android rotation matrix conversion - java

android uses the following code to calculate rotation matrix:
float Ax = gravity[0];
float Ay = gravity[1];
float Az = gravity[2];
final float Ex = geomagnetic[0];
final float Ey = geomagnetic[1];
final float Ez = geomagnetic[2];
float Hx = Ey*Az - Ez*Ay;
float Hy = Ez*Ax - Ex*Az;
float Hz = Ex*Ay - Ey*Ax;
final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
if (normH < 0.1f) {
// device is close to free fall (or in space?), or close to
// magnetic north pole. Typical values are > 100.
return false;
}
final float invH = 1.0f / normH;
Hx *= invH;
Hy *= invH;
Hz *= invH;
final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
Ax *= invA;
Ay *= invA;
Az *= invA;
final float Mx = Ay*Hz - Az*Hy;
final float My = Az*Hx - Ax*Hz;
final float Mz = Ax*Hy - Ay*Hx;
if (R != null) {
if (R.length == 9) {
R[0] = Hx; R[1] = Hy; R[2] = Hz;
R[3] = Mx; R[4] = My; R[5] = Mz;
R[6] = Ax; R[7] = Ay; R[8] = Az;
} else if (R.length == 16) {
R[0] = Hx; R[1] = Hy; R[2] = Hz; R[3] = 0;
R[4] = Mx; R[5] = My; R[6] = Mz; R[7] = 0;
R[8] = Ax; R[9] = Ay; R[10] = Az; R[11] = 0;
R[12] = 0; R[13] = 0; R[14] = 0; R[15] = 1;
}
}
I would like to know what the logic behind this is. How should I use an accelerometer and magnetometer to obtain a rotation matrix?

Annotated, with corner case handing removed:
// Down vector
float Ax = gravity[0];
float Ay = gravity[1];
float Az = gravity[2];
// North vector
final float Ex = geomagnetic[0];
final float Ey = geomagnetic[1];
final float Ez = geomagnetic[2];
H is perpendicular to both E and A
// H = E x A
float Hx = Ey*Az - Ez*Ay;
float Hy = Ez*Ax - Ex*Az;
float Hz = Ex*Ay - Ey*Ax;
final float normH = (float)Math.sqrt(Hx*Hx + Hy*Hy + Hz*Hz);
Each column in the matrix should have length 1
// Force H to unit length
final float invH = 1.0f / normH;
Hx *= invH;
Hy *= invH;
Hz *= invH;
// Force A to unit length
final float invA = 1.0f / (float)Math.sqrt(Ax*Ax + Ay*Ay + Az*Az);
Ax *= invA;
Ay *= invA;
Az *= invA;
Since A is perpendicular to H, and both are of unit length, M must also have unit length, so no normalization is needed here.
// M = A x H
// Forward vector
final float Mx = Ay*Hz - Az*Hy;
final float My = Az*Hx - Ax*Hz;
final float Mz = Ax*Hy - Ay*Hx;
H, M, and A are mutually perpendicular, so we have a rotation matrix
R[0] = Hx; R[1] = Hy; R[2] = Hz;
R[3] = Mx; R[4] = My; R[5] = Mz;
R[6] = Ax; R[7] = Ay; R[8] = Az;

