circle collision causes circle to go supersonic - java

can anyone tell me why the circles i draw are getting stuck on each other or going super fast and flying off the window. all i want is for the circles to bounce off each other, but instead they get stuck 1/3 of the time, accelerate drastically another 1/3 of the time and only bounce the other 1/3. sorry if its messy, i've been trying a lot of different ideas and it kind of got out of hand. code uses maths that i got from gist.github/christopher4lis/f9ccb589ee8ecf751481f05a8e59b1dc. its horribly done but its the best i can do for now.
Please let me know if there is any other code that you need to help fix this.
public void bounce() {
collision = false;
for (int i = 0; i < size; i++) {
for (int a = 0; a < size; a++) {
float xVelDiff = dots[i][2] - dots[a][2];
float yVelDiff = dots[i][3] - dots[a][3];
float xDist = dots[i][0] - dots[a][0];
float yDist = dots[i][1] - dots[a][1];
if (xVelDiff * xDist + yVelDiff * yDist <= 0) {
angle = (float) -Math.atan2(dots[a][0] - dots[i][0], dots[a][1] - dots[i][1]);
float m1 = dots[i][7];
BigDecimal bd = new BigDecimal(m1).setScale(2, RoundingMode.HALF_UP);
m1 = bd.floatValue();
float m2 = dots[a][7];
float[] u1 = rotate(dots[i][2], dots[i][3], (float) angle);
float[] u2 = rotate(dots[a][2], dots[a][3], (float) angle);
float[] v1 = new float[2];
v1[0] = u1[0] * (m1 - m2) / (m1 + m2) + u2[0] * 2 * m2 / (m1 + m2);
v1[1] = u1[1];
float[] v2 = new float[2];
v2[0] = u2[0] * (m1 - m2) / (m1 + m2) + u1[0] * 2 * m2 / (m1 + m2);
v2[1] = u2[1];
float[] vFinal1 = rotate(v1[0], v1[1], (float) -angle);
float[] vFinal2 = rotate(v2[0], v2[1], (float) -angle);
if (a != i && !(dots[a][0] == 0 && dots[a][1] == 0)) {
boolean thisCollision = (dots[a][0] - dots[i][0]) * (dots[a][0] - dots[i][0]) + (dots[a][1] - dots[i][1]) * (dots[a][1] - dots[i][1]) <= (dots[a][4] + dots[i][4]) * (dots[a][4] + dots[i][4]);
// System.out.println("collision: "+collision+" i="+i+" a="+a);
if (thisCollision) {
System.out.println(vFinal2[0] + " " + vFinal2[1]);
collision = true;
dots[i][2] = vFinal1[0];
dots[i][3] = vFinal1[1];
dots[a][2] = vFinal2[0];
dots[a][3] = vFinal2[1];
return;
}
}
}
}
}
}
public float[] rotate(float velocityX, float velocityY, float angle) {
float x1 = (float) (velocityX * Math.cos(angle) - velocityY * Math.sin(angle));
float y1 = (float) (velocityX * Math.cos(angle) - velocityY * Math.sin(angle));
float vel[] = new float[2];
vel[0] = x1;
vel[1] = y1;
return vel;
}

Related

java-processing floating point rounding error, how to keep radians rational

I have modified this arcball class so that every call to arcball.rollforward(PI/180); rotates a matrix 1 degree.
I have tried to set it up so arcball.rollback() is called with the accumulated float rotatebywithincludedfloaterror but it has had the same degree error as rolling back 360 degrees without the float error.
this is how far it is off after 1000 full rotations, it should be a 1:1 reflection of the top cube over x
here is main function with a loop of 1 * 360 degree rotation and framerate for testing (set framerate to 900 for multiple rotations so it dose not take forever)
Arcball arcball;
int i;
//framecount
int fcount, lastm;
float frate;
int fint = 3;
boolean[] keys = new boolean[13];
final int w = 0;
void setup() {
size(900, 700, P3D);
frameRate(60);
noStroke();
arcball = new Arcball(width/2, height/2, 100); //100 is radius
}
void draw() {
lights();
background(255,160,122);
print(" \n degree = " + i );
i++;
if(i <= (360 * 1)) { arcball.rollforward(PI/180); }
else { print(" break"); }
if(keys[w]) { arcball.rollforward(PI/180); }
translate(width/2, height/2-100, 0);
box(50);
translate(0, 200, 0);
arcball.run();
box(50);
fcount += 1;
int m = millis();
if (m - lastm > 1000 * fint) {
frate = float(fcount) / fint;
fcount = 0;
lastm = m;
println("fps: " + frate);
}
}
void keyPressed() {
switch(key) {
case 119:
keys[w] = true;
break;
}
}
void keyReleased() {
switch(key) {
case 119:
keys[w] = false;
break;
}
}
and the arcball class
// Ariel and V3ga's arcball class with a couple tiny mods by Robert Hodgin and smaller mods by cubesareneat
class Arcball {
float center_x, center_y, radius;
Vec3 v_down, v_drag;
Quat q_now, q_down, q_drag;
Vec3[] axisSet;
int axis;
float mxv, myv;
float x, y;
float degreeW_count = 0;
float degreeS_count = 0;
float rotatebywithincludedfloaterror =0;
Arcball(float center_x, float center_y, float radius){
this.center_x = center_x;
this.center_y = center_y;
this.radius = radius;
v_down = new Vec3();
v_drag = new Vec3();
q_now = new Quat();
q_down = new Quat();
q_drag = new Quat();
axisSet = new Vec3[] {new Vec3(1.0f, 0.0f, 0.0f), new Vec3(0.0f, 1.0f, 0.0f), new Vec3(0.0f, 0.0f, 1.0f)};
axis = -1; // no constraints...
