I am curious about such thing... Is there a programming language that would have:
syntax such as Java and/or C++
templates/generics support
memory management (no garbage collection)
"clean syntax" (no mess like perl or c/c++)
"normal" OOP (polyphormism, interfaces, abstract classes, overloading and etc.)
(preferably) compiles to machine code
namespace support
exception support
no source preprocessor (as is in c\c++)
statically typed
Maybe ADA ? I can advice you to learn C/C++ or Java or something else and use it smartly - then you'll get everything you need.
UPD: You may be interested by D
syntax such as Java and/or C++
"clean syntax" (no mess like perl or c/c++)
So, basically you want syntax such as C++, but you don't want syntax such as C++. It should be obvious that such a language cannot possibly exist, since the intersection of the set of languages that have syntax such as C++ and the set of languages that do not have syntax such as C++ must necessarily be the empty set.
There also some other requirements that don't make sense, like this one:
(preferably) compiles to machine code
What the compiler produces as its output is a trait of the compiler, it has nothing to do with the language. Every language can be compiled to every other language, provided the target language has at least the same computational power as the source language. (Which typically means that the target language must be Turing-complete, since most source language are Turing-complete.)
What is your need for those features? Or are they things you think you need? Why not find a syntax you think you'll feel comfortable with, since that seems to be the most important thing in your list, and then explore your other application requirements
Vala - designed as unmanaged C# for gnome
D - Built on c but simpler than C++. I think it has some kind of GC though
The new versions of Delphi, doesn't have curly brace syntax though
I'm betting you'll have a hard time finding a language that meets all your criteria. However, these may be worth looking into:
Go. Clean syntax, compiles to machine code. Has GC, though. And isn't strictly O-O.
Scala addresses many, but not all, of your issues (as mentioned by others in this thread).
Haskell. Functional, not O-O. But worth looking at anyway.
D, also as mentioned by others.
It's definitely Scala. It confirms all your points
To put it bluntly: Learn C++ and use it the way it should be used.
Done.
You only get GC issues if you discard objects. Write your application to recycle object instead and you won't have any garbage collection.
You can design an application which only GC's over night for example. i.e. zero-cost during the day, but some garbage is allowed.
Perhaps you could say what your concern is with having a GC. There may be ways to work around the problem which opens up languages like C# and Java.
BTW: Java and C# is compiled to machine code at run time.
Related
Why has no one ever made a C/C++/Java interpreter which requires no compilation to run? It can't be that hard to make something akin to IDLE for Python.
The same goes for other languages such as FORTRAN, Pascal and others. Is there some kind of code based reason for this or is it just that people prefer to compile their code.
C and C++ are languages designed to be compiled and generate fast and efficient code.
Interpreters, by the definition that they "interpret" the code, are generally slow (or at least slower than the same compiled language, assuming a good compiler).
However, there are combinations of clang and llvm-jit that could be (and has been) built into an "interpreted version of C or C++". I think there are some limitations, and I've never actually used it.
There is no great technical reason NOT to do this, it's just that it's about the same amount of work, if not more than, the work to write a compiler, and the end result of writing a compiler is "better".
Just some thoughts.
All interpreters have to have a lexer/parser stage (although there has been some academic work on incremental compilers).
There is no point in having an interpreter for Java when an IDE can constantly maintain the "all compiled" status.
I've known some interpreters in parallel to compilers, and one sad thing happening there was that the actual languages processed by the "cousins" were not really compatible, which made development on the interpreter risky.
A thing like the JVM makes it less and less desirable to "roll your own".
There used to be an interpreter for a Pascal subset IIRC: P-Pascal) from Wirth's own group. A good study object for students, but a toy for serious SW development.
There is only one sane reason to implement an interpreter for a language which is otherwise perfectly compilable: to have a formal definition of its operational semantics, which, in turn, can be used to derive static code analysis tools, code rewrite tools, various verification engines and so on.
Take a look at this C interpreter for example.
If I wanted to create a new language for Java I should make a compiler that is able to generate the byte-code compatible with the JVM spec, right? and also for the JDK libraries?
Where can I find some info?
Thanks.
Depends what you mean by "create a new language for Java" -- do you mean a language that compiles to bytecode and the code it generates can be used from any Java app (e.g. Groovy) or an interpreted language (for which you want to write a parser in Java)?