Related

circle collision causes circle to go supersonic

can anyone tell me why the circles i draw are getting stuck on each other or going super fast and flying off the window. all i want is for the circles to bounce off each other, but instead they get stuck 1/3 of the time, accelerate drastically another 1/3 of the time and only bounce the other 1/3. sorry if its messy, i've been trying a lot of different ideas and it kind of got out of hand. code uses maths that i got from gist.github/christopher4lis/f9ccb589ee8ecf751481f05a8e59b1dc. its horribly done but its the best i can do for now.
Please let me know if there is any other code that you need to help fix this.
public void bounce() {
collision = false;
for (int i = 0; i < size; i++) {
for (int a = 0; a < size; a++) {
float xVelDiff = dots[i][2] - dots[a][2];
float yVelDiff = dots[i][3] - dots[a][3];
float xDist = dots[i][0] - dots[a][0];
float yDist = dots[i][1] - dots[a][1];
if (xVelDiff * xDist + yVelDiff * yDist <= 0) {
angle = (float) -Math.atan2(dots[a][0] - dots[i][0], dots[a][1] - dots[i][1]);
float m1 = dots[i][7];
BigDecimal bd = new BigDecimal(m1).setScale(2, RoundingMode.HALF_UP);
m1 = bd.floatValue();
float m2 = dots[a][7];
float[] u1 = rotate(dots[i][2], dots[i][3], (float) angle);
float[] u2 = rotate(dots[a][2], dots[a][3], (float) angle);
float[] v1 = new float[2];
v1[0] = u1[0] * (m1 - m2) / (m1 + m2) + u2[0] * 2 * m2 / (m1 + m2);
v1[1] = u1[1];
float[] v2 = new float[2];
v2[0] = u2[0] * (m1 - m2) / (m1 + m2) + u1[0] * 2 * m2 / (m1 + m2);
v2[1] = u2[1];
float[] vFinal1 = rotate(v1[0], v1[1], (float) -angle);
float[] vFinal2 = rotate(v2[0], v2[1], (float) -angle);
if (a != i && !(dots[a][0] == 0 && dots[a][1] == 0)) {
boolean thisCollision = (dots[a][0] - dots[i][0]) * (dots[a][0] - dots[i][0]) + (dots[a][1] - dots[i][1]) * (dots[a][1] - dots[i][1]) <= (dots[a][4] + dots[i][4]) * (dots[a][4] + dots[i][4]);
// System.out.println("collision: "+collision+" i="+i+" a="+a);
if (thisCollision) {
System.out.println(vFinal2[0] + " " + vFinal2[1]);
collision = true;
dots[i][2] = vFinal1[0];
dots[i][3] = vFinal1[1];
dots[a][2] = vFinal2[0];
dots[a][3] = vFinal2[1];
return;
}
}
}
}
}
}
public float[] rotate(float velocityX, float velocityY, float angle) {
float x1 = (float) (velocityX * Math.cos(angle) - velocityY * Math.sin(angle));
float y1 = (float) (velocityX * Math.cos(angle) - velocityY * Math.sin(angle));
float vel[] = new float[2];
vel[0] = x1;
vel[1] = y1;
return vel;
}

circle collision practice, advice?