}
void rollforward(float radians2turn) {
rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
if(degreeW_count >= 360) {
arcball.rollback(rotatebywithincludedfloaterror);
degreeW_count = 0;
rotatebywithincludedfloaterror = 0;
}
rollortilt(0, -1 * (((sin(radians2turn) * radius))/2));
degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
}
void rollback(float radians2turn) {
rollortilt(0, ((sin(radians2turn) * radius))/2);
}
void rollortilt(float xtra, float ytra){
q_down.set(q_now);
v_down = XY_to_sphere(center_x, center_y);
q_down.set(q_now);
q_drag.reset();
v_drag = XY_to_sphere(center_x + xtra, center_y + ytra);
q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag));
}
/*
void mousePressed(){
v_down = XY_to_sphere(mouseX, mouseY);
q_down.set(q_now);
q_drag.reset();
}
void mouseDragged(){
v_drag = XY_to_sphere(mouseX, mouseY);
q_drag.set(Vec3.dot(v_down, v_drag), Vec3.cross(v_down, v_drag));
}
*/
void run(){
q_now = Quat.mul(q_drag, q_down);
applyQuat2Matrix(q_now);
x += mxv;
y += myv;
mxv -= mxv * .01;
myv -= myv * .01;
}
Vec3 XY_to_sphere(float x, float y){
Vec3 v = new Vec3();
v.x = (x - center_x) / radius;
v.y = (y - center_y) / radius;
float mag = v.x * v.x + v.y * v.y;
if (mag > 1.0f){
v.normalize();
} else {
v.z = sqrt(1.0f - mag);
}
return (axis == -1) ? v : constrain_vector(v, axisSet[axis]);
}
Vec3 constrain_vector(Vec3 vector, Vec3 axis){
Vec3 res = new Vec3();
res.sub(vector, Vec3.mul(axis, Vec3.dot(axis, vector)));
res.normalize();
return res;
}
void applyQuat2Matrix(Quat q){
// instead of transforming q into a matrix and applying it...
float[] aa = q.getValue();
rotate(aa[0], aa[1], aa[2], aa[3]);
}
}
static class Vec3{
float x, y, z;
Vec3(){
}
Vec3(float x, float y, float z){
this.x = x;
this.y = y;
this.z = z;
}
void normalize(){
float length = length();
x /= length;
y /= length;
z /= length;
}
float length(){
return (float) Math.sqrt(x * x + y * y + z * z);
}
static Vec3 cross(Vec3 v1, Vec3 v2){
Vec3 res = new Vec3();
res.x = v1.y * v2.z - v1.z * v2.y;
res.y = v1.z * v2.x - v1.x * v2.z;
res.z = v1.x * v2.y - v1.y * v2.x;
return res;
}
static float dot(Vec3 v1, Vec3 v2){
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
static Vec3 mul(Vec3 v, float d){
Vec3 res = new Vec3();
res.x = v.x * d;
res.y = v.y * d;
res.z = v.z * d;
return res;
}
void sub(Vec3 v1, Vec3 v2){
x = v1.x - v2.x;
y = v1.y - v2.y;
z = v1.z - v2.z;
}
}
static class Quat{
float w, x, y, z;
Quat(){
reset();
}
Quat(float w, float x, float y, float z){
this.w = w;
this.x = x;
this.y = y;
this.z = z;
}
void reset(){
w = 1.0f;
x = 0.0f;
y = 0.0f;
z = 0.0f;
}
void set(float w, Vec3 v){
this.w = w;
x = v.x;
y = v.y;
z = v.z;
}
void set(Quat q){
w = q.w;
x = q.x;
y = q.y;
z = q.z;
}
static Quat mul(Quat q1, Quat q2){
Quat res = new Quat();
res.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;
res.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;
res.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z;
res.z = q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x;
return res;
}
float[] getValue(){
// transforming this quat into an angle and an axis vector...
float[] res = new float[4];
float sa = (float) Math.sqrt(1.0f - w * w);
if (sa < EPSILON){
sa = 1.0f;
}
res[0] = (float) Math.acos(w) * 2.0f;
res[1] = x / sa;
res[2] = y / sa;
res[3] = z / sa;
return res;
}
}
keep track of the floating error margin to return same number of degrees arcball.rollforward()
void rollforward(float radians2turn) {
rotatebywithincludedfloaterror = rotatebywithincludedfloaterror + (-1 * (((sin(radians2turn) * radius))/2));
if(degreeW_count >= 360) {
arcball.rollback(rotatebywithincludedfloaterror);
degreeW_count = 0;
rotatebywithincludedfloaterror = 0;
}
rollortilt(0, -1 * (((sin(radians2turn) * radius))/2));
degreeW_count = degreeW_count + 1; // need to edit this later to work with rotations other then 1 degree
}
using my idea in the question to reset every 2*PI
if(keys[w]) {
arcball.rollforward(PI/180);
degreeW_count = degreeW_count + 1;
}
if(degreeW_count == 360) {
arcball = new Arcball(width/2, height/2, 100); // setset to original arcball at 0 degrees
degreeW_count = 0;
}
in arcball
void rollforward(float degrees2turn) {
rollortilt(0, -1 * (((sin(degrees2turn) * radius))/2)); // one degree forward 180/PI
}
this totally circumvents the any rounding error that would accumulate with any data type using irrational numbers and periodic functions!

circle collision practice, advice?

