Java automatic attributes comparison - java

I recently debated with a collegue about how to compare 2 instances of the same java class.
You have an two instances of a complicated object and want to know which attributes differ between those two.
Here is a use case :
You have a user profile with lot of fields and the user submits a new profile, you want to know which fields have changed to be able to display something like "successfully changed your birthday, name, street name ..."
So at the moment, the best solution I have is to write a compare method in the class that takes another object and compare every field one by one, then return the list of fields that are differents.
I was wondering if there was any automatic method (from a external library for example) to do that without having to manually specify each attribute.
Btw, if hibernate has a method which could do this to compare local and database object it could do the trick.

Use reflection, as noted by Guillaume Polet. I'd also put an annotation on the fields that need to be exposed like this. If you don't like the idea of public fields, use getX() methods with annotations. I don't know of any library code to do the comparison; but it wouldn't take long to write.

Related

Encapsulation - why do we need it when setters are already public? [duplicate]

This question already has answers here:
Why are getter and setter method important in java? [duplicate]
(6 answers)
Closed 7 years ago.
Encapsulation is hiding the data. I would like to hear some really interesting answers here.
What is the point behind keeping variables as private when we already declare public setter methods for variables?
I understand the usage of encapsulation but when we are making the setters as public what is the point behind keeping the variables as private, we can directly use public access modifiers.
Is it because we do not want others to know the exact way we are storing data or managing data on the back-end?
Is it because we do not want others to know the exact way we are
storing data or managing data on the back-end?
Yes, that's the point. It is related to the concepts of abstraction and information hiding too.
You provide a public setter that when invoked by the class client will have the effect that you have documented. It is none of the client's business how this effect is actually achieved. Are you modifying one of the class attributes? Ok, let the client know that, but not the fact that you are actually modifying a variable. In the future, you could want to modify your class so that instead of a simple backup variable it uses something completely different (a dictionary of attributes? An external service? Whatever!) and the client will not break.
So your setter is an abstraction that you provide to the client for "modify this class attribute". At the same time you are hiding the fact that you are using an internal variable because the client doesn't need to know that fact.
(Note: here I'm using the word "attribute" as a generic concept, not related to any concrete programming language)
I fully agree with Konamiman's answer, but I'd like to add one thing:
There are cases where you really don't want that abstraction. And that's fine.
A simple example I like to use here is a class for a 3-dimensional float vector:
class Vector3f {
public:
float x;
float y;
float z;
};
Could you make those fields private and provide setters instead? Sure, you could. But here you might argue that the class is really just supposed to provide a tuple of floats and you don't want any additional functionality. Thus adding setters would only complicate the class and you'd rather leave the fields public.
Now, you can easily construct scenarios where that might bite you later on. For instance, you might one day get a requirement that Vector3fs are not allowed to store NaNs and should throw an exception if anyone tries to do so. But such a hypothetical future problem should not be enough to justify introducing additional abstractions.
It's your call as a programmer to decide which abstractions make sense for the problem at hand and which ones would only get in your way of getting the job done. Unnecessary abstractions are over-engineering and will hurt your productivity just as much as not abstracting enough.
Bottom line: Don't blindly use setters everywhere just because someone claimed that's good practice. Instead, think about the problem at hand and consider the tradeoffs.
Because by encapsulation we provide single point of access. Suppose you define a variable and its setter as follows
String username;
public void setUsername(String username){
this.username = username;
}
Later you like to add some validation before setting username property. If you are setting the username at 10 places by directly accessing the property then you don't have single point of access and you need to make this change at 10 places. But if you have one setter method then by making a change at one place you can easily achieve the result.
Think about this : I'm representing a real life object, a Lion through a class. I'd do something like this.
class Lion {
public int legs;
}
Now my class is needed by some other developer to create an object and set its legs field. He'd do something like this
Lion jungleKing = new Lion();
jungleKing.legs = 15;
Now the question is, Java won't restrict him to setting any number more than 4 as the number of legs for that object. It's not an error, and it'll run just fine. But it's a logical blunder, and the compiler won't help you there. This way a Lion may have any number of legs.
But if we write the code this way
class Lion {
private int legs;
public void setLegs(int legs){
if(legs > 4){
this.legs = 4;
}
else this.legs = legs;
}
}
Now you won't have any Lion with more than 4 legs because the policy of updating the fields of the class has been defined by the class itself and there's no way anyone not knowing the policy is going to update the legs field because the only way to update the legs field is through the setLegs() method and that method knows the policy of the class.
Although Konamiman's answer is spot on, I'd like to add that, in the particular case of public setters versus directly exposing public fields you are asking, there is another very important distinction to keep in mind apart from information hiding and decoupling implementation from the public surface, or API, of a class; validation.
In a public field scenario, there is no way to validate the field's value when it's modified. In case of a public setter (be it a Foo {get; set;} property or a SetFoo(Foo value)) method you have the possibility to add validation code and launch required side-effects and this way ensure that your class is always in a valid or predictable state.
What if you do want to a range check before assignment? That's one of the cases I use setters and getters
More or less simple and realistic example I encountered in practice is an Options class, which has a lot of setters and getters. At some point you might want to add new option which depends on others or has side effects. Or even replace group of options with Enum. In this case setA function will not just modify a field, but will hide some additional configuration logic. Similarly getA will not just return value of a, but something like config == cStuffSupportingA.
Wikipedia has a good overview of [mutator methods(https://en.wikipedia.org/wiki/Mutator_method), which is what setter methods are and how they work in different languages.
The short version: if you want to introduce validation or other logic that gets executed on object modification it is nice to have a setter to put that logic in. Also you may want to hide how you store things. So, those are reasons for having getters/setters. Similarly, for getters, you might have logic that provides default values or values that are dependent on e.g. configuration for things like Locale, character encoding, etc. There are lots of valid reasons to want to have logic other than getting or setting the instance variable.
Obviously, if you have getters and setteres, you don't want people bypassing them by manipulating the object state directly, which is why you should keep instance variables private.
Other things to consider include whether you actually want your objects to be mutable at all (if not, make fields final), whether you want to make modifying the object state threadsafe with e.g. locks, synchronized, etc.
Setting fields as private documents a powerful fact: these private fields are only directly used within the current class. This helps maintainers by not having to track down field usage. They can reason better on the code by looking at the class and determining that the effects on and from these fields with the class' environment go through public and protected method calls. It limits the exposure surface on the class.
In turn, defining a "setter" for a private field is not about giving it publicity again. It is about declaring another powerful fact: an object belonging to this class has a property that can be modified from the outside. (The terms object and property are used in the sense of a bounded part of the whole and an observable fact about this part, not in the OOP sense)
Why then declare a "setter" on a field when making the field public would suffice? Because declaring a field not only binds a name to a property of the objects of the class, but also commits to use memory storage for this property.
Therefore, if you declare a "private field with a setter", you declare three things:
You declare that the name you gave to the field/setter cluster represents a property of the object which is of interest when the object is seen as a black box.
You declare that the value of this property is modifiable by the environment of the object.
You declare that in this particular concrete class, the property of the object is realized by committing some memory storage to it.
I advocate that you never make your fields private with getters and setters indiscriminately. Fields are for describing storage. Methods are for interactions with the environment. (And the particular case of "getters" and "setters" are for describing properties of interest)