can anyone tell me what i'm doing wrong? i'm trying to get the circles to bounce off each other but they don't seem to be working.i keep making changes to fix the issue but that only makes more issues, whilst the main issue isn't resolved. have i used the wrong math's algorithm to check for collisions? or is it right and i have just made an error i cant seem to find? any help would be appreciated.
public float[][] CreateDots() {
if (first == true) {
for (int i = 0; i < dotNumber; i++) {
do{
dotX = r.nextInt(300);
dotY = r.nextInt(300);
dotWidth = r.nextFloat() * 50;
dotRadius = dotWidth / 2;
dotMass = r.nextFloat() / 10;
dotCentreX = dotX + dotRadius;
dotCentreY = dotY + dotRadius;
dotVelocityX = r.nextFloat();
dotVelocityY = r.nextFloat();
dots[i][0] = dotX;
dots[i][1] = dotY;
dots[i][2] = dotVelocityX;
dots[i][3] = dotVelocityY;
dots[i][4] = dotRadius;
dots[i][5] = dotCentreX;
dots[i][6] = dotCentreY;
dots[i][7] = dotMass;
dots[i][8] = dotWidth;
}while(collision == true);
}
first = false;
} else {
for (int i = 0; i < dotNumber; i++) {
dots[i][0] = dots[i][0] + dots[i][2];
dots[i][1] = dots[i][1] + dots[i][3];
if (dots[i][0] + dots[i][8] >= wallX) {
dots[i][2] = -dots[i][2];
}
if (dots[i][1] + dots[i][8] >= wallY) {
dots[i][3] = -dots[i][3];
}
if (dots[i][0] < 0) {
dots[i][2] = -dots[i][2];
}
if (dots[i][1] < 0) {
dots[i][3] = -dots[i][3];
}
}
}
repaint();
return dots;
}
public void bounce() {
collisionDot = false;
for (int i = 0; i < dotNumber; i++) {
for (int a = i + 1; a < dotNumber; a++) {
// difference between the x and y velocity of two dots
float xVelDiff = dots[i][2] - dots[a][2];
float yVelDiff = dots[i][3] - dots[a][3];
//difference between the centre x and y of two dots
float xDist = dots[i][5] - dots[a][5];
float yDist = dots[i][6] - dots[a][6];
System.out.println(xVelDiff + " * " + xDist + " + " + yVelDiff + " * " + yDist + " = "+ (xVelDiff * xDist + yVelDiff * yDist));
//not quite sure yet
if (xVelDiff * xDist + yVelDiff * yDist <= 0) {
angleCollision = (float) -Math.atan2(dots[a][0] - dots[i][0], dots[a][1] - dots[i][1]);
float mass = (dots[i][7] + dots[a][7]);
float mass2 = (dots[i][7] - dots[a][7]);
// x and y velocity and angle of collision for the two dots
float[] u1 = rotate(dots[i][2], dots[i][3], (float) angleCollision);
float[] u2 = rotate(dots[a][2], dots[a][3], (float) angleCollision);
//Velocity of dot 1
float[] v1 = new float[2];
v1[0] = u1[0] * mass2 / mass + u2[0] * 2 * dots[a][7] / (mass);
v1[1] = u1[1];
// velocity of dot 2
float[] v2 = new float[2];
v2[0] = u2[0] * mass2 / mass + u1[0] * 2 * dots[a][7] / (mass);
v2[1] = u2[1];
// final velocity of two colliding dots is:
float[] vFinal1 = rotate(v1[0], v1[1], (float) -angleCollision);;
float[] vFinal2 = rotate(v2[0], v2[1], (float) -angleCollision);;
if (a != i && !(dots[a][0] == 0 && dots[a][1] == 0)) {
// if the x and y distance between the two dots centres is less than their radii combined then the dots have collided
boolean thisCollision = Math.pow(xDist, 2) + Math.pow(yDist, 2) <= Math.pow((dots[a][4] + dots[i][4]), 2);
//if the dots collided, create new final velocity's from the angle of collision and the x and y velocitys at collision
if (thisCollision) {
collisionDot = true;
dots[i][2] = vFinal1[0];
dots[i][3] = vFinal1[1];
dots[a][2] = vFinal2[0];
dots[a][3] = vFinal2[1];
return;
}
}
}
}
}
}
public float[] rotate(float velocityX, float velocityY, float angle) {
float x1 = (float) (velocityX * Math.cos(angle) - velocityY * Math.sin(angle));
float y1 = (float) (velocityX * Math.sin(angle) - velocityY * Math.cos(angle));
float vel[] = new float[2];
vel[0] = x1;
vel[1] = y1;
return vel;
}