If it is the former one then #Joachim is right, look at the JVM spec; for the latter look at the likes of JavaCC for creating a parser for your language grammar.
I would start with a compiler which produced Java source. You may find this easier to read/understand/debug. Later you can optimise it to produce byte code.
EDIT:
If you have features which cannot be easily translated to Java code, you should be able to create a small number of byte code classes using Jasmin with all the exotic functionality which you can test to death. From the generated Java code this will look like a plain method call. The JVM can still inline the method so this might not impact performance at all.
The Java Virtual Machine Spec should have most of what you need.
An excellent library for bytecode generation/manipulation is ASM: http://asm.ow2.org.
It is very versatile and flexible. Note however that it's API is based on events (similar to Sax parsers) - it reads .class files and invokes a method whenever it encounters a new entity (class declaration, method declaration, statements, etc.). This may seem a bit awkward at first, but it saves a lot of memory (compared to the alternative: the library read the input, spits out a fully-evolved tree structure and then you have to iterate over it).
I don't think this will help much practically, but it has a lot of sweet theoretical stuff that I think you'll find useful.
http://www.codeproject.com/KB/recipes/B32Machine1.aspx
I am learning Java.
I have learned and used Ruby. The Ruby books always tell the advantages of Ruby over Java. But there must be some advantages, that's why lots of people (especially companies) use Java and not Ruby.
Please tell the absolute(not philosophical!) advantages of Java over Ruby.
Many more developers experienced with
Java than with Ruby.
Many existing libraries in Java (That
helps JRuby too).
Static typechecking (can be seen as
advantage and as disadvantage).
Existing codebase that has to be
maintained.
Good tool-support.
More and deeper documentations and
tutorials.
More experiences with good practices
and pitfalls.
More commercial support. That's
interesting for companies.
Many of these advantages are the result, that the Java-ecosystem is more matured, than that around Ruby. Many of these points are subjective, like static vs. dynamic typing.
I don't know Ruby very well, but I can guess the following points:
Java has more documentation (books, blogs, tutorial, etc.); overall documentation quality is very good
Java has more tools (IDEs, build tools, compilers, etc.)
Java has better refactoring capabilities (due to the static type system, I guess)
Java has more widespread adoption than Ruby
Java has a well-specified memory model
As far as I know, Java has better support for threading and unicode (JRuby may help here)
Java's overall performance is quite good as of late (due to hotspot, G1 new garbage collector, etc.)
Nowadays, Java has very attractive and cheap server hosting: appengine
Please tell the absolute … advantages of Java over Ruby
Programmers should rarely deal in absolutes.
I'll dare it, and say that as a rule, static typing (Java) is an advantage over dynamic typing (Ruby) because it helps recognize errors much quicker, and without the need to potentially difficult unit tests1).
Harnessed intelligently, a strong type system with static type checking can be a real time-saver.
1) I do not oppose unit testing! But good unit testing is hard and the compiler can be a great help at reducing the sheer number of necessary test cases.
Reason #1. There's a lot of legacy Java code out there. Ruby is new, there's not so many programmers who know it and even fewer who are good at it. Similarly, there is a lot more library code available for Java than Ruby.
So there may be Technical reasons Ruby is better than Java, but if you're asking for Business reasons, Java still beats it.
The Java Virtual Machine, which has had over a decade of improvements including:
just in time compilation in the HotSpot compiler (JIT - compiling byte code to native code)
a plethora of garbage collection algorithms and tuning parameters
runtime console support for profiling, management etc. of your application (JConsole, JVisualVM etc)
I like this Comparison(Found on link Given by Markus!Thanks!)... Thanks to all... i am also expecting some more discrete advantages
And its Great!!
The language.
My opinion is that the particular properties of the Java language itself lead us to the powerful capabilities of the IDEs and tools. These capabilities are especially valuable when you have to deal with very large code-base.
If I try to enumerate these properties it would be:
of course strong static typing
the grammar of language is a LALR(1) grammar - so it is easy to build a parser
fully qualified names (packages)
What we've got in the IDE so far, for example Eclipse:
great capabilities of exploring very large code bases. You can unambiguously find all references, call hierarhy, usages of classes or public and protected members - it is very valuable when you studying the code of the project or going to change something.
very helpful code editor. I noticed that when I writing code in the Eclipse's java editor I'm actually typing by hand only names of calsses or methods and then I press Ctrl+1 and editor generates a lot of things for me. And especially good that eclipse encourage you to write the usage of piece of code first and even before the code is aclually writen. So you do the method call before you create the method and then editor generates the method stub for you. Or you add extra arguments to the method or constructor in the place when you're invoking it - and editor change the signature for you. And enev more complicated things - you pass some object to the method that accept some interface - and if the object's class do not implement this interface - editor can do it for you... and so on. There's a lot of intresting things.