Is there a way to get all of the non-null members of a class without reflection or getters?

I have a class that that can potentially assign values to 50+ plus variables. I don't want to write getters for all of these fields. I would rather have some way that can report which fields have had a value assigned to them and, what that value is.
I had originally made these private and, I know that reflection basically breaks private. Additionally, Securecoding.org states this about reflection:
In particular, reflection must not be used to provide access to classes, methods, and fields unless these items are already accessible without the use of reflection. For example, the use of reflection to access or modify fields is not allowed unless those fields are already accessible and modifiable by other means, such as through getter and setter methods.
My main concern is mucking up my code by declaring dozens of instance variables(and possibly getters). Later in this project, I will have two more large sets of instance variables that need to be declared as well. I know that I can reduce the use of getters with some clever maps and enums but, that still takes parsing dozens ofnull values. Could anyone suggest another way?
I know only 4 ways to access field of class
directly unless field is private
Using method, e.g. getter.
Using constructor.
Using reflection
The ways 1 and 4 are beyond the discussion.
Constructor usage is not convenient here because huge number of fields.
So, methods the possibility.
It is up to you whether you want to use bean convention or for example builder pattern, but if you need this class for persistency or for serialization into XML or JSON etc you need at least getters.
Now, if you just want to validate the instance after its creation you can declare your interface Validatable that declares method validate() and call it when your object should be ready. You have to however implement and maintain this method for each class.
Alternative way is to use one of available validation frameworks. In this case you validation can be done using annotations. You should remember however that behind the scene such frameworks use reflection.
Here are some links for further reading:
http://commons.apache.org/proper/commons-validator/
http://java-source.net/open-source/validation
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html