How can i render triangle after multiply by projection matrix

I'm trying to make a 3d game with java from scratch but a have a problem with rendering a triangle after I multiply each vertices with projection matrix
I already try to use the projected vertices x and y but the result is all the vertices the in the same X, so I try to rotate the triangle X or Y or Z axis but the result is the same.
The result of rendering (draw in paint):
I know that the triangle is align with the camera but I tried to move the vertex that is overlapping out by changing its X or Y or Z coordinate but It didn't work
import java.awt.Color;
import java.awt.Graphics;
import measurement.MatrixF;
import measurement.Vector3f;
import model.Mesh;
import model.Triangle;
import toolbox.GE;
import toolbox.Matrix;
import toolbox.Vector;
public class MeshRenderer {
private int width, height;
private float fNear, fFar;
private float fov;
private float fAspectRatio;
private float fovRad;
private float theta;
private MatrixF projectionMatrix;
private MatrixF rotXMatrix;
private MatrixF rotYMatrix;
private MatrixF rotZMatrix;
private Vector3f globalTranslation;
public MeshRenderer(float fNear, float fFar, float fov, int width, int height) {
this.fNear = fNear;
this.fFar = fFar;
this.fov = fov;
this.fAspectRatio = height / width;
this.width = width;
this.height = height;
this.fovRad = (float) (1.0f / Math.tan(Math.toRadians(fov / 2)));
projectionMatrix = new MatrixF(4, 4);
rotXMatrix = new MatrixF(4, 4);
rotYMatrix = new MatrixF(4, 4);
rotZMatrix = new MatrixF(4, 4);
projectionMatrix.m[0][0] = fAspectRatio * fovRad;
projectionMatrix.m[1][1] = fovRad;
projectionMatrix.m[2][2] = (-(fFar + fNear)) / (fFar - fNear);
projectionMatrix.m[3][2] = (-2 * fFar * fNear) / (fFar - fNear);
projectionMatrix.m[2][3] = -1.0f;
projectionMatrix.m[3][3] = 0.0f;
rotXMatrix.m[0][0] = 1;
rotXMatrix.m[1][1] = (float) Math.cos(theta);
rotXMatrix.m[2][1] = (float) -Math.sin(theta);
rotXMatrix.m[1][2] = (float) Math.sin(theta);
rotXMatrix.m[2][2] = (float) Math.cos(theta);
rotYMatrix.m[0][0] = (float) Math.cos(theta);
rotYMatrix.m[2][0] = (float) Math.sin(theta);
rotYMatrix.m[1][1] = (float) 1.0;
rotYMatrix.m[0][2] = (float) -Math.sin(theta);
rotYMatrix.m[2][2] = (float) Math.cos(theta);
rotXMatrix.m[2][2] = 1;
rotXMatrix.m[0][0] = (float) Math.cos(theta);
rotXMatrix.m[1][0] = (float) -Math.sin(theta);
rotXMatrix.m[0][1] = (float) Math.sin(theta);
rotXMatrix.m[1][1] = (float) Math.cos(theta);
//projectionMatrix = Matrix.transpose(projectionMatrix);
globalTranslation = new Vector3f(0.0f, 0.0f, 0.0f);
}
public void renderMesh(Mesh mesh, Graphics g) {
for(int i = 0; i < mesh.tris.length; i++) {
Triangle tri = new Triangle(mesh.tris[i].p[0], mesh.tris[i].p[1], mesh.tris[i].p[2]);
Triangle translatedTri = tri;
Triangle projectedTri = new Triangle();
theta += 0.0001;
this.calculateRotationMatrix(theta);
translatedTri.p[0] = Matrix.multiplyMatrixVector(tri.p[0], rotYMatrix);
translatedTri.p[1] = Matrix.multiplyMatrixVector(tri.p[1], rotYMatrix);
translatedTri.p[2] = Matrix.multiplyMatrixVector(tri.p[2], rotYMatrix);
translatedTri.p[0].z = tri.p[0].z + globalTranslation.z;
translatedTri.p[1].z = tri.p[1].z + globalTranslation.z;
translatedTri.p[2].z = tri.p[2].z + globalTranslation.z;
projectedTri.p[0] = Matrix.multiplyMatrixVector(translatedTri.p[0], projectionMatrix);
projectedTri.p[1] = Matrix.multiplyMatrixVector(translatedTri.p[1], projectionMatrix);
projectedTri.p[2] = Matrix.multiplyMatrixVector(translatedTri.p[2], projectionMatrix);
projectedTri.p[0].x += 1.0f; projectedTri.p[0].y += 1.0f;
projectedTri.p[1].x += 1.0f; projectedTri.p[1].y += 1.0f;
projectedTri.p[2].x += 1.0f; projectedTri.p[2].y += 1.0f;
float scale = 0.5f;