can anyone tell me what i'm doing wrong? i'm trying to get the circles to bounce off each other but they don't seem to be working.i keep making changes to fix the issue but that only makes more issues, whilst the main issue isn't resolved. have i used the wrong math's algorithm to check for collisions? or is it right and i have just made an error i cant seem to find? any help would be appreciated.
public float[][] CreateDots() {
if (first == true) {
for (int i = 0; i < dotNumber; i++) {
do{
dotX = r.nextInt(300);
dotY = r.nextInt(300);
dotWidth = r.nextFloat() * 50;
dotRadius = dotWidth / 2;
dotMass = r.nextFloat() / 10;
dotCentreX = dotX + dotRadius;
dotCentreY = dotY + dotRadius;
dotVelocityX = r.nextFloat();
dotVelocityY = r.nextFloat();
dots[i][0] = dotX;
dots[i][1] = dotY;
dots[i][2] = dotVelocityX;
dots[i][3] = dotVelocityY;
dots[i][4] = dotRadius;
dots[i][5] = dotCentreX;
dots[i][6] = dotCentreY;
dots[i][7] = dotMass;
dots[i][8] = dotWidth;
}while(collision == true);
}
first = false;
} else {
for (int i = 0; i < dotNumber; i++) {
dots[i][0] = dots[i][0] + dots[i][2];
dots[i][1] = dots[i][1] + dots[i][3];
if (dots[i][0] + dots[i][8] >= wallX) {
dots[i][2] = -dots[i][2];
}
if (dots[i][1] + dots[i][8] >= wallY) {
dots[i][3] = -dots[i][3];
}
if (dots[i][0] < 0) {
dots[i][2] = -dots[i][2];
}
if (dots[i][1] < 0) {
dots[i][3] = -dots[i][3];
}
}
}
repaint();
return dots;
}
public void bounce() {
collisionDot = false;
for (int i = 0; i < dotNumber; i++) {
for (int a = i + 1; a < dotNumber; a++) {
// difference between the x and y velocity of two dots
float xVelDiff = dots[i][2] - dots[a][2];
float yVelDiff = dots[i][3] - dots[a][3];
//difference between the centre x and y of two dots
float xDist = dots[i][5] - dots[a][5];
float yDist = dots[i][6] - dots[a][6];
System.out.println(xVelDiff + " * " + xDist + " + " + yVelDiff + " * " + yDist + " = "+ (xVelDiff * xDist + yVelDiff * yDist));
//not quite sure yet
if (xVelDiff * xDist + yVelDiff * yDist <= 0) {
angleCollision = (float) -Math.atan2(dots[a][0] - dots[i][0], dots[a][1] - dots[i][1]);
float mass = (dots[i][7] + dots[a][7]);
float mass2 = (dots[i][7] - dots[a][7]);
// x and y velocity and angle of collision for the two dots
float[] u1 = rotate(dots[i][2], dots[i][3], (float) angleCollision);
float[] u2 = rotate(dots[a][2], dots[a][3], (float) angleCollision);
//Velocity of dot 1
float[] v1 = new float[2];
v1[0] = u1[0] * mass2 / mass + u2[0] * 2 * dots[a][7] / (mass);
v1[1] = u1[1];
// velocity of dot 2
float[] v2 = new float[2];
v2[0] = u2[0] * mass2 / mass + u1[0] * 2 * dots[a][7] / (mass);
v2[1] = u2[1];
// final velocity of two colliding dots is:
float[] vFinal1 = rotate(v1[0], v1[1], (float) -angleCollision);;
float[] vFinal2 = rotate(v2[0], v2[1], (float) -angleCollision);;
if (a != i && !(dots[a][0] == 0 && dots[a][1] == 0)) {
// if the x and y distance between the two dots centres is less than their radii combined then the dots have collided
boolean thisCollision = Math.pow(xDist, 2) + Math.pow(yDist, 2) <= Math.pow((dots[a][4] + dots[i][4]), 2);
//if the dots collided, create new final velocity's from the angle of collision and the x and y velocitys at collision
if (thisCollision) {
collisionDot = true;
dots[i][2] = vFinal1[0];
dots[i][3] = vFinal1[1];
dots[a][2] = vFinal2[0];
dots[a][3] = vFinal2[1];
return;
}
}
}
}
}
}
public float[] rotate(float velocityX, float velocityY, float angle) {
float x1 = (float) (velocityX * Math.cos(angle) - velocityY * Math.sin(angle));
float y1 = (float) (velocityX * Math.sin(angle) - velocityY * Math.cos(angle));
float vel[] = new float[2];
vel[0] = x1;
vel[1] = y1;
return vel;
}

How can i render triangle after multiply by projection matrix

I'm trying to make a 3d game with java from scratch but a have a problem with rendering a triangle after I multiply each vertices with projection matrix
I already try to use the projected vertices x and y but the result is all the vertices the in the same X, so I try to rotate the triangle X or Y or Z axis but the result is the same.
