Smart way to generate permutation and combination of String - java

String database[] = {'a', 'b', 'c'};
I would like to generate the following strings sequence, based on given database.
a
b
c
aa
ab
ac
ba
bb
bc
ca
cb
cc
aaa
...
I can only think of a pretty "dummy" solution.
public class JavaApplication21 {
/**
* #param args the command line arguments
*/
public static void main(String[] args) {
char[] database = {'a', 'b', 'c'};
String query = "a";
StringBuilder query_sb = new StringBuilder(query);
for (int a = 0; a < database.length; a++) {
query_sb.setCharAt(0, database[a]);
query = query_sb.toString();
System.out.println(query);
}
query = "aa";
query_sb = new StringBuilder(query);
for (int a = 0; a < database.length; a++) {
query_sb.setCharAt(0, database[a]);
for (int b = 0; b < database.length; b++) {
query_sb.setCharAt(1, database[b]);
query = query_sb.toString();
System.out.println(query);
}
}
query = "aaa";
query_sb = new StringBuilder(query);
for (int a = 0; a < database.length; a++) {
query_sb.setCharAt(0, database[a]);
for (int b = 0; b < database.length; b++) {
query_sb.setCharAt(1, database[b]);
for (int c = 0; c < database.length; c++) {
query_sb.setCharAt(2, database[c]);
query = query_sb.toString();
System.out.println(query);
}
}
}
}
}
The solution is pretty dumb. It is not scale-able in the sense that
What if I increase the size of database?
What if my final targeted print String length need to be N?
Is there any smart code, which can generate scale-able permutation and combination string in a really smart way?

You should check this answer: Getting every possible permutation of a string or combination including repeated characters in Java
To get this code:
public static String[] getAllLists(String[] elements, int lengthOfList)
{
//lists of length 1 are just the original elements
if(lengthOfList == 1) return elements;
else {
//initialize our returned list with the number of elements calculated above
String[] allLists = new String[(int)Math.pow(elements.length, lengthOfList)];
//the recursion--get all lists of length 3, length 2, all the way up to 1
String[] allSublists = getAllLists(elements, lengthOfList - 1);
//append the sublists to each element
int arrayIndex = 0;
for(int i = 0; i < elements.length; i++){
for(int j = 0; j < allSublists.length; j++){
//add the newly appended combination to the list
allLists[arrayIndex] = elements[i] + allSublists[j];
arrayIndex++;
}
}
return allLists;
}
}
public static void main(String[] args){
String[] database = {"a","b","c"};
for(int i=1; i<=database.length; i++){
String[] result = getAllLists(database, i);
for(int j=0; j<result.length; j++){
System.out.println(result[j]);
}
}
}
Although further improvement in memory could be made, since this solution generates all solution to memory first (the array), before we can print it. But the idea is the same, which is to use recursive algorithm.

This smells like counting in binary:
001
010
011
100
101
...
My first instinct would be to use a binary counter as a "bitmap" of characters to generate those the possible values. However, there are several wonderful answer to related questions here that suggest using recursion. See
How do I make this combinations/permutations method recursive?
Find out all combinations and permutations - Java
java string permutations and combinations lookup
http://www.programmerinterview.com/index.php/recursion/permutations-of-a-string/

Java implementation of your permutation generator:-
public class Permutations {
public static void permGen(char[] s,int i,int k,char[] buff) {
if(i<k) {
for(int j=0;j<s.length;j++) {
buff[i] = s[j];
permGen(s,i+1,k,buff);
}
}
else {
System.out.println(String.valueOf(buff));
}
}
public static void main(String[] args) {
char[] database = {'a', 'b', 'c'};
char[] buff = new char[database.length];
int k = database.length;
for(int i=1;i<=k;i++) {
permGen(database,0,i,buff);
}
}
}