A more generic return

Looking at some code cleanup and I was wondering the best way to deal with this:
Have a class with some private variables like:
myBool1, myBool2, myBool3
myInt1, myInt2, myInt3
myString1, myString2, myString3
What's the best way to do a getter function that is generic to the return value? So if I do a call to the getter with something like:
myNewBool=<blah>.get("myBool1")
myNewString=<blah>.get("myString2")
myNewInt=<blah>.get("myInt3")
Anyone have any suggestions?
You can't really have a generic getter if you don't know what you want to get, for example :
boolean myNewBool= get("myString1");
If get returns something, but you don't really know if this something is compatible with a boolean, and terrible things could happen.
You could try this:
public <T> get(String element){
return (T) elementToGet;
}
But you would have to specify the return type when you call the get method.
String element = myObject.<String>get("element");
Here are the bad sides :
You can't work directly with primitives
You can have a lot of ClassCastException
If you misspell an attribute name you won't see it until you run it
You don't expose a nice public API, people would have to know evert possible attribute to use it, and as said above, a misspelled attribute (or an inexistant one) wouldn't be seen until runtime.
You have to know the return time and type it each time you use your method
You would have to type a really long (and smelly) code in your get method either to use each possible attribute (if you still want have some private and not accessible) or worse, use reflection to find the right attribute.
So definitively not a good idea.
What you can do instead is using the good old getters//setters and if there is a lot of them, generate them with your IDE.
Another way would be to use the project lombok.
Resources :
Project Lombok
On the same topic :
Create automatically only getters in Eclipse
Eclipse Generate All getters setters in package
Java Getters and Setters
First you should ask what would be the pros and cons of such a solution.
Pros:
One method instead of many
Cons:
Non-intuitive to the users of your class (classical getters are more common)
You cannot have an overload that only differs by a return type, therefore you will have to have methods like getBool, getInt etc.
It's slower - you have to pass the string, check for validity, do a lookup in a map...
The only advantage of your proposed solution would be not repeating the get()/set() code. However, as these methods are usually generated by your IDE and contain only a single-line command, I wouldn't see that as a big problem.
To answer your actual question - you can create a HashMap with name-attribute mapping. Alternatively, you may use Java reflection to access the attributes. The second solution is more general but also harder to write.
This is really a terrible idea. I'm not sure why creating a getter/setter for each private variable is a problem, but passing around strings that map to a variable's symbolic name would be hard to maintain and confusing. You don't need this to be generic; each variable represents a different quantity and they should be accessed as such.
It wouldn't be clean up but mess up. I'd either created 3 getter methods for the fields or redesign it completely. But calling a function, with a name of a field to return, as an argument can bring nothing good.
When you code, you must be refactoring your code for all the time you are coding. But not like this. Solution is delegating logic to another class, wrapping code into more utilizable methods or changing and simplifying domain objects...

Declare java enum with a String array

I'm trying to declare an enum type based on data that I'm retrieving from a database. I have a method that returns a string array of all the rows in the table that I want to make into an enumerated type. Is there any way to construct an enum with an array?
This is what I tried, but from the way it looked in eclipse, it seemed like this just created a method by that name:
public enum ConditionCodes{
Condition.getDescriptions();
}
Thank you in advance!
You can't.
The values of an enum must be known at compile time. If you have anything else, then it's not an enum.
You could come rather close via an implementation that's similar to the old typesafe enums that were used before the Java language introduced support for this technique via the enum keyword. You could use those techniques but simply replace the static final fields with values read from the DB.
For your enum to be useful it has to be nailed down at compile time. Generating the enum from the database query would imply you expect to see new enum values at runtime. Even if you created a code generator to create your enum class on the fly using the database query, you wouldn't be able to reference those enum values in your code, which is the point of having them.
It's difficult to see how any compiler could support this.
The whole point of an enum is supposed to be that you get compile-time checking of the validity of your values. If, say, you declare an enum "enum MyStatusCode {FOO, BAR, PLUGH}", then in your code if you write "MyStatusCode.FOO" everything is good, but if you write "MyStatusCode.ZORK" you get a compile-time error. This protects you from mis-spelling values or getting confused about the values for one enum versus another. (I just had a problem recently where a programmer accidentally assigned a delivery method to a transaction type, thus magically changing a sale into an inventory adjustment when he meant to change a home delivery into a customer pick-up.)
But if your values are defined dynamically at run-time, how could the compiler do this? If you wrote MyStatusCode.ZORK in the above example, there is no way the compiler could know if this value will or will not be in the database at runtime. Even if you imagined a compiler smart enough to figure out how the enum was being populated and checking the database to see if that value is present in the appropriate table NOW, it would have no way of knowing if it will be there when you actually run.
In short, what you want is something very different from an enum.
If you want to get really crazy, I think annotation processing can do this. Annotation processing lets you hook the compiler and have it magically modify things when your #annotation is present.
Naturally, the values in the enum will be whatever values were available at compile time.
No, that's not possible because the enum type must be defined at compile time and what you're looking for is to dynamically create it.
Perhaps you'll be better if use a class instead.
I think here you are going to need a List or Set along with some utility methods for searching and comparison.
So here's your List
List<String> conditionCodes = new ArrayList<String>();
//Somehow get Rows or POJO Beans from database with your favorite framework
Collection<Row> dbRows = getConditionCodes();
for(Row curRow : dbRows)
conditionCodes.add(curRow.getName());
And to search
public boolean conditionExists(String name) {
return conditonCodes.contains(name);
}
public String getCondition(String name) {
return conditionCodes.get(name);
}
(of course you would probably want to use List's own methods instead of making your own)
More than you can't, you don't want to. Every enum, even Java's fairly cool enums, is code oriented.
It's exactly the same as a collection, but with an enum you tend to write duplicate code whenever you encounter it--with a collection you are more likely to write a loop.
I suggest you create a class with a private constructor and have it create the instances of itself, then provide a getInstance(String) to retrieve an instance. This is like the old typesafe enum pattern.
In the long run, however, it's better if you can manage to get enough intelligence into that class where you aren't ever differentiating on a specific instance--going from the "Enum" way of doing it:
if(myEnum.stringValue.equals("EnumTarget"))
executeCode();
To the OO way of doing it:
myEnumLikeObject.executeCode();
Moving the code you wish into the "enum"--preferably delegating directly to a contained object that is instantiated and set into the "enum" at creation time.