projectedTri.p[0].x *= scale * width;
projectedTri.p[0].y *= scale * height;
projectedTri.p[1].x *= scale * width;
projectedTri.p[1].y *= scale * height;
projectedTri.p[2].x *= scale * width;
projectedTri.p[2].y *= scale * height;
GE.drawTriangle(projectedTri.p[0].x, projectedTri.p[0].y, projectedTri.p[1].x, projectedTri.p[1].y, projectedTri.p[2].x, projectedTri.p[2].y, Color.WHITE, g);
for(int j = 0; j < projectedTri.p.length; j++) {
g.setColor(new Color(255, 0, (j * 50)));
g.fillRect((int)projectedTri.p[j].x - 8, (int)projectedTri.p[j].y - 8, 16 - j, 16 - j);
}
translatedTri.p[0].z = tri.p[0].z - globalTranslation.z;
translatedTri.p[1].z = tri.p[1].z - globalTranslation.z;
translatedTri.p[2].z = tri.p[2].z - globalTranslation.z;
}
}
private void calculateRotationMatrix(float theta) {
rotXMatrix.m[0][0] = 1;
rotXMatrix.m[1][1] = (float) Math.cos(theta);
rotXMatrix.m[2][1] = (float) -Math.sin(theta);
rotXMatrix.m[1][2] = (float) Math.sin(theta);
rotXMatrix.m[2][2] = (float) Math.cos(theta);
rotYMatrix.m[0][0] = (float) Math.cos(theta);
rotYMatrix.m[2][0] = (float) Math.sin(theta);
rotYMatrix.m[1][1] = (float) 1.0;
rotYMatrix.m[0][2] = (float) -Math.sin(theta);
rotYMatrix.m[2][2] = (float) Math.cos(theta);
rotXMatrix.m[2][2] = 1;
rotXMatrix.m[0][0] = (float) Math.cos(theta);
rotXMatrix.m[1][0] = (float) -Math.sin(theta);
rotXMatrix.m[0][1] = (float) Math.sin(theta);
rotXMatrix.m[1][1] = (float) Math.cos(theta);
}
public Vector3f getTranslation() {
return globalTranslation;
}
public float getfNear() {
return fNear;
}
public float getfFar() {
return fFar;
}
public float getFov() {
return fov;
}
public float getfAspectRatio() {
return fAspectRatio;
}
public float getFovRad() {
return fovRad;
}
}
The matrix (4x4) multiply with vector3 function just in case:
Vector3f o = new Vector3f(0, 0, 0);
o.x = (i.x * m.m[0][0]) + (i.y * m.m[1][0]) + (i.z * m.m[2][0]) + m.m[3][0];
o.y = (i.x * m.m[0][1]) + (i.y * m.m[1][1]) + (i.z * m.m[2][1]) + m.m[3][1];
o.z = (i.x * m.m[0][2]) + (i.y * m.m[1][2]) + (i.z * m.m[2][2]) + m.m[3][2];
float w = (i.x * m.m[0][3]) + (i.y * m.m[1][3]) + (i.z * m.m[2][3]) + m.m[3][3];
if (w != 0.0f)
{
o.x /= w; o.y /= w; o.z /= w;
}
return o;
}
Without seeing exactly how this class is being used, it's hard to say exactly what the problem is, but FWIW I'm not seeing too much wrong with the math:
There are a couple places where you probably intended to initialize rotZMatrix instead of reinitializing rotXMatrix, but the code is not actually using either.
When adding in globalTranslation, you are overwriting the rotated z coordinate with the pre-rotated z coordinate, when you probably just want to update the rotated coordinate.
It's not apparent whether MatrixF is initialized to the identity or to zeros -- but if the latter, you probably should be populating the m[3][3] element of the rotation matrices with 1.0.
Naturally, you probably want to lift the theta increment and rotation calculation outside of the triangle loop, once you have more than one triangle.
I'm guessing that the problem is that you are leaving globalTranslation at zero and that the mesh is near the origin -- hence the transformed geometry is on the wrong side of the near plane and outside of the view frustum. Most graphic engines would cull such geometry, since the post-transform results will lie outside of clip space and will look increasingly anomalous around and behind the eye point.
I'd recommend trying to adjust globalTranslation.z to ensure 0 < fNear < translatedTri.p[i].z < fFar, for all the translated points.
(You could also try temporarily swapping the perspective matrix with a orthographic projection matrix, to determine whether the problem is in the projection/homogenization math or elsewhere.)