Ok, so the best solution to permutations is recursion. Say you had n different letters in the string. That would produce n sub problems, one for each set of permutations starting with each unique letter. Create a method permutationsWithPrefix(String thePrefix, String theString) which will solve these individual problems. Create another method listPermutations(String theString) a implementation would be something like
void permutationsWithPrefix(String thePrefix, String theString) {
if ( !theString.length ) println(thePrefix + theString);
for(int i = 0; i < theString.length; i ++ ) {
char c = theString.charAt(i);
String workingOn = theString.subString(0, i) + theString.subString(i+1);
permutationsWithPrefix(prefix + c, workingOn);
}
}
void listPermutations(String theString) {
permutationsWithPrefix("", theString);
}

i came across this question as one of the interview question. Following is the solution that i have implemented for this problem using recursion.
public class PasswordCracker {
private List<String> doComputations(String inputString) {
List<String> totalList = new ArrayList<String>();
for (int i = 1; i <= inputString.length(); i++) {
totalList.addAll(getCombinationsPerLength(inputString, i));
}
return totalList;
}
private ArrayList<String> getCombinationsPerLength(
String inputString, int i) {
ArrayList<String> combinations = new ArrayList<String>();
if (i == 1) {
char [] charArray = inputString.toCharArray();
for (int j = 0; j < charArray.length; j++) {
combinations.add(((Character)charArray[j]).toString());
}
return combinations;
}
for (int j = 0; j < inputString.length(); j++) {
ArrayList<String> combs = getCombinationsPerLength(inputString, i-1);
for (String string : combs) {
combinations.add(inputString.charAt(j) + string);
}
}
return combinations;
}
public static void main(String args[]) {
String testString = "abc";
PasswordCracker crackerTest = new PasswordCracker();
System.out.println(crackerTest.doComputations(testString));
}
}

For anyone looking for non-recursive options, here is a sample for numeric permutations (can easily be adapted to char. numberOfAgents is the number of columns and the set of numbers is 0 to numberOfActions:
int numberOfAgents=5;
int numberOfActions = 8;
byte[][]combinations = new byte[(int)Math.pow(numberOfActions,numberOfAgents)][numberOfAgents];
// do each column separately
for (byte j = 0; j < numberOfAgents; j++) {
// for this column, repeat each option in the set 'reps' times
int reps = (int) Math.pow(numberOfActions, j);
// for each column, repeat the whole set of options until we reach the end
int counter=0;
while(counter<combinations.length) {
// for each option
for (byte i = 0; i < numberOfActions; i++) {
// save each option 'reps' times
for (int k = 0; k < reps; k++)
combinations[counter + i * reps + k][j] = i;
}
// increase counter by 'reps' times amount of actions
counter+=reps*numberOfActions;
}
}
// print
for(byte[] setOfActions : combinations) {
for (byte b : setOfActions)
System.out.print(b);
System.out.println();
}

// IF YOU NEED REPEATITION USE ARRAYLIST INSTEAD OF SET!!
import java.util.*;
public class Permutation {
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
System.out.println("ENTER A STRING");
Set<String> se=find(in.nextLine());
System.out.println((se));
}
public static Set<String> find(String s)
{
Set<String> ss=new HashSet<String>();
if(s==null)
{
return null;
}
if(s.length()==0)
{
ss.add("");
}
else
{
char c=s.charAt(0);
String st=s.substring(1);
Set<String> qq=find(st);
for(String str:qq)
{
for(int i=0;i<=str.length();i++)
{
ss.add(comb(str,c,i));
}
}
}
return ss;
}
public static String comb(String s,char c,int i)
{
String start=s.substring(0,i);
String end=s.substring(i);
return start+c+end;
}
}
// IF YOU NEED REPEATITION USE ARRAYLIST INSTEAD OF SET!!

Related

Java - How to get all possible combinations of the letters in a string? [duplicate]

What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)
Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.
Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')
A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.
Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.
Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}