The result of rendering (draw in paint):
I know that the triangle is align with the camera but I tried to move the vertex that is overlapping out by changing its X or Y or Z coordinate but It didn't work
import java.awt.Color;
import java.awt.Graphics;
import measurement.MatrixF;
import measurement.Vector3f;
import model.Mesh;
import model.Triangle;
import toolbox.GE;
import toolbox.Matrix;
import toolbox.Vector;
public class MeshRenderer {
private int width, height;
private float fNear, fFar;
private float fov;
private float fAspectRatio;
private float fovRad;
private float theta;
private MatrixF projectionMatrix;
private MatrixF rotXMatrix;
private MatrixF rotYMatrix;
private MatrixF rotZMatrix;
private Vector3f globalTranslation;
public MeshRenderer(float fNear, float fFar, float fov, int width, int height) {
this.fNear = fNear;
this.fFar = fFar;
this.fov = fov;
this.fAspectRatio = height / width;
this.width = width;
this.height = height;
this.fovRad = (float) (1.0f / Math.tan(Math.toRadians(fov / 2)));
projectionMatrix = new MatrixF(4, 4);
rotXMatrix = new MatrixF(4, 4);
rotYMatrix = new MatrixF(4, 4);
rotZMatrix = new MatrixF(4, 4);
projectionMatrix.m[0][0] = fAspectRatio * fovRad;
projectionMatrix.m[1][1] = fovRad;
projectionMatrix.m[2][2] = (-(fFar + fNear)) / (fFar - fNear);
projectionMatrix.m[3][2] = (-2 * fFar * fNear) / (fFar - fNear);
projectionMatrix.m[2][3] = -1.0f;
projectionMatrix.m[3][3] = 0.0f;
rotXMatrix.m[0][0] = 1;
rotXMatrix.m[1][1] = (float) Math.cos(theta);
rotXMatrix.m[2][1] = (float) -Math.sin(theta);
rotXMatrix.m[1][2] = (float) Math.sin(theta);
rotXMatrix.m[2][2] = (float) Math.cos(theta);
rotYMatrix.m[0][0] = (float) Math.cos(theta);
rotYMatrix.m[2][0] = (float) Math.sin(theta);
rotYMatrix.m[1][1] = (float) 1.0;
rotYMatrix.m[0][2] = (float) -Math.sin(theta);
rotYMatrix.m[2][2] = (float) Math.cos(theta);
rotXMatrix.m[2][2] = 1;
rotXMatrix.m[0][0] = (float) Math.cos(theta);
rotXMatrix.m[1][0] = (float) -Math.sin(theta);
rotXMatrix.m[0][1] = (float) Math.sin(theta);
rotXMatrix.m[1][1] = (float) Math.cos(theta);
//projectionMatrix = Matrix.transpose(projectionMatrix);
globalTranslation = new Vector3f(0.0f, 0.0f, 0.0f);
}
public void renderMesh(Mesh mesh, Graphics g) {
for(int i = 0; i < mesh.tris.length; i++) {
Triangle tri = new Triangle(mesh.tris[i].p[0], mesh.tris[i].p[1], mesh.tris[i].p[2]);
Triangle translatedTri = tri;
Triangle projectedTri = new Triangle();
theta += 0.0001;
this.calculateRotationMatrix(theta);
translatedTri.p[0] = Matrix.multiplyMatrixVector(tri.p[0], rotYMatrix);
translatedTri.p[1] = Matrix.multiplyMatrixVector(tri.p[1], rotYMatrix);
translatedTri.p[2] = Matrix.multiplyMatrixVector(tri.p[2], rotYMatrix);
translatedTri.p[0].z = tri.p[0].z + globalTranslation.z;
translatedTri.p[1].z = tri.p[1].z + globalTranslation.z;
translatedTri.p[2].z = tri.p[2].z + globalTranslation.z;
projectedTri.p[0] = Matrix.multiplyMatrixVector(translatedTri.p[0], projectionMatrix);
projectedTri.p[1] = Matrix.multiplyMatrixVector(translatedTri.p[1], projectionMatrix);
projectedTri.p[2] = Matrix.multiplyMatrixVector(translatedTri.p[2], projectionMatrix);
projectedTri.p[0].x += 1.0f; projectedTri.p[0].y += 1.0f;
projectedTri.p[1].x += 1.0f; projectedTri.p[1].y += 1.0f;
projectedTri.p[2].x += 1.0f; projectedTri.p[2].y += 1.0f;
float scale = 0.5f;
projectedTri.p[0].x *= scale * width;
projectedTri.p[0].y *= scale * height;
projectedTri.p[1].x *= scale * width;
projectedTri.p[1].y *= scale * height;
projectedTri.p[2].x *= scale * width;
projectedTri.p[2].y *= scale * height;
GE.drawTriangle(projectedTri.p[0].x, projectedTri.p[0].y, projectedTri.p[1].x, projectedTri.p[1].y, projectedTri.p[2].x, projectedTri.p[2].y, Color.WHITE, g);
for(int j = 0; j < projectedTri.p.length; j++) {
g.setColor(new Color(255, 0, (j * 50)));
g.fillRect((int)projectedTri.p[j].x - 8, (int)projectedTri.p[j].y - 8, 16 - j, 16 - j);
}
translatedTri.p[0].z = tri.p[0].z - globalTranslation.z;
translatedTri.p[1].z = tri.p[1].z - globalTranslation.z;
translatedTri.p[2].z = tri.p[2].z - globalTranslation.z;
}
}
private void calculateRotationMatrix(float theta) {
rotXMatrix.m[0][0] = 1;
rotXMatrix.m[1][1] = (float) Math.cos(theta);
rotXMatrix.m[2][1] = (float) -Math.sin(theta);
rotXMatrix.m[1][2] = (float) Math.sin(theta);
rotXMatrix.m[2][2] = (float) Math.cos(theta);
rotYMatrix.m[0][0] = (float) Math.cos(theta);
rotYMatrix.m[2][0] = (float) Math.sin(theta);
rotYMatrix.m[1][1] = (float) 1.0;
rotYMatrix.m[0][2] = (float) -Math.sin(theta);
rotYMatrix.m[2][2] = (float) Math.cos(theta);
rotXMatrix.m[2][2] = 1;
rotXMatrix.m[0][0] = (float) Math.cos(theta);
rotXMatrix.m[1][0] = (float) -Math.sin(theta);
rotXMatrix.m[0][1] = (float) Math.sin(theta);
rotXMatrix.m[1][1] = (float) Math.cos(theta);
}
public Vector3f getTranslation() {
return globalTranslation;
}
public float getfNear() {
return fNear;
}
public float getfFar() {
return fFar;
}
public float getFov() {
return fov;
}
public float getfAspectRatio() {
return fAspectRatio;
}
public float getFovRad() {
return fovRad;
}
}
The matrix (4x4) multiply with vector3 function just in case:
Vector3f o = new Vector3f(0, 0, 0);
o.x = (i.x * m.m[0][0]) + (i.y * m.m[1][0]) + (i.z * m.m[2][0]) + m.m[3][0];
o.y = (i.x * m.m[0][1]) + (i.y * m.m[1][1]) + (i.z * m.m[2][1]) + m.m[3][1];
o.z = (i.x * m.m[0][2]) + (i.y * m.m[1][2]) + (i.z * m.m[2][2]) + m.m[3][2];
float w = (i.x * m.m[0][3]) + (i.y * m.m[1][3]) + (i.z * m.m[2][3]) + m.m[3][3];
if (w != 0.0f)
{
o.x /= w; o.y /= w; o.z /= w;
}
return o;
}
Without seeing exactly how this class is being used, it's hard to say exactly what the problem is, but FWIW I'm not seeing too much wrong with the math:
There are a couple places where you probably intended to initialize rotZMatrix instead of reinitializing rotXMatrix, but the code is not actually using either.