Camera rotation bug

this uses the lwjgl library.
in this 3D engine, I created a camera, it moves around fine, but the rotation is really bad. First off, left and right move diagonally down left or right, and up and down make the object stretch.
all of my rotation code to do with the camera:
public Vector3f rotate(float angle, Vector3f axis)
{
float sinHalfAngle = (float)Math.sin(Math.toRadians(angle / 2));
float cosHalfAngle = (float)Math.cos(Math.toRadians(angle / 2));
float rX = axis.getX() * sinHalfAngle;
float rY = axis.getY() * sinHalfAngle;
float rZ = axis.getZ() * sinHalfAngle;
float rW = cosHalfAngle;
Quaternion rotation = new Quaternion(rX, rY, rZ, rW);
Quaternion conjugate = rotation.conjugate();
Quaternion w = rotation.mul(this).mul(conjugate);
x = w.getX();
y = w.getY();
z = w.getZ();
return this;
}
can't remember if this has to do with rotation, but it's for the camera
public Matrix4f ititProjection(float fov, float width, float height, float zNear, float zFar)
{
float ar = width/height;
float tanHalfFOV = (float)Math.tan(Math.toRadians(fov / 2));
float zRange = zNear - zFar;
m[0][0] = 1.0f / (tanHalfFOV * ar); m[0][1] = 0; m[0][2] = 0; m[0][3] = 0;
m[1][0] = 0; m[1][1] = 1.0f / tanHalfFOV; m[1][2] = 0; m[1][3] = 0;
m[2][0] = 0; m[2][1] = 0; m[2][2] = (-zNear - zFar)/zRange; m[2][3] = 2 * zFar * zNear / zRange;
m[3][0] = 0; m[3][1] = 0; m[3][2] = 1; m[3][3] = 0;
return this;
}
public Matrix4f initCamera(Vector3f forward, Vector3f up)
{
Vector3f f = forward;
f.normalize();
Vector3f r = up;
r.normalize();
r = r.cross(f);
Vector3f u = f.cross(r);
m[0][0] = r.getX(); m[0][1] = r.getY(); m[0][2] = r.getZ(); m[0][3] = 0;
m[1][0] = u.getX(); m[1][1] = u.getY(); m[1][2] = r.getZ(); m[1][3] = 0;
m[2][0] = f.getX(); m[2][1] = f.getY(); m[2][2] = f.getZ(); m[2][3] = 0;
m[3][0] = 0; m[3][1] = 0; m[3][2] = 0; m[3][3] = 1;
return this;
}