Java: Print a unique character in a string

I'm writing a program that will print the unique character in a string (entered through a scanner). I've created a method that tries to accomplish this but I keep getting characters that are not repeats, instead of a character (or characters) that is unique to the string. I want the unique letters only.
Here's my code:
import java.util.Scanner;
public class Sameness{
public static void main (String[]args){
Scanner kb = new Scanner (System.in);
String word = "";
System.out.println("Enter a word: ");
word = kb.nextLine();
uniqueCharacters(word);
}
public static void uniqueCharacters(String test){
String temp = "";
for (int i = 0; i < test.length(); i++){
if (temp.indexOf(test.charAt(i)) == - 1){
temp = temp + test.charAt(i);
}
}
System.out.println(temp + " ");
}
}
And here's sample output with the above code:
Enter a word:
nreena
nrea
The expected output would be: ra
Based on your desired output, you have to replace a character that initially has been already added when it has a duplicated later, so:
public static void uniqueCharacters(String test){
String temp = "";
for (int i = 0; i < test.length(); i++){
char current = test.charAt(i);
if (temp.indexOf(current) < 0){
temp = temp + current;
} else {
temp = temp.replace(String.valueOf(current), "");
}
}
System.out.println(temp + " ");
}
How about applying the KISS principle:
public static void uniqueCharacters(String test) {
System.out.println(test.chars().distinct().mapToObj(c -> String.valueOf((char)c)).collect(Collectors.joining()));
}
The accepted answer will not pass all the test case for example
input -"aaabcdd"
desired output-"bc"
but the accepted answer will give -abc
because the character a present odd number of times.
Here I have used ConcurrentHasMap to store character and the number of occurrences of character then removed the character if the occurrences is more than one time.
import java.util.concurrent.ConcurrentHashMap;
public class RemoveConductive {
public static void main(String[] args) {
String s="aabcddkkbghff";
String[] cvrtar=s.trim().split("");
ConcurrentHashMap<String,Integer> hm=new ConcurrentHashMap<>();
for(int i=0;i<cvrtar.length;i++){
if(!hm.containsKey(cvrtar[i])){
hm.put(cvrtar[i],1);
}
else{
hm.put(cvrtar[i],hm.get(cvrtar[i])+1);
}
}
for(String ele:hm.keySet()){
if(hm.get(ele)>1){
hm.remove(ele);
}
}
for(String key:hm.keySet()){
System.out.print(key);
}
}
}
Though to approach a solution I would suggest you to try and use a better data structure and not just string. Yet, you can simply modify your logic to delete already existing duplicates using an else as follows :
public static void uniqueCharacters(String test) {
String temp = "";
for (int i = 0; i < test.length(); i++) {
char ch = test.charAt(i);
if (temp.indexOf(ch) == -1) {
temp = temp + ch;
} else {
temp.replace(String.valueOf(ch),""); // added this to your existing code
}
}
System.out.println(temp + " ");
}
This is an interview question. Find Out all the unique characters of a string.
Here is the complete solution. The code itself is self explanatory.
public class Test12 {
public static void main(String[] args) {
String a = "ProtijayiGiniGina";
allunique(a);
}
private static void allunique(String a) {
int[] count = new int[256];// taking count of characters
for (int i = 0; i < a.length(); i++) {
char ch = a.charAt(i);
count[ch]++;
}
for (int i = 0; i < a.length(); i++) {
char chh = a.charAt(i);
// character which has arrived only one time in the string will be printed out
if (count[chh] == 1) {
System.out.println("index => " + i + " and unique character => " + a.charAt(i));
}
}
}// unique
}
In Python :
def firstUniqChar(a):
count = [0] *256
for i in a: count[ord(i)] += 1
element = ""
for item in a:
if (count[ord(item)] == 1):
element = item;
break;
return element
a = "GiniGinaProtijayi";
print(firstUniqChar(a)) # output is P
public static String input = "10 5 5 10 6 6 2 3 1 3 4 5 3";
public static void uniqueValue (String numbers) {
String [] str = input.split(" ");