There is a LOT of tools for Java. As an example of a one great tool I want to mention Maven. Actually, my opinion is that the code reuse is really possible only when we have such a tool like Maven. The infrastructure built around it and integration with IDE make feasible very intresting thinsg. Example: I have m2eclipse plugin installed. I have new empty project in the Eclipse. I know that there is a class that I need to use (reuse actually) somewhere in the repositories, let say StringUtils for example. I write in my code 'StringUtils', Eclipse's editor tell me that there is no such class in the project and underlines it with red. I press Ctrl+1 and see that there is an ability to search this class in the public repository (actually in the index, not the repository itself). Some libs were found, I choose one of them at particular version and the tool downloads the jar, configures my project's calsspath and I alredy got all that I need.
So it's all about programmer's productivity.
The JVM.
My opinion is that the JVM (Sun's HotSpot particularly) is a one of the most intresting pieces of software nowadays. Of course the key point here is a performance. But current implementation of HotSpot JVM explores very cutting edge ways to achieve such really great performance. It explores all possible advantages of just-in-time compiling over static, collects statistics of the usage of code before JIT-compile it, optimise when it possible virtual calls, can inline a lot more things that static compiler can, and so on. And the great thing here that all this stuff is in the JVM, but not in the language itself (as contrary with C# as example). Actually, if you're just learning the Java language, I strongly encourage you to learn the details of modern implementations of JVM, so you know what is really hurt performance and what isn't, and do not put unnecessary optimizations in the Java code, and do not afraid to use all possibilities of the language.
So...
it's all about IDEs and tools actually, but by some reason we have them for Java not for any other language or platform (.NET of course is a great competitor in the Windows world).
This has probably been beaten to death, but my personal opinion is that Ruby excels at quickly created web apps (and frameworks) that are easy to learn, beautiful to read, and are more than fast enough for web apps.
Where Java is better suited for raw muscle and speed.
For example, I wrote a Ruby program to convert a 192 MB text file to a MongoDB collection. Ruby took hours to run. And the Ruby code was as simple/optimized as you could get (1.9.2).
I re-wrote it in Java and it runs in 4 minutes. Yes. Hours to 4 minutes. So take that for what it's worth.
Network effect. Java has the advantage of more people using Java. Who themselves use Java because more people use Java.
If you have to build a big software, you'll need to collaborate. By having a lot of programmers out there, you are sure that there will be someone that can be asked to maintain your software even if the original developers have left the company.
Static type checking and good Java IDE offer no magic and this is good for a lot of maintainer instead of Ruby.
It is not sufficient to indicate that java is statically typed and ruby is dynamically typed.
Correct me if I'm wrong, but does this cover the fact that in ruby you can add to and even
change the program (class definitions, method definitions etc) at runtime? AFAIK you can have dynamically typed languages that are not "dynamic" (can be changed at runtime).
Because in Ruby you can change the program at runtime you don't know until you've actually run the program how it is going to behave, and even then you don't know if it will behave the same next time because your code may have been changed by some other code that called the code you're writing and testing.
This predictability is, depending on the context, the advantage of Java - one of the contexts where this is an advantage is when you have a lot of developers of varying skill levels working on a fairly large enterprise application.
IMHO, what one person considers an advantage might be a disadvantage for someone else. Some people prefer static typing while others like dynamic. It is quite subjective and depends largely upon the job and the person doing it.
I would say just learn Java and decide for yourself what its strong points are. Knowing both languages yourself beats any comparisons/advice some other person can give. And its usually a good thing to know another language, so you're not wasting your time.
Negatives for Java:
There is a lot of duplication in libraries and frameworks available for Java.
Java developers/communities tend to create over complicated solutions to simple problems.
There is a lot more legacy in Java to maintain.
Too much pandering to business users has introduced cruft that makes middle managers feel better. In other words, some philosophies in Java are more concerned with BS instead of getting the job done. This is why companies like to use Java.
You'll generally need to write more code in Java than Ruby.