When adding in globalTranslation, you are overwriting the rotated z coordinate with the pre-rotated z coordinate, when you probably just want to update the rotated coordinate.
It's not apparent whether MatrixF is initialized to the identity or to zeros -- but if the latter, you probably should be populating the m[3][3] element of the rotation matrices with 1.0.
Naturally, you probably want to lift the theta increment and rotation calculation outside of the triangle loop, once you have more than one triangle.
I'm guessing that the problem is that you are leaving globalTranslation at zero and that the mesh is near the origin -- hence the transformed geometry is on the wrong side of the near plane and outside of the view frustum. Most graphic engines would cull such geometry, since the post-transform results will lie outside of clip space and will look increasingly anomalous around and behind the eye point.
I'd recommend trying to adjust globalTranslation.z to ensure 0 < fNear < translatedTri.p[i].z < fFar, for all the translated points.
(You could also try temporarily swapping the perspective matrix with a orthographic projection matrix, to determine whether the problem is in the projection/homogenization math or elsewhere.)

Circle Line Intersection points

public static ArrayList<IntPoint> getCircleLineIntersectionPoint(IntPoint pointA, IntPoint pointB, IntPoint center, int radius) {
// returns a list of intersection points between a line which passes through given points,
// pointA and pointB, and a circle described by given radius and center coordinate
double disc, A, B, C, slope, c;
double x1, x2, y1, y2;
IntPoint point1, point2;
ArrayList<IntPoint> intersections = new ArrayList<IntPoint>();
try{
slope = Util.calculateSlope(pointA, pointB);
}catch (UndefinedSlopeException e){
C = Math.pow(center.y, 2) + Math.pow(pointB.x, 2) - 2 * pointB.x * center.x + Math.pow(center.x, 2) - Math.pow(radius, 2);
B = -2 * center.y;
A = 1;
disc = Math.pow(B, 2) - 4 * 1 * C;
if (disc < 0){
return intersections;
}
else{
y1 = (-B + Math.sqrt(disc)) / (2 * A);
y2 = (-B - Math.sqrt(disc)) / (2 * A);
x1 = pointB.x;
x2 = pointB.x;
}
point1 = new IntPoint((int)x1, (int)y1);
point2 = new IntPoint((int)x2, (int)y2);
if (Util.euclideanDistance(pointA, point2) > Util.euclideanDistance(pointA, point1)){
intersections.add(point1);
}
else{
intersections.add(point2);
}
return intersections;
}
if (slope == 0){
C = Math.pow(center.x, 2) + Math.pow(center.y, 2) + Math.pow(pointB.y, 2) - 2 * pointB.y * center.y - Math.pow(radius, 2);
B = -2 * center.x;
A = 1;
disc = Math.pow(B, 2) - 4 * 1 * C;
if (disc < 0){
return intersections;
}
else{
x1 = (-B + Math.sqrt(disc)) / (2*A);
x2 = (-B - Math.sqrt(disc)) / (2*A);
y1 = pointB.y;
y2 = pointB.y;
}
}
else{
c = slope * pointA.x + pointA.y;
B = (2 * center.x + 2 * center.y * slope + 2 * c * slope);
A = 1 + Math.pow(slope, 2);
C = (Math.pow(center.x, 2) + Math.pow(c, 2) + 2 * center.y * c + Math.pow(center.y, 2) - Math.pow(radius, 2));
disc = Math.pow(B, 2) - (4 * A * C);
if (disc < 0){
return intersections;
}
else{
x1 = (-B + Math.sqrt(disc)) / (2 * A);
x2 = (-B - Math.sqrt(disc)) / (2 * A);
y1 = slope * x1 - c;
y2 = slope * x2 - c;
}
}
point1 = new IntPoint((int)x1, (int)y1);
point2 = new IntPoint((int)x2, (int)y2);
if (Util.euclideanDistance(pointA, point2) > Util.euclideanDistance(pointA, point1)){
//if (Util.angleBetween(pointA, pointB, point1) < Math.PI/2){
intersections.add(point1);
//}
}
else{
//if (Util.angleBetween(pointA, pointB, point1) < Math.PI/2){
intersections.add(point2);
//}
}
return intersections;
}
I am using the above algorithm to test for intersection between a circle and a line. It works fine sometimes but at other times it fails. The code represents the equation which is derived from solving for x simultaneously from circle and line equations (x-a)^+(y-b)^2=r^2 and y = mx - mx1 + y1. Has anyone got an idea where I am going wrong either in my maths or elsewhere?