Set <String> unique = new HashSet <String> (Arrays.asList(str));
System.out.println(unique);
for (String value:unique) {
int count = 0;
for ( int i= 0; i<str.length; i++) {
if (value.equals(str[i])) {
count++;
}
}
System.out.println(value+"\t"+count);
}
}
public static void main(String [] args) {
uniqueValue(input);
}
Step1: To find the unique characters in a string, I have first taken the string from user.
Step2: Converted the input string to charArray using built in function in java.
Step3: Considered two HashSet (set1 for storing all characters even if it is getting repeated, set2 for storing only unique characters.
Step4 : Run for loop over the array and check that if particular character is not there in set1 then add it to both set1 and set2. if that particular character is already there in set1 then add it to set1 again but remove it from set2.( This else part is useful when particular character is getting repeated odd number of times).
Step5 : Now set2 will have only unique characters. Hence, just print that set2.
public static void main(String[] args)
{
Scanner input = new Scanner(System.in);
String str = input.next();
char arr[] = str.toCharArray();
HashSet<Character> set1=new HashSet<Character>();
HashSet<Character> set2=new HashSet<Character>();
for(char i:arr)
{
if(set1.contains(i))
{
set1.add(i);
set2.remove(i);
}
else
{
set1.add(i);
set2.add(i);
}
}
System.out.println(set2);
}
I would store all the characters of the string in an array that you will loop through to check if the current characters appears there more than once. If it doesn't, then add it to temp.
public static void uniqueCharacters(String test) {
String temp = "";
char[] array = test.toCharArray();
int count; //keep track of how many times the character exists in the string
outerloop: for (int i = 0; i < test.length(); i++) {
count = 0; //reset the count for every new letter
for(int j = 0; j < array.length; j++) {
if(test.charAt(i) == array[j])
count++;
if(count == 2){
count = 0;
continue outerloop; //move on to the next letter in the string; this will skip the next two lines below
}
}
temp += test.charAt(i);
System.out.println("Adding.");
}
System.out.println(temp);
}
I have added comments for some more detail.
import java.util.*;
import java.lang.*;
class Demo
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
System.out.println("Enter String");
String s1=sc.nextLine();
try{
HashSet<Object> h=new HashSet<Object>();
for(int i=0;i<s1.length();i++)
{
h.add(s1.charAt(i));
}
Iterator<Object> itr=h.iterator();
while(itr.hasNext()){
System.out.println(itr.next());
}
}
catch(Exception e)
{
System.out.println("error");
}
}
}
If you don't want to use additional space:
String abc="developer";
System.out.println("The unique characters are-");
for(int i=0;i<abc.length();i++)
{
for(int j=i+1;j<abc.length();j++)
{
if(abc.charAt(i)==abc.charAt(j))
abc=abc.replace(String.valueOf(abc.charAt(j))," ");
}
}
System.out.println(abc);
Time complexity O(n^2) and no space.
This String algorithm is used to print unique characters in a string.It runs in O(n) runtime where n is the length of the string.It supports ASCII characters only.
static String printUniqChar(String s) {
StringBuilder buildUniq = new StringBuilder();
boolean[] uniqCheck = new boolean[128];
for (int i = 0; i < s.length(); i++) {
if (!uniqCheck[s.charAt(i)]) {
uniqCheck[s.charAt(i)] = true;
if (uniqCheck[s.charAt(i)])
buildUniq.append(s.charAt(i));
}
}
public class UniqueCharactersInString {
public static void main(String []args){
String input = "aabbcc";
String output = uniqueString(input);
System.out.println(output);
}
public static String uniqueString(String s){
HashSet<Character> uniques = new HashSet<>();
uniques.add(s.charAt(0));
String out = "";
out += s.charAt(0);
for(int i =1; i < s.length(); i++){
if(!uniques.contains(s.charAt(i))){
uniques.add(s.charAt(i));
out += s.charAt(i);
}
}
return out;
}
}
What would be the inneficiencies of this answer? How does it compare to other answers?
