep method available in java threads..
I understand that the precision in timing depends on the precision of hardware clock in the system..
So my question is how accurate is this method or better say what is the error in milliseconds or nanoseconds considering a general pc.
My requirement its to synchronise data transfer using sleep for timing.. The data is to be sent in fixed in intervals (10-20 millis) and if there is a delay of more than 1sec due to successive error in timing it may be bad !
So is it advisable to use the also method?
Sleep is not the thing you want, as in here.
I suggest to read through this.
If you need to synchronize data, I suggest you do this yourself rather than relying on threads to wake up at preset times. i.e. use one thread to simulate when events occur, in the order you expect them to occur.

Make a simple timer in Java

I can't seem to figure out how to make a simple timer in java. All I need it to do is just display time, really. So just a start method, and it keeps counting up like 0:00, 0:01, 0:02, etc. I've seen some other similar forum posts on this, but all the code is kind of complicated for my level of understanding; I'm kind of new to java. But it shouldnt be that hard to make a timer that just performs such a basic function? If anyone could help it would be greatly appreciated :)
This is not difficult. However, I would caution you that I have seen some very confused answers on stack overflow, in some cases shockingly poor coding habits, so be very careful. First let me answer the question.
If seem that the biggest mistake that programmers make in implementing a timer, is thinking that they need something to keep track of the current time. That is, they write some sort of loop that increments a variable every second or some such silly thing. You do not need to write code to keep track of the time. The function System.currentTimeMillis() will do that for you, and it does it quite accurately.
Timer code will involve two aspects which many programmers mix up:
calculation of the time
refresh of the display
All you need to do to calculate the time to display, is to record the time that the timer started:
long startTime = System.currentTimeMillis();
Later, when you want to display the amount of time, you just subtract this from the current time.
long elapsedTime = System.currentTimeMillis() - startTime;
long elapsedSeconds = elapsedTime / 1000;
long secondsDisplay = elapsedSeconds % 60;
long elapsedMinutes = elapsedSeconds / 60;
//put here code to format and display the values
The biggest mistake that programmers make is to think they need a variable to hold the current time and then to write code to increment that variable every second, e.g. something called "elapsedSeconds" which they maintain. The problem is that you can schedule code to be called every second, but there is no guarantee of exactly when that code will be called. If the system is busy, that code might be called quite a bit later than the second. If the system is extremely busy (for example page fetching from a faulty disk) it could actually be several seconds late. Code that uses the Thread.sleep(1000) function to loop every second will find that the error builds up over time. If sleep returns 300ms late one time, that error is compounded into your calculation of what time it is. This is all completely unnecessary because the OS has a function to tell you the current time.
The above calculation will be accurate whether you run this code every second, 100 times a second, or once every 3.572 seconds. The point is that currentTimeMillis() is the accurate representation of the time regardless of when this code is called -- and that is an important consideration because thread and timer events are not guaranteed to be accurate at a specific time.
The second aspect of a timer is refresh of the display. This will depend upon the technology you are using to display with. In a GUI environment you need to schedule paint events. You would like these paint events to come right after the time that the display is expected to change. However, it is tricky. You can request a paint event, but there may be hundreds of other paint events queued up to be handled before yours.
One lazy way to do this is to schedule 10 paint events per second. Because the calculation of the time does not depend on the code being called at a particular point in time, and because it does not matter if you re-paint the screen with the same time, this approach more or less guarantees that the displayed time will show the right time within about 1/10 of a second. This seems a bit of a waste, because 9 times out of 10 you are painting what is already on the screen.
If you are writing a program with animation of some sort (like a game) which is refreshing the screen 30 times a second, then you need do nothing. Just incorporate the timer display call into your regular screen refresh.