Your calculations seem quite long, and I do not see the use of the different cases you test.
Anyway, since I found the problem interesting I attempted to solve it myself and came up with the following. Feel free to replace double radius by int radius and use IntPoints, but be aware that every time you cast, as discussed in the comments, results that are not exact integer intersection points will become wrong.
The background of the calculations performed is this: From point A, a scaled version of vector AB points to a point on the circle. That point has distance radius from center. Hence, |AC + scalingFactor * AB|=r.
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class CircleLine {
public static List<Point> getCircleLineIntersectionPoint(Point pointA,
Point pointB, Point center, double radius) {
double baX = pointB.x - pointA.x;
double baY = pointB.y - pointA.y;
double caX = center.x - pointA.x;
double caY = center.y - pointA.y;
double a = baX * baX + baY * baY;
double bBy2 = baX * caX + baY * caY;
double c = caX * caX + caY * caY - radius * radius;
double pBy2 = bBy2 / a;
double q = c / a;
double disc = pBy2 * pBy2 - q;
if (disc < 0) {
return Collections.emptyList();
}
// if disc == 0 ... dealt with later
double tmpSqrt = Math.sqrt(disc);
double abScalingFactor1 = -pBy2 + tmpSqrt;
double abScalingFactor2 = -pBy2 - tmpSqrt;
Point p1 = new Point(pointA.x - baX * abScalingFactor1, pointA.y
- baY * abScalingFactor1);
if (disc == 0) { // abScalingFactor1 == abScalingFactor2
return Collections.singletonList(p1);
}
Point p2 = new Point(pointA.x - baX * abScalingFactor2, pointA.y
- baY * abScalingFactor2);
return Arrays.asList(p1, p2);
}
static class Point {
double x, y;
public Point(double x, double y) { this.x = x; this.y = y; }
#Override
public String toString() {
return "Point [x=" + x + ", y=" + y + "]";
}
}
public static void main(String[] args) {
System.out.println(getCircleLineIntersectionPoint(new Point(-3, -3),
new Point(-3, 3), new Point(0, 0), 5));
System.out.println(getCircleLineIntersectionPoint(new Point(0, -2),
new Point(1, -2), new Point(1, 1), 5));
System.out.println(getCircleLineIntersectionPoint(new Point(1, -1),
new Point(-1, 0), new Point(-1, 1), 5));
System.out.println(getCircleLineIntersectionPoint(new Point(-3, -3),
new Point(-2, -2), new Point(0, 0), Math.sqrt(2)));
}
Here a solution with import javax.vecmath.Vector2d;
static Vector2d[] circleLineIntersection1(Vector2d a, Vector2d b, Vector2d o, double radius) {
Vector2d p1 = new Vector2d(a);
Vector2d p2 = new Vector2d(b);
p1.sub(o);
p2.sub(o);
Vector2d d = new Vector2d();
d.sub(p2, p1);
double det = p1.x * p2.y - p2.x * p1.y;
double dSq = d.lengthSquared();
double discrimant = radius * radius * dSq - det * det;
if (discrimant < 0) {
return new Vector2d[0];
}
if (discrimant == 0) {
Vector2d[] t = new Vector2d[1];
t[0] = new Vector2d(det * d.y / dSq + o.x, -det * d.x / dSq + o.y);
return t;
}
double discSqrt = Math.sqrt(discrimant);
double sgn = 1;
if (d.y < 0) {
sgn = -1;
}
Vector2d[] t = new Vector2d[2];
t[0] = new Vector2d((det * d.y + sgn * d.x * discSqrt) / dSq + o.x, (-det * d.x + Math.abs(d.y) * discSqrt) / dSq + o.y);
t[1] = new Vector2d((det * d.y - sgn * d.x * discSqrt) / dSq + o.x, (-det * d.x - Math.abs(d.y) * discSqrt) / dSq + o.y);
return t;
}

Application not working as expected

I have a standalone Java application below that is:
Generating a random line
Applied to a 2D grid where each cell value is the distance along the line perpindicular to the line
Finds the rise/run and attempts to calculate the original linear equation from the grid
Applies new line to another grid and prints out the greatest difference compared to the first grid
I expected the two grids to have identical values. The gradient lines may be different since the lines can extend outside the area of the grid, but should be similar and in two cases identical.
So is the problem a poor understanding of math, a bug in my code or a misunderstanding of floating point values?