glPolygonOffset with unexpected lines

I am rendering triangle strips with glpolygonMode(GL_FRONT_AND_BACK, GL_LINE).
Then I enable the line offset to this setting glPolygonOffset (-0.8f, -1.0f).
No matter what setting I use for the offset I end up getting random lines that flash
in and out when moving around. Here is a gif. of what it looks like. If anyone could help
give ideas as what they think is wrong here that would be great.
Here is my method where I render the lines if anyone needs to look at it.
public void lines() {
GL11.glColor3f(0.0f, 0.0f, 0.0f);
GL11.glPolygonMode(GL11.GL_FRONT_AND_BACK, GL11.GL_LINE);
Triangle currentTri = new Triangle();
List<Triangle> triList = new ArrayList<Triangle>();
boolean xSwitch = false;
for (int z=0; z<=100; z+=2) {
GL11.glEnable(GL11.GL_POLYGON_OFFSET_LINE);
GL11.glPolygonOffset (-0.8f, -1.0f);
GL11.glBegin(GL11.GL_TRIANGLE_STRIP);
int triPointIndex = 0;
boolean zSwitch = true;
xSwitch = !xSwitch;
float zVal;
float xVal;
for (int x=0; x<100; x+=1) {
xVal = x;
float randY;
zSwitch = !zSwitch;
// this is what determines the xSwitch and zSwitch outcomes.
// changes the zVal and randY to match what must alternate.
if (xSwitch) {
if (zSwitch) {
zVal = z;
randY = randYList[z][x];
} else {
zVal = z + 2.0f;
randY = randYList[z+2][x];
}
} else {
if (zSwitch) {
zVal = z + 2.0f;
randY = randYList[z+2][x];
} else {
zVal = z;
randY = randYList[z][x];
}
}
// set up the currentVert within the currentTri so that we can use it for computing normals.
Vert currentVert = currentTri.triVerts[triPointIndex];
currentVert.x = xVal;
currentVert.y = randY;
currentVert.z = zVal;
triPointIndex++;
if (triPointIndex == 3) {
triList.add(currentTri);
Triangle nextTri = new Triangle();
Vector3f normal = new Vector3f();
float Ux; float Uy; float Uz;
float Vx; float Vy; float Vz;
if (xSwitch) {
if (triList.indexOf(currentTri) % 2 == 0) {
Vx = currentTri.triVerts[1].x - currentTri.triVerts[0].x;
Vy = currentTri.triVerts[1].y - currentTri.triVerts[0].y;
Vz = currentTri.triVerts[1].z - currentTri.triVerts[0].z;
Ux = currentTri.triVerts[2].x - currentTri.triVerts[0].x;
Uy = currentTri.triVerts[2].y - currentTri.triVerts[0].y;
Uz = currentTri.triVerts[2].z - currentTri.triVerts[0].z;
} else {
Ux = currentTri.triVerts[1].x - currentTri.triVerts[0].x;
Uy = currentTri.triVerts[1].y - currentTri.triVerts[0].y;
Uz = currentTri.triVerts[1].z - currentTri.triVerts[0].z;
Vx = currentTri.triVerts[2].x - currentTri.triVerts[0].x;
Vy = currentTri.triVerts[2].y - currentTri.triVerts[0].y;
Vz = currentTri.triVerts[2].z - currentTri.triVerts[0].z;
}
} else {
if (triList.indexOf(currentTri) % 2 == 0) {
Ux = currentTri.triVerts[1].x - currentTri.triVerts[0].x;
Uy = currentTri.triVerts[1].y - currentTri.triVerts[0].y;
Uz = currentTri.triVerts[1].z - currentTri.triVerts[0].z;
Vx = currentTri.triVerts[2].x - currentTri.triVerts[0].x;
Vy = currentTri.triVerts[2].y - currentTri.triVerts[0].y;
Vz = currentTri.triVerts[2].z - currentTri.triVerts[0].z;
} else {
Vx = currentTri.triVerts[1].x - currentTri.triVerts[0].x;
Vy = currentTri.triVerts[1].y - currentTri.triVerts[0].y;
Vz = currentTri.triVerts[1].z - currentTri.triVerts[0].z;
Ux = currentTri.triVerts[2].x - currentTri.triVerts[0].x;
Uy = currentTri.triVerts[2].y - currentTri.triVerts[0].y;
Uz = currentTri.triVerts[2].z - currentTri.triVerts[0].z;
}
}
normal.x = (Uy * Vz) - (Uz * Vy);
normal.y = (Uz * Vx) - (Ux * Vz);
normal.z = (Ux * Vy) - (Uy * Vx);
GL11.glNormal3f(normal.x, normal.y, normal.z);
nextTri.triVerts[0] = currentTri.triVerts[1];
nextTri.triVerts[1] = currentTri.triVerts[2];
currentTri = nextTri;
triPointIndex = 2;
} // close triPointIndex == 3
GL11.glVertex3f(xVal, randY, zVal);
} // close x loop
GL11.glEnd();
} // close z loop
GL11.glDisable(GL11.GL_POLYGON_OFFSET_LINE);
}

Categories

Resources