Based on your desired output you can replace each character already present with a blank character.
public static void uniqueCharacters(String test){
String temp = "";
for(int i = 0; i < test.length(); i++){
if (temp.indexOf(test.charAt(i)) == - 1){
temp = temp + test.charAt(i);
} else {
temp.replace(String.valueOf(temp.charAt(i)), "");
}
}
System.out.println(temp + " ");
}
public void uniq(String inputString) {
String result = "";
int inputStringLen = inputStr.length();
int[] repeatedCharacters = new int[inputStringLen];
char inputTmpChar;
char tmpChar;
for (int i = 0; i < inputStringLen; i++) {
inputTmpChar = inputStr.charAt(i);
for (int j = 0; j < inputStringLen; j++) {
tmpChar = inputStr.charAt(j);
if (inputTmpChar == tmpChar)
repeatedCharacters[i]++;
}
}
for (int k = 0; k < inputStringLen; k++) {
inputTmpChar = inputStr.charAt(k);
if (repeatedCharacters[k] == 1)
result = result + inputTmpChar + " ";
}
System.out.println ("Unique characters: " + result);
}
In first for loop I count the number of times the character repeats in the string. In the second line I am looking for characters repetitive once.
how about this :)
for (int i=0; i< input.length();i++)
if(input.indexOf(input.charAt(i)) == input.lastIndexOf(input.charAt(i)))
System.out.println(input.charAt(i) + " is unique");
package extra;
public class TempClass {
public static void main(String[] args) {
// TODO Auto-generated method stub
String abcString="hsfj'pwue2hsu38bf74sa';fwe'rwe34hrfafnosdfoasq7433qweid";
char[] myCharArray=abcString.toCharArray();
TempClass mClass=new TempClass();
mClass.countUnique(myCharArray);
mClass.countEach(myCharArray);
}
/**
* This is the program to find unique characters in array.
* #add This is nice.
* */
public void countUnique(char[] myCharArray) {
int arrayLength=myCharArray.length;
System.out.println("Array Length is: "+arrayLength);
char[] uniqueValues=new char[myCharArray.length];
int uniqueValueIndex=0;
int count=0;
for(int i=0;i<arrayLength;i++) {
for(int j=0;j<arrayLength;j++) {
if (myCharArray[i]==myCharArray[j] && i!=j) {
count=count+1;
}
}
if (count==0) {
uniqueValues[uniqueValueIndex]=myCharArray[i];
uniqueValueIndex=uniqueValueIndex+1;
count=0;
}
count=0;
}
for(char a:uniqueValues) {
System.out.println(a);
}
}
/**
* This is the program to find count each characters in array.
* #add This is nice.
* */
public void countEach(char[] myCharArray) {
}
}
Here str will be your string to find the unique characters.
function getUniqueChars(str){
let uniqueChars = '';
for(let i = 0; i< str.length; i++){
for(let j= 0; j< str.length; j++) {
if(str.indexOf(str[i]) === str.lastIndexOf(str[j])) {
uniqueChars += str[i];
}
}
}
return uniqueChars;
}
public static void main(String[] args) {
String s = "aaabcdd";
char a[] = s.toCharArray();
List duplicates = new ArrayList();
List uniqueElements = new ArrayList();
for (int i = 0; i < a.length; i++) {
uniqueElements.add(a[i]);
for (int j = i + 1; j < a.length; j++) {
if (a[i] == a[j]) {
duplicates.add(a[i]);
break;
}
}
}
uniqueElements.removeAll(duplicates);
System.out.println(uniqueElements);
System.out.println("First Unique : "+uniqueElements.get(0));
}
Output :
[b, c]
First Unique : b
import java.util.*;
public class Sameness{
public static void main (String[]args){
Scanner kb = new Scanner (System.in);
String word = "";
System.out.println("Enter a word: ");
word = kb.nextLine();
uniqueCharacters(word);
}
public static void uniqueCharacters(String test){
for(int i=0;i<test.length();i++){
if(test.lastIndexOf(test.charAt(i))!=i)
test=test.replaceAll(String.valueOf(test.charAt(i)),"");
}
System.out.println(test);
}
}
public class Program02
{
public static void main(String[] args)
{
String inputString = "abhilasha";
for (int i = 0; i < inputString.length(); i++)
{
for (int j = i + 1; j < inputString.length(); j++)
{
if(inputString.toCharArray()[i] == inputString.toCharArray()[j])
{
inputString = inputString.replace(String.valueOf(inputString.charAt(j)), "");
}
}
}
System.out.println(inputString);
}
}