import java.awt.geom.Point2D;
import java.awt.geom.Line2D;
import java.util.Iterator;
import java.util.ArrayList;
public final class TestGradientLine {
private static int SIZE = 3;
public TestGradientLine() {
super();
}
//y = mx + b
//b = y - mx
//m is rise / run = gradient
//width and height of bounding box
//for a box 10x10 then width and height are 9,9
public static Line2D getGradientLine(double run, double rise, double width, double height, double x, double y) {
if (run == 0 && rise == 0) {
return new Line2D.Double(x, y, x + width, y + height);
}
//calculate hypotenuse
//check for a vertical line
if (run == 0) {
return new Line2D.Double(x, y, x, y + height);
}
//check for a horizontal line
if (rise == 0) {
return new Line2D.Double(x, y, x + width, y);
}
//calculate gradient
double m = rise / run;
Point2D start;
Point2D opposite;
if (m < 0) {
//lower left
start = new Point2D.Double(x, y + height);
opposite = new Point2D.Double(x + width, y);
} else {
//upper left
start = new Point2D.Double(x, y);
opposite = new Point2D.Double(x + width, y + height);
}
double b = start.getY() - (m * start.getX());
//now calculate another point along the slope
Point2D next = null;
if (m > 0) {
next = new Point2D.Double(start.getX() + Math.abs(run), start.getY() + Math.abs(rise));
} else {
if (rise < 0) {
next = new Point2D.Double(start.getX() + run, start.getY() + rise);
} else {
next = new Point2D.Double(start.getX() - run, start.getY() - rise);
}
}
final double actualWidth = width;
final double actualHeight = height;
final double a = Math.sqrt((actualWidth * actualWidth) + (actualHeight * actualHeight));
extendLine(start, next, a);
Line2D gradientLine = new Line2D.Double(start, next);
return gradientLine;
}
public static void extendLine(Point2D p0, Point2D p1, double toLength) {
final double oldLength = p0.distance(p1);
final double lengthFraction =
oldLength != 0.0 ? toLength / oldLength : 0.0;
p1.setLocation(p0.getX() + (p1.getX() - p0.getX()) * lengthFraction,
p0.getY() + (p1.getY() - p0.getY()) * lengthFraction);
}
public static Line2D generateRandomGradientLine(int width, int height) {
//so true means lower and false means upper
final boolean isLower = Math.random() > .5;
final Point2D start = new Point2D.Float(0, 0);
if (isLower) {
//change origin for lower left corner
start.setLocation(start.getX(), height - 1);
}
//radius of our circle
double radius = Math.sqrt(width * width + height * height);
//now we want a random theta
//x = r * cos(theta)
//y = r * sin(theta)
double theta = 0.0;
if (isLower) {
theta = Math.random() * (Math.PI / 2);
} else {
theta = Math.random() * (Math.PI / 2) + (Math.PI / 2);
}
int endX = (int)Math.round(radius * Math.sin(theta));
int endY = (int)Math.round(radius * Math.cos(theta)) * -1;
if (isLower) {
endY = endY + (height - 1);
}
final Point2D end = new Point2D.Float(endX, endY);
extendLine(start, end, radius);
return new Line2D.Float(start, end);
}
public static Point2D getNearestPointOnLine(Point2D end, Line2D line) {
final Point2D point = line.getP1();
final Point2D start = line.getP2();
double a = (end.getX() - point.getX()) * (start.getX() - point.getX()) + (end.getY() - point.getY()) * (start.getY() - point.getY());
double b = (end.getX() - start.getX()) * (point.getX() - start.getX()) + (end.getY() - start.getY()) * (point.getY() - start.getY());
final double x = point.getX() + ((start.getX() - point.getX()) * a)/(a + b);
final double y = point.getY() + ((start.getY() - point.getY()) * a)/(a + b);
final Point2D result = new Point2D.Double(x, y);
return result;
}
public static double length(double x0, double y0, double x1, double y1) {
final double dx = x1 - x0;
final double dy = y1 - y0;
return Math.sqrt(dx * dx + dy * dy);
}
public static void main(String[] args) {
final Line2D line = generateRandomGradientLine(SIZE, SIZE);
System.out.println("we're starting with line " + line.getP1() + " " + line.getP2());
double[][] region = new double[SIZE][SIZE];
//load up the region with data from our generated line
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, line);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() + 1,
nearestPoint.getY() + 1);
region[x][y] = distance;
}
}
//now figure out what our line is from the region
double runTotal = 0;
double riseTotal = 0;
double runCount = 0;
double riseCount = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
if (x < SIZE - 1) {
runTotal += region[x + 1][y] - region[x][y];
runCount++;
}
if (y < SIZE - 1) {
riseTotal += region[x][y + 1] - region[x][y];
riseCount++;
}
}
}
double run = 0;
if (runCount > 0) {
run = runTotal / runCount;
}
double rise = 0;
if (riseCount > 0) {
rise = riseTotal / riseCount;
}
System.out.println("rise is " + rise + " run is " + run);
Line2D newLine = getGradientLine(run, rise, SIZE - 1, SIZE - 1, 0, 0);
System.out.println("ending with line " + newLine.getP1() + " " + newLine.getP2());
double worst = 0.0;
int worstX = 0;
int worstY = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, newLine);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() + 1,
nearestPoint.getY() + 1);
final double diff = Math.abs(region[x][y] - distance);
if (diff > worst) {
worst = diff;
worstX = x;
worstY = y;
}
}
}
System.out.println("worst is " + worst + " x: " + worstX + " y: " + worstY);
}
}
I think I have fixed your program.
a) I took out the integer cast.
b) I removed all the 'x + 1' and 'x - 1' fudges you had used.
I think when dealing with floats and doubles, subtracting '1' from the end of a line is a No-No! What is 1 anyway? - it's ok to do this just before you plot it on the screen once it's an integer. But not while calculating! line length is a 'zero-based' quantity.
