Generating all permutations of a given string - java

What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?

public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)

Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.

Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]

Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')

A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}

All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}

Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}

This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}

Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}

One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}

python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')

This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.

Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}

this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}

Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}

Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)

import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}

/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}

Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}

We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}

//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}

//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}

Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.

Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}

My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}

Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}

Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}

A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}

String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));

In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}

Related

Given an integer N. What is the smallest integer greater than N in java

I was trying to write a code that takes an integer between 1 and 1_000_000 and gives back the smallest integer greater than that with the same digits, and if it doesn't exist, it prints 0.
For example
input: 156
output 165
input 330
output 0
input 27711
output 71127
My problem is, my code below doesn't return the correct output for other inputs.
For example, in input 4231, the output should be 4312.
I'm having trouble finding the best algorithm that returns the correct output for every input.
tnx in advance
import java.util.Scanner;
public class Test4 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String x = sc.nextLine();
char[] chars = new char[x.length()];
char[] oldChars = new char[x.length()];
char temp;
for (int i = 0; i < x.length(); i++) {
chars[i] = x.charAt(i);
oldChars[i] = chars[i];
}
if (x.length() > 3){
for (int j = 0; j < x.length(); j++) {
if (chars[0] < chars[j]) {
temp = chars[0];
chars[0] = chars[j];
chars[j] = temp;
break;
}
}
for (int j = 1; j <= x.length() ; j++) {
for (int i = 1; i < x.length() - 1; i++) {
if (chars[i] > chars[i+1]){
temp = chars[i];
chars[i] = chars[i+1];
chars[i+1] = temp;
}
}
}
for (int i = 0; i < x.length(); i++) {
System.out.print(chars[i]);
}
}
else if (x.length() == 1)
System.out.println(0);
else {
temp = chars[x.length()-2];
chars[x.length()-2] = chars[x.length()-1];
chars[x.length()-1] = temp;
if (chars[x.length()-2] > oldChars[x.length()-2])
for (int i = 0; i < x.length(); i++) {
System.out.print(chars[i]);
}
else
System.out.println(0);
}
sc.close();
}
}
Try this, please
int muldigits(int n){
int result = 0;
String [] strings = String.valueOf(Math.abs(n)).split("(?!^)");
List<Integer> intsList = new ArrayList<>();
for (String string : strings) {
intsList.add(Integer.parseInt(string));
}
if(n<0){
Collections.sort(intsList);
String temp = Arrays.toString(intsList.toArray()).replace(", ", "");
System.out.println(temp);
result = - Integer.parseInt(temp.substring(1, temp.length()-1));
}else{
Collections.sort(intsList, Collections.reverseOrder());
String temp = Arrays.toString(intsList.toArray()).replace(", ", "");
result = Integer.parseInt(temp.substring(1, temp.length()-1));
}
return result;
}
Here is one approach.
Starting with the least N significant digits. N starts with 2. Save a copy.
then create all permutations of those N digits.
join them into a String and put in a TreeMap<String>
if there exists a next higher value of the original N digits, return the new value
with the new ending concatenated to the original.
else, increase N by one and repeat the process.
public class NextLargestInteger {
public static void main(String[] args) {
Generate 10 random numbers.
Random r = new Random();
for (int i = 0; i < 10; i++) {
int val = r.nextInt(Integer.MAX_VALUE);
System.out.printf("%-12s %-12s%n",val,nextHighest(Integer.toString(val)));
}
Prints something like
1446553155 1446553[515]
1801279982 18012[82799]
1894877459 18948774[95]
805018669 8050186[96]
521703779 5217037[97]
1926164416 19261644[61]
1236907656 12369076[65]
1326860288 1326860[828]
1049149602 10491496[20]
1516995584 1516995[845]
The brackets on the right show what endings were permuted to get the minimum
The primary method.
public static String nextHighest(String e) {
char[] digits = e.toCharArray();
// start two digits from the end
int i = digits.length - 2;
// tree set to store the permuted strings
NavigableSet<String> set = new TreeSet<>();
for (; i >= 0; i--) {
// the last N digits
char[] shortList =
Arrays.copyOfRange(digits, i, digits.length);
// save a copy of the original N digit ending
String originalTail = new String(shortList);
permute(shortList, digits.length - i, set);
// get the next higher ending from the set
String minTail = set.higher(originalTail);
// if it exists, return the value.
if (minTail != null) {
String head =
new String(Arrays.copyOfRange(digits, 0, i));
return String.format("%s[%s]", head, minTail);
}
// clear the set and try a larger ending.
set.clear();
}
// no success, return the original value.
return e;
}
Utility method to permute the character array
public static void permute(char[] elements, int length,
Set<String> vals) {
if (length == 1) {
vals.add(new String(elements));
} else {
for (int i = 0; i < length; i++) {
permute(elements, length - 1, vals);
if (length % 2 == 1) {
swap(elements, 1, length - 1);
} else {
swap(elements, i, length - 1);
}
}
}
}
Utility method to swap array elements.
public static void swap(char[] list, int i, int j) {
char temp = list[i];
list[i] = list[j];
list[j] = temp;
}
}
If you can use apache commons collections4 and performance does not matter you can use something like that:
package test;
import org.apache.commons.collections4.CollectionUtils;
import org.apache.commons.lang3.StringUtils;
import java.util.List;
import java.util.stream.Collectors;
public class NextNumberCalculator {
public int calculateNearest(int input) {
List<Character> inputChars = String.valueOf(input).chars()
.mapToObj(c -> (char) c)
.collect(Collectors.toList());
return CollectionUtils.permutations(inputChars)
.stream()
.mapToInt(chars -> Integer.parseInt(StringUtils.join(chars, "")))