recursively get combinations of word

I have been struggling with this for days and I can't seem to
finish it. The question is as follows:
Write a recursive method called String[] perm(int n) that accepts
one argument: Integer n. The method returns an array of all words
with exactly n syllables. The words available for use are: "Foo"
and "Bar"
I have the following code without recursion:
static String[] words = {"Foo","Bar"};
static int n = 2;
static int count = 0;
public static String[] perm(int n) {
String[] wordsArray = new String[4];
for(int i = 0; i < words.length; i++) {
for(int j = 0; j < words.length; j++) {
wordsArray[count] = words[i] + words[j];
count++;
}
}
return wordsArray;
}
I can't seem to get the below results by using recursion
and returning a string Array along the way. So I was
wondering if you could help me.
The Following should be the results with 2 Syllables:
FooFoo
FooBar
BarFoo
BarBar
Here is an initial approach please modify it accord to your need ...
public static void permutationForAString(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
Note this doesn't consider repetition ...
permutationForAString("ABC");
will give output as
ABC
ACB
BAC
BCA
CAB
CBA
Here is something that is working as you required.
public List<String> permute(String[] stringInput, int curr)
{
List<String> permutations = new ArrayList<String>();
if (curr >= stringInput.length-1)
{
return Arrays.asList(stringInput);
}
else
{
for (int i = 0; i < stringInput.length; i++)
{
String currentCharacter = stringInput[i];
List<String> permutationsOutput = permute(stringInput,curr+1);
for (String singlePermutation : permutationsOutput)
{
String currentPermutations = currentCharacter + singlePermutation;
permutations.add(currentPermutations);
}
}
return permutations;
}
}
Call it like this
permute(arr, 0);
where 0 is the start index from which to start permuting it will also act as the limiting condition in case of recursion.
Output::
FooFoo
FooBar
BarFoo
BarBar