If paint events are expensive, or if you are writing a program that does terminal-style output, you can optimize the scheduling of events by calculating the amount of time remaining until the display will change:
long elapsedTime = System.currentTimeMillis() - startTime;
long timeTillNextDisplayChange = 1000 - (elapsedTime % 1000);
The variable timeTillNextDisplayChange holds the number of milliseconds you need to wait until the seconds part of the timer will change. You can then schedule a paint event to occur at that time, possibly calling Thread.sleep(timeTillNextDisplayChange) and after the sleep do the output. If your code is running in a browser, you can use this technique to update the page DOM at the right time.
Note, that there is nothing in this calculation of the display refresh that effects the accuracy of the timer itself. The thread might return from sleep 10ms late, or even 500ms late, and the accuracy of the timer will not be effected. On every pass we calculate the time to wait from the currentTimeMillis, so being called late on one occasion will not cause later displays to be late.
That is the key to an accurate timer. Do not expect the OS to call your routine or send the paint event exactly when you ask it to. Usually, of course, with modern machines, the OS is remarkably responsive and accurate. This happens in test situations where you are not running much else, and the timer seems to work. But, in production, under rare stress situation, you do not want your timer "drifting" because the system is busy.
You can either use Timer class from java.util or another way, which is more complicated, is with Threads. Timer also has thread action, but it's pretty easy to understand to use it.
For creating a simple timer as you explained as per your need , it is very easy to write a code for that. I have written the below code for your reference. If you wish you can enhance it.
import java.util.concurrent.TimeUnit;
public class PerfectTimer {
public static void main(String[] args) throws InterruptedException
{
boolean x=true;
long displayMinutes=0;
long starttime=System.currentTimeMillis();
System.out.println("Timer:");
while(x)
{
TimeUnit.SECONDS.sleep(1);
long timepassed=System.currentTimeMillis()-starttime;
long secondspassed=timepassed/1000;
if(secondspassed==60)
{
secondspassed=0;
starttime=System.currentTimeMillis();
}
if((secondspassed%60)==0)
displayMinutes++;
System.out.println(displayMinutes+"::"+secondspassed);
}
}
}
if you want to update something in the main thread (like UI components)
better to use Handler
Handler h = new Handler();
h.postDelayed(new Runnable() {
#Override
public void run() {
//do something
}
}, 20);
20 - the delay In MS to do something.
and run it in a loop.
I have created a Timer that has everything you might need in it.
I even documented it!
And I also compiled it for faster usage.
Here's an example:
//...
//For demo only!
public static void main(String[]a){
Timer timer=new Timer();
timer.setWatcher(new Timer.TimerWatcher(){
public void hasStopped(boolean stopped){
System.out.print(stopped+" | ");
}
public void timeElapsed(long nano, long millis, long seconds){
System.out.print(nano+", ");
System.out.print(millis+", ");
System.out.print(seconds+" | ");
}
public void timeLeft(long timeLeft){
System.out.print(timeLeft+"\r");
}
});
//Block the thread for 5 seconds!
timer.stopAfter(5, Timer.seconds); //You can replace this with Integer.MAX_VALUE.
//So that our watcher won't go to waste.
System.out.println();
}
//...
This is not for promotion, made this to help people not waste their time in coding classes themselves!

scheduleAtFixedRate slow / late

I'm using a ScheduledExecutorService to provide an update to a database every hour with the scheduleAtFixedRate method. The problem is that it gradually gets later - in long service I've been logging it and it's about a second a day.
I made a small class just to examine this aspect - seems to work fine when nothing is happening on the PC ( running WinXP ) but if things are going on it rapidly gets later. 18:00:00.5 last night was its first log and this morning was 09:00:00.5 then 10:00:05.9, 11:00:26.8, 12:00:45.3, 13:01:07.8...
I can attach the code although my example isn't the smallest.
Anyone else experienced this? Any ideas why this isn't working properly?
I can think of lots of ways around it but I'd really like to know why it doesn't work as advertised!
Thanks, Mike
This is normal AFAIK. With scheduleAtFixedRate, If any execution of this task takes longer than its period, then subsequent executions may start late. That being said, I'd recommend scheduleWithFixedDelay. This will ensure that tasks are carried out at the specified delay interval.

Categories

Resources