This version returns approx 4E-16 always.
import java.awt.geom.Point2D;
import java.awt.geom.Line2D;
import java.awt.geom.QuadCurve2D;
import java.util.Iterator;
import java.util.ArrayList;
public final class TestGradientLine {
private static int SIZE = 3;
public TestGradientLine() {
super();
}
//y = mx + b
//b = y - mx
//m is rise / run = gradient
//width and height of bounding box
//for a box 10x10 then width and height are 9,9
public static Line2D getGradientLine(double run, double rise, double width, double height, double x, double y) {
if (run == 0 && rise == 0) {
return new Line2D.Double(x, y, x + width, y + height);
}
//calculate hypotenuse
//check for a vertical line
if (run == 0) {
return new Line2D.Double(x, y, x, y + height);
}
//check for a horizontal line
if (rise == 0) {
return new Line2D.Double(x, y, x + width, y);
}
//calculate gradient
double m = rise / run;
Point2D start;
Point2D opposite;
if (m < 0) {
//lower left
start = new Point2D.Double(x, y + height);
opposite = new Point2D.Double(x + width, y);
} else {
//upper left
start = new Point2D.Double(x, y);
opposite = new Point2D.Double(x + width, y + height);
}
double b = start.getY() - (m * start.getX());
//now calculate another point along the slope
Point2D next = null;
if (m > 0) {
next = new Point2D.Double(start.getX() + Math.abs(run), start.getY() + Math.abs(rise));
} else {
if (rise < 0) {
next = new Point2D.Double(start.getX() + run, start.getY() + rise);
} else {
next = new Point2D.Double(start.getX() - run, start.getY() - rise);
}
}
final double actualWidth = width;
final double actualHeight = height;
final double a = Math.sqrt((actualWidth * actualWidth) + (actualHeight * actualHeight));
extendLine(start, next, a);
Line2D gradientLine = new Line2D.Double(start, next);
return gradientLine;
}
public static void extendLine(Point2D p0, Point2D p1, double toLength) {
final double oldLength = p0.distance(p1);
final double lengthFraction =
oldLength != 0.0 ? toLength / oldLength : 0.0;
p1.setLocation(p0.getX() + (p1.getX() - p0.getX()) * lengthFraction,
p0.getY() + (p1.getY() - p0.getY()) * lengthFraction);
}
public static Line2D generateRandomGradientLine(int width, int height) {
//so true means lower and false means upper
final boolean isLower = Math.random() > .5;
final Point2D start = new Point2D.Float(0, 0);
if (isLower) {
//change origin for lower left corner
start.setLocation(start.getX(), height );
}
//radius of our circle
double radius = Math.sqrt(width * width + height * height);
//now we want a random theta
//x = r * cos(theta)
//y = r * sin(theta)
double theta = 0.0;
if (isLower) {
theta = Math.random() * (Math.PI / 2);
} else {
theta = Math.random() * (Math.PI / 2) + (Math.PI / 2);
}
float endX = (float)(radius * Math.sin(theta));
float endY = (float)(radius * Math.cos(theta)) * -1;
if (isLower) {
endY = endY + (height );
}
final Point2D end = new Point2D.Float(endX, endY);
extendLine(start, end, radius);
return new Line2D.Float(start, end);
}
public static Point2D getNearestPointOnLine(Point2D end, Line2D line) {
final Point2D point = line.getP1();
final Point2D start = line.getP2();
double a = (end.getX() - point.getX()) * (start.getX() - point.getX()) + (end.getY() - point.getY()) * (start.getY() - point.getY());
double b = (end.getX() - start.getX()) * (point.getX() - start.getX()) + (end.getY() - start.getY()) * (point.getY() - start.getY());
final double x = point.getX() + ((start.getX() - point.getX()) * a)/(a+b);
final double y = point.getY() + ((start.getY() - point.getY()) * a)/(a+b);
final Point2D result = new Point2D.Double(x, y);
return result;
}
public static double length(double x0, double y0, double x1, double y1) {
final double dx = x1 - x0;
final double dy = y1 - y0;
return Math.sqrt(dx * dx + dy * dy);
}
public static void main(String[] args) {
final Line2D line = generateRandomGradientLine(SIZE, SIZE);
System.out.println("we're starting with line " + line.getP1() + " " + line.getP2());
double[][] region = new double[SIZE][SIZE];
//load up the region with data from our generated line
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, line);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() ,
nearestPoint.getY() );
region[x][y] = distance;
}
}
//now figure out what our line is from the region
double runTotal = 0;
double riseTotal = 0;
double runCount = 0;
double riseCount = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
if (x < SIZE - 1) {
runTotal += region[x + 1][y] - region[x][y];
runCount++;
}
if (y < SIZE - 1) {
riseTotal += region[x][y + 1] - region[x][y];
riseCount++;
}
}
}
double run = 0;
if (runCount > 0) {
run = runTotal / runCount;
}
double rise = 0;
if (riseCount > 0) {
rise = riseTotal / riseCount;
}
System.out.println("rise is " + rise + " run is " + run);
Line2D newLine = getGradientLine(run, rise, SIZE, SIZE , 0, 0);
System.out.println("ending with line " + newLine.getP1() + " " + newLine.getP2());
double worst = 0.0;
int worstX = 0;
int worstY = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, newLine);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() ,
nearestPoint.getY() );
final double diff = Math.abs(region[x][y] - distance);
if (diff > worst) {
worst = diff;
worstX = x;
worstY = y;
}
}
}
System.out.println("worst is " + worst + " x: " + worstX + " y: " + worstY);
}
}
why do you multiply by -1 at the end of this line?
int endY = (int)Math.round(radius * Math.cos(theta)) * -1;
this means that endY is always negative except radius is below 0. (cosinus always returns positive value)
is this intended or am i getting something wrong?
regards
You probably misunderstand float and/or double. This is a common problem with any language that implements the ieee spec for floats and doubles, which Java, C, C++ and just about every other language does.
Essentially
double val = 0;
for(int i=0;i<10;i++) {
val+=0.1;
System.out.println(val);
}
results in
0.1
0.2
0.30000000000000004
0.4
0.5
0.6
0.7
0.7999999999999999
0.8999999999999999
0.9999999999999999
And sometimes even worse. Either use BigDecimal, which alleviates a lot of the problem, or use integers.

Categories

Resources