Sort strings in an array based on length

I have the below program for sorting Strings based on length. I want to print the shortest element first. I don't want to use Comparator or any API to do this. Where I am going wrong?
public class SortArrayElements {
public static void main(String[] args) {
String[] arr = new String[]{"Fan","dexter","abc","fruit","apple","banana"};
String[] sortedArr = new String[arr.length];
for(int i=0;i<sortedArr.length;i++)
{
sortedArr[i] = compareArrayElements(arr);
}
System.out.println("The strings in the sorted order of length are: ");
for(String sortedArray:sortedArr)
{
System.out.println(sortedArray);
}
}
public static String compareArrayElements(String[] arr) {
String temp = null;
for(int i=0;i<arr.length-1;i++)
{
temp = new String();
if(arr[i].length() > arr[i+1].length())
temp = arr[i+1];
else
temp = arr[i];
}
return temp;
}
}
If you really want to learn Java: use a Comparator. Any other way is bad Java code.
You can however rewrite the Comparator system if you want, it will teach you about proper code structuring.
For your actual code, here are some hints:
Using the proper algorithm is much more important than the Language you use to code. Good algorithms are always the same, no matter the language.
Do never do new in loops, unless you actually need to create new objects. The GC says "thanks".
Change the compareArrayElements function to accept a minimum size and have it return the smallest String with at least minimum size.
You could cut out those Strings that you have considered to be the smallest (set them to null), this will however modify the original array.
Use bubble sort, but instead of comparing ints, just compare String lengths.
I won't write the code for you. You will have to do a little bit of research on this algorithm. Google is your best friend as a programmer.
Good luck.
References:
Bubble sort in Java
Sorting an array of strings
Implement bubbleSort() and swap(). My implementations mutate the original array, but you can modify them to make a copy if you want.
public class SortArrayElements {
public static void main(String[] args) {
String[] arr = new String[]{"Fan", "dexter", "abc", "fruit", "apple", "banana"};
bubbleSort(arr);
System.out.println("The strings in the sorted order of length are: ");
for (String item : arr) {
System.out.println(item);
}
}
// Mutates the original array
public static void bubbleSort(String[] arr) {
boolean swapped = false;
do {
swapped = false;
for (int i = 0; i < arr.length - 1; i += 1) {
if (arr[i].length() > arr[i + 1].length()) {
swap(arr, i, i + 1);
swapped = true;
}
}
} while (swapped);
}
// Mutates the original array
public static void swap(String[] arr, int index0, int index1) {
String temp = arr[index0];
arr[index0] = arr[index1];
arr[index1] = temp;
}
}
Okay, there is the code completely based on loops and on bubble sort. No sets are there as you wanted it. This is a pure loop program so you could understand the nested loops, plus it doesn't change the index or something of the string
import java.util.*;
class strings {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
ArrayList<String> a = new ArrayList<String>(2);
System.out.println("Start entering your words or sentences.");
System.out.println("Type stop to stop.");
String b;
int c = 0, d;
do {
b = in.nextLine();
b = b.trim();
a.add(b);
c++;
}
while (!b.equalsIgnoreCase("stop"));
if (c > 1)
a.remove(a.size() - 1);
System.out.println("Choose the sort you want. Type the corresponding
number");
System.out.println("1. Ascending");
System.out.println("2. Descending");
int sc=in.nextInt();
switch(sc) {
case 1: {
int sag[] = new int[a.size()];
for (int jk = 0; jk < a.size(); jk++) {
b = a.get(jk);
c = b.length();
sag[jk] = c;
}
int temp;
for (int i = 0; i < a.size() - 1; i++) {
for (int j = 0; j < a.size() - 1; j++) {
if (sag[j] > sag[j + 1]) {
temp = sag[j + 1];
sag[j + 1] = sag[j];
sag[j] = temp;
}
}
}
ArrayList saga = new ArrayList();
for (int i = 0; i < sag.length; i++) {
saga.add(sag[i]);
}
for (int i = 0; i < saga.size(); i++) {
for (int j = i + 1; j < saga.size(); j++) {
if (saga.get(i).equals(saga.get(j))) {
saga.remove(j);
j--;
}
}
}
for (int i = 0; i < saga.size(); i++) {
for (int j = 0; j < a.size(); j++) {
String jl = a.get(j);
if (saga.get(i).equals(jl.length()))
System.out.println(jl);
}
}
break;
}
case 2: {
int sag[] = new int[a.size()];
for (int jk = 0; jk < a.size(); jk++) {
b = a.get(jk);
c = b.length();
sag[jk] = c;
}
int temp;
for (int i = 0; i < a.size() - 1; i++) {
for (int j = 0; j < a.size() - 1; j++) {
if (sag[j] < sag[j + 1]) {
temp = sag[j + 1];
sag[j + 1] = sag[j];
sag[j] = temp;
}
}
}
ArrayList saga = new ArrayList();
for (int i = 0; i < sag.length; i++) {
saga.add(sag[i]);
}
for (int i = 0; i < saga.size(); i++) {
for (int j = i + 1; j < saga.size(); j++) {
if (saga.get(i).equals(saga.get(j))) {
saga.remove(j);
j--;
}
}
}
for (int i = 0; i < saga.size(); i++) {
for (int j = 0; j < a.size(); j++) {
String jl = a.get(j);
if (saga.get(i).equals(jl.length()))
System.out.println(jl);
}
}
break;
}
}
}
}
For instance, the following:
ArrayList<String> str = new ArrayList<>(
Arrays.asList(
"Long", "Short", "VeryLong", "S")
);
By lambda:
str.sort((String s1, String s2) -> s1.length() - s2.length());
By static Collections.sort
import static java.util.Collections.sort;
sort(str, new Comparator<String>{
#Override
public int compare(String s1, String s2) {
return s1.lenght() - s2.lenght()
}
});
Both options are implemented by default sort method from List interface
Let's take a following array of String inputArray = ["abc","","aaa","a","zz"]
we can use Comparator for sorting the given string array to sort it based on length with the following code:
String[] sortByLength(String[] inputArray) {
Arrays.sort(inputArray, new Comparator<String>(){
public int compare(String s1, String s2){
return s1.length() - s2.length();
}
});
return inputArray;
}
//sort String array based on length
public class FirstNonRepeatedString {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
System.out.println("Please Enter your String");
String str = in.nextLine();
String arrString[] = str.split("\\s");
arrString = sortArray(arrString);
System.out.println("Sort String ");
for(String s:arrString){
System.out.println(s);
}
}
private static String[] sortArray(String[] arrString) {
int length = arrString.length;
String s;
for (int i = 0; i < length ; i++) {
s= new String();
for(int j = 0; j < length; j++ ){
if(arrString[i].length()< arrString[j].length()){
s = arrString[i];
arrString[i] = arrString[j];
arrString[j] = s;
}
}
}
return arrString;
}
}
import java.util.*;
public class SortStringBasedOnTheirLength {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
System.out.println("Enter String:");
String str=sc.nextLine();
String[] str1=str.split("\\s");
for(int i=0;i<str1.length;i++)
{
for(int j=i+1;j<str1.length;j++)
{
if(str1[i].length()>str1[j].length())
{
String temp= str1[i];
str1[i]=str1[j];
str1[j]=temp;
}
}
}
for(int i=0;i<str1.length;i++)
{
System.out.print(str1[i]+" ");
}
}
}

Generating all permutations of a given string

What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)
Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.
Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')
A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.
Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.
Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}

Categories

Resources