Java: What is the fastest way to inject fields using reflection?

Suppose, I have a lot of classes, which are constructed using Java reflection (for some reason). Now I need to post-inject values to fields, which are
annotated with #PostInject.
public class SomeClass {
#PostInject
private final String someString = null;
public void someMethod() {
// here, someString has a value.
}
}
My question is: what is a fast way to set a field using reflection?
Remember, I need to do this very often on a lot of classes, that's
why performance is relevant.
What I would do by intuition is shown by this pseudo-code:
get all fields of the class
clazz.getFields();
check, which are annotated with #PostInject
eachField.getAnnotation(PostInject.class);
make these fields accessible
eachAnnotatedField.setAccessible(true);
set them to a certain value
eachAnnotatedField.set(clazz, someValue);
I'm afraid that getting all fields is the slowest thing to do.
Can I someone get a field, when I know it from the beginning?
NOTE: I can't just let the classes implement some interface, which would
allow to set the fields using a method. I need POJOs.
NOTE2: Why I want post-field injection: From the point of view of an API user, it must be possible to use final fields. Furthermore, when the types and number of fields are not known by the API a priori, it is impossible to achieve field initialization using an interface.
NOTE2b: From the point of view of the user, the final contract is not broken. It stays final. First, a field gets initialized, then it can't be changed. By the way: there are a lot of APIs which use this concept, one of them is JAXB (part of the JDK).
How about doing steps 1 to 3 just after you constructed the object and saving the set of annotated fields that you obtain either in the object itself or by keeping a separate map of class to set-of-annotated-fields?
Then, when you need to update the injected fields in an object, retrieve the set from either the object or the seperate map and perform step 4.
Don't know if it's any good, but this project looks like it would do what you want. Quote:
A set of reflection utilities and
miscellaneous utilities related to
working with classes and their fields
with no dependencies which is
compatible with java 1.5 and generics.
The utilities cache reflection data
for high performance operation but
uses weak/soft caching to avoid
holding open ClassLoaders and causing
the caches to exist in memory
permanently. The ability to override
the caching mechanism with your own is
supported.
Another option, as you say you know the few fields concerned from the beginning, is to ask only for those fields or methods.
Example : see getDeclaredMethod or getDeclaredField in java/lang/Class.html
You can exploit existing frameworks that allow to inject dependencies on object construction. For example Spring allows to do that with aspectj weaving. The general idea is that you define bean dependencies at spring level and just mark target classes in order to advise their object creation. Actual dependency resolution logic is injected directly to the class byte-code (it's possible to use either compile- or load-time weaving).
Fastest way to do anything with reflection is to cache the actual Reflection API classes whenever possible. For example I very recently made a yet-another-dynamic-POJO-manipulator which I believe is one of those things everyone ends up doing at some point which enables me to do this:
Object o = ...
BeanPropertyController c = BeanPropertyController.of(o);
for (String propertyName : c.getPropertyNames()) {
if (c.access(propertyName) == null &&
c.typeOf(propertyName).equals(String.class)) {
c.mutate(propertyName, "");
}
}
The way it works is that it basically has that one controller object which lazyloads all the properties of the bean (note: some magic involved) and then reuses them as long as the actual controller object is alive. All I can say is that by just saving the Method objects themselves I managed to turn that thing into a damn fast thing and I'm quite proud of it and even considering releasing it assuming I can manage to sort out copyrights etc.

Categories

Resources