It takes a lot more configuring/installing/setup to get a fully working Java development environment over Ruby.
Positives for Java:
Speed.
Documentation.
Lower level language than Ruby, which could be a good thing or a bad thing, depending on your needs.
None of my points are very scientific, but I think the differences in philosophy and personalities behind Java and Ruby is what makes them very different to each other.
Better performances
There are more choices:
Developers - lots to hire
Libraries - lots of wheels already invented.
IDE's - lots of development environments to choose from. Not only just vi/emacs + a shell.
Runtimes - if you for some reason do not like the JVM you use on the system, you can either download or buy another implementation and it will most likely Just Work. How many Ruby implementations are there?
Please note that this has nothing to do with the LANGUAGES as such :)
Reading up on this : Is Ruby as cross-platform as Java? made me realize at least one factual advantage of java over ruby:
The J2ME-compatible subest of java is more portable than ruby
as long as JRuby won't run on J2ME which may be forever
I am a fan of static metaprogramming in C++. I know Java now has generics. Does this mean that static metaprogramming (i.e., compile-time program execution) is possible in Java? If so, can anyone recommend any good resources where one can learn more about it?
No, this is not possible. Generics are not as powerful as templates. For instance, a template argument can be a user-defined type, a primitive type, or a value; but a generic template argument can only be Object or a subtype thereof.
Edit: This is an old answer; since 2011 we have Java 7, which has Annotations that can be used for such trickery.
The short answer
This question is nearly more than 10 years old, but I am still missing one answer to this. And this is: yes, but not because of generics and note quite the same as C++.
As of Java 6, we have the pluggable annotation processing api. Static metaprogramming is (as you already stated in your question)
compile-time program execution
If you know about metaprogramming, then you also know that this is not really true, but for the sake of simplicity, we will use this. Please look here if you want to learn more about metaprogramming in general.
The pluggable annotation processing api is called by the compiler, right after the .java files are read but before the compiler writes the byte-code to the .class files. (I had one source for this, but i cannot find it anymore.. maybe someone can help me out here?).
It allows you, to do logic at compile time with pure java-code. However, the world you are coding in is quite different. Not specifically bad or anything, just different. The classes you are analyzing do not yet exist and you are working on meta data of the classes. But the compiler is run in a JVM, which means you can also create classes and program normally. But furthermore, you can analyze generics, because our annotation processor is called before type erasure.
The main gist about static metaprogramming in java is, that you provide meta-data (in form of annotations) and the processor will be able to find all annotated classes to process them. On (more easy) example can be found on Baeldung, where an easy example is formed. In my opinion, this is quite a good source for getting started. If you understand this, try to google yourself. There are multiple good sources out there, to much to list here. Also take a look at Google AutoService, which utilizes an annotation processor, to take away your hassle of creating and maintaining the service files. If you want to create classes, i recommend looking at JavaPoet.
Sadly though, this API does not allow us, to manipulate source code. But if you really want to, you should take a look at Project Lombok. They do it, but it is not supported.
Why is this important (Further reading for the interested ones among you)
TL;DR: It is quite baffling to me, why we don't use static metaprogramming as much as dynamic, because it has many many advantages.
Most developers see "Dynamic and Static" and immediately jump to the conclusion that dynamic is better. Nothing wrong with that, static has a lot of negative connotations for developers. But in this case (and specifically for java) this is the exact other way around.
Dynamic metaprogramming requires reflections, which has some major drawbacks. There are quite a lot of them. In short: Performance, Security, and Design.
Static metaprogramming (i.e. Annotation Processing) allows us to intersect the compiler, which already does most of the things we try to accomplish with reflections. We can also create classes in this process, which are again passed to the annotation processors. You then can (for example) generate classes, which do what normally had to be done using reflections. Further more, we can implement a "fail fast" system, because we can inform the compiler about errors, warnings and such.
To conclude and compare as much as possible: let us imagine Spring. Spring tries to find all Component annotated classes at runtime (which we could simplify by using service files at compile time), then generates certain proxy classes (which we already could have done at compile time) and resolves bean dependencies (which, again, we already could have done at compile time). Jake Whartons talk about Dagger2, in which he explains why they switched to static metaprogramming. I still don't understand why the big players like Spring don't use it.
This post is to short to fully explain those differences and why static would be more powerful. If you want, i am currently working on a presentation for this. If you are interested and speak German (sorry about that), you can have a look at my website. There you find a presentation, which tries to explain the differences in 45 minutes. Only the slides though.
