Is sleep method accurate in timing precision? - java

We all know of sleep method available in java threads..
I understand that the precision in timing depends on the precision of hardware clock in the system..
So my question is how accurate is this method or better say what is the error in milliseconds or nanoseconds considering a general pc.
My requirement its to synchronise data transfer using sleep for timing.. The data is to be sent in fixed in intervals (10-20 millis) and if there is a delay of more than 1sec due to successive error in timing it may be bad !
So is it advisable to use the also method?

Sleep is not the thing you want, as in here.
I suggest to read through this.

If you need to synchronize data, I suggest you do this yourself rather than relying on threads to wake up at preset times. i.e. use one thread to simulate when events occur, in the order you expect them to occur.

Related

How do I send data with accurate timing in Android app?

I have a scenario where I have some timing data that I get from a MIDI file. When a MIDI note needs to be played, I need to send a command over UDP. Basically, I have instructions that say "play note A, wait 125ms, play note B, wait 300ms, play note C..." and each time I "play note X" I need to send data over UDP. I have tried using both a TimerTask and a simple thread with a loop that check the system time and calculate how much time has elapsed and decide whether or not to play a note based on that, but both methods seem to have timing issues. The TimerTask doesn't run exactly on the specified interval (which was stated in the documentation) so I get erratic messages. The thread works better, but it still hiccups sometimes which I assume is because other threads are getting priority over it.
Is there a better way to send this data with more accurate timing? Is there something I can use like the Clip interface in Java that is used for playing audio?
Any assistance is very much appreciated.
This is an approach just about doomed to failure. Let me count the issues here:
1)Android is not a real time OS. Neither is Linux (which its built on). Expecting ms level timings to happen exactly correctly is never going to work. Even if the clock is accurate enough to interrupt on a 1ms rate, there's no assurance that Linux will schedule your thread for wakeup.
2)TimerTasks aren't promised to be accurate even to the degree limited by 1.
3)You're then sending it somewhere via UDP? A protocol that has no assurance as to delivery or timing, to a receiver who will then do something with it- and that receiver may have additional timing issues of its own.
Throw out this entire approach and start over would be my advice. Every single step of this says bad idea.

Java ScheduledExecutorService behind the scenes

How does things like scheduleAtFixedRate work? How does it work behind the scenes and is there a penalty to using it?
More specifically, I have a task that I want to run periodically, say every 12 hours. The period is not strict at all, so my first instinct was to check in every request (tomcat server) if it's been more than >12 hours since the task last executed and if so, execute it and reset the timer. The downside of this is that I have to do a small time check on every request, make sure the task is run only once (using a semaphore or something similar) and the task might not execute in a long time if there's no requests.
scheduleAtFixedRate makes it easier to schedule a recurring task, but since I don't know how it does it, I don't know what the performance impact is. Is there a thread continually checking if the task is due to run? etc.
edit:
In Timer.java, there's a mainLoop function which, in my understanding, is something like this (overly simplified):
while(true) {
currentTime = System.currentTimeMillis();
if(myTask.nextExecutionTime == currentTime) myTask.run();
}
Won't this loop try to run as fast as possible and use a ton of CPU (I know, obviously not, but why)? There's no Thread.sleep in there to slow things down.
You can read the code if you wish to work out how it works.
There is an overhead using ScheduledExecutorService in terms of CPU and memory, however on the scale of hours, minutes, second even milli-seconds, it probably not work worrying about. If you have a task running in the range of micro-seconds, I would consider something more light weight.
In short, the overhead is probably too small for you to notice. The benefit it gives you is ease of use, and it is likely to be worth it.

Running thread for 2 millisecond and then wait for particular time before running it again

I have one method execute(data) which takes considerable time (depending on data like 10 seconds or 20 seconds), it has timeout feature which is 30 seconds default. I want to test that method. One way of doing it is to collect enough data which lasts more than 30 seconds and then see whether I get timeout exception. Other way of doing it is to use threads. What I intend to do is to run method for some milliseconds and then put thread on wait before I get timeout exception or make it last for some seconds.Can any one please suggest how can I achieve that.
You should walk through the Java Threads Tutorial (Concurrency). Any answer on Stack Overflow would need to be really long to help you here, and the Threads/Concurrency tutorials already cover this well.
http://docs.oracle.com/javase/tutorial/essential/concurrency/
You could use
Thread.sleep( millis );
to put the thread to sleep for the required time.
Or, you could put your data processing code into a loop, so that it processes it multiple times. This would recreate the scenario of the thread actually processing data for longer than 30 seconds.
Or, you could test your code with a shorter timeout value.

Performance considerations of using an event based Timers vs Polling

What is both faster and "better practice", using a polling system or a event based timer?
I'm currently having a discussion with a more senior coworker regarding how to implement some mission critical logic. Here is the situation:
A message giving an execution time is received.
When that execution time is reached, some logic must be executed.
Now multiple messages can be received giving different execution times, and the logic must be executed each time.
I think that the best way to implement the logic would be to create a timer that would trigger the logic when the message at the time in the message, but my coworker believes that I would be better off polling a list of the messages to see if the execution time has been reached.
His argument is that the polling system is safer as it is less complicated and thus less likely to be screwed up by the programmer. My argument is that by implementing it my way, we reduce the reduce the computational load and thus are more likely execute the logic when we actually want it to execute. How should I implement it and why?
Requested Information
The only time my logic would ever be utilized would almost certainly be at a time of the highest load.
The requirements do not specify how reliable the connection will be but everyone I've talked to has stated that they have never heard of a message being dropped
The scheduling is based on an absolute system. So, the message will have a execution time specifying when an algorithm should be executed. Since there is time synchronization, I have been instructed to assume that the time will be uniform among all machines.
The algorithm that gets executed uses some inputs which initially are volatile but soon stabilize. By postponing the processing, I hope to use the most stable information available.
The java.util.Timer effectively does what your colleague suggests (truth be told, in the end, there really aren't that many ways to do this).
It maintains a collection of TimerTasks, and it waits for new activity on it, or until the time has come to execute the next task. It doesn't poll the collection, it "knows" that the next task will fire in N seconds, and waits until that happens or anything else (such as a TimerTask added or deleted). This is better overall than polling, since it spends most of its time sleeping.
So, in the end, you're both right -- you should use a Timer for this, because it basically does what your coworker wants to do.

How much timeout to use in isValid()?

In the method from Connection, how much timeout should I give it? :S I have no idea what a normal timeout would be, how much time should it take? :)
I dont want isValid() to return false if it could return true if it had gotten more time, but also I don't want it to slow down the whole program and give me "freezes".
If I set 0, does that mean I don't care for any timeout, it will try for as long as it needs to?
Thanks!
This depends on a lot of things. Generally, I'd assume that the time that isValid takes is about the same time that a simple query would take. For that reason, I would use the maximum acceptable time for the user.
E.g. if you think that users of your (say) web application will wait at most 5 seconds for a response before giving up, you might want to use that value for isValid. Because it makes no sense to declare the connection valid if it takes, say, 50 seconds to reach the database.
I have no idea what a normal timeout
would be, how much time should it
take?
Then put the timeout into the program configuration (whatever this is). Maybe log the events when timeout occur and get some experience over time what a normal timeout is.
... but also I don't want it to slow
down the whole program and give me
"freezes"
Is this an interactive program for end-users, then think how much time she will wait without to get nervous. For me 2-3 seconds is still ok, dependingwhat the program is doing for me.
Is this a background server program think about what can happen that the connection get delayed (reconnect network, etc). A background program can wait longer.

Categories

Resources