Take a look at Clojure. It's a LISP with Macros (meta-programming) that runs on the JVM and is very interoperable with Java.
What do you exactly mean by "static metaprogramming"? Yes, C++ template metaprogramming is impossible in Java, but it offers other methods, much more powerful than those from C++:
reflection
aspect-oriented programming (#AspectJ)
bytecode manipulation (Javassist, ObjectWeb ASM, Java agents)
code generation (Annotation Processing Tool, template engines like Velocity)
Abstract Syntax Tree manipulations (APIs provided by popular IDEs)
possibility to run Java compiler and use compiled code even at runtime
There's no best method: each of those methods has its strengths and weaknesses.
Due to flexibility of JVM, all of those methods in Java can be used both at compilation time and runtime.
No. Even more, generic types are erased to their upper bound by the compiler, so you cannot create a new instance of a generic type T at runtime.
The best way to do metaprogamming in Java is to circumvent the type erasure and hand in the Class<T> object of your type T. Still, this is only a hack.
If you need powerful compile-time logic for Java, one way to do that is with some kind of code generation. Since, as other posters have pointed out, the Java language doesn't provide any features suitable for doing compile-time logic, this may be your best option (iff you really do have a need for compile-time logic). Once you have exhausted the other possibilities and you are sure you want to do code-generation, you might be interested in my open source project Rjava, available at:
http://www.github.com/blak3mill3r
It is a Java code generation library written in Ruby, which I wrote in order to generate Google Web Toolkit interfaces for Ruby on Rails applications automatically. It has proved quite handy for that.
As a warning, it can be very difficult to debug Rjava code, Rjava doesn't do much checking, it just assumes you know what you're doing. That's pretty much the state of static metaprogramming anyway. I'd say it's significantly easier to debug than anything non-trivial done with C++ TMP, and it is possible to use it for the same kinds of things.
Anyway, if you were considering writing a program which outputs Java source code, stop right now and check out Rjava. It might not do what you want yet, but it's MIT licensed, so feel free to improve it, deep fry it, or sell it to your grandma. I'd be glad to have other devs who are experienced with generic programming to comment on the design.
Lombok offers a weak form of compile time metaprogramming. However, the technique they use is completely general.
See Java code transform at compile time for a related discussion
You can use a metaprogramming library for Java such as Spoon: https://github.com/INRIA/spoon/
No, generics in Java is purely a way to avoid casting of Object.
In a very reduced sense, maybe?
http://michid.wordpress.com/2008/08/13/type-safe-builder-pattern-in-java/
I've been reading Bruce Eckel's Thinking In Java and in the chapter on generics, he briefly mentions the Nice programming language as something that handles parametrized types better than Java, but compiles into Java bytecode.
Does anyone have any experience with this? Generics make my head hurt, so the prospect of an alternative that interoperates with Java is appealing... but I sort of feel like it would be like trying to learn both French and Quebecois and getting yelled at if I get them mixed up in the wrong context. (no offense meant so please don't ding me for not being PC) And whoever thought up the name "Nice" should be shot, since it makes it impossible to search for any websites other than the sourceforge one.
I'd also suggest looking at Scala, a multi-paradigm (OO and functional) language that runs on the JVM. Martin Odersky, the "father of Scala" was also a primary contributor to the implementation of generics in Java, including his work on the Pizza and GJ implementations.
The current type-erasure mechanism in Java does force one to understand some implementation details to make sense of restrictions, but it is fair to say that using full-blown generic support in any language is going to require a learning curve.
I found Java Generics and Collections to be a well-written introduction and guide to using generics in Java 5.
Maybe the question to ask is, "Why do generics make your head hurt?" How are you using them that causes such pain?
I'll agree that there are flaws with generics in Java, and there are situations (e.g., extends) that do cause problems, but what exactly is your issue?
Using another language that compiles to byte code might help you in the short run, but if you're working in a team that delivers systems that others will have to maintain you might have problems introducing a technology like Nice, no matter how elegant it is.
I'd say look at Scala or Groovy. It's my impression that Nice is an experimental language that never caught traction. If you don't like Java's generics at all, then you might prefer groovy, which is dynamically typed. If you like the idea of generics, but find Java's implementation of them confusing (like I do), then you might like scala, which handles generics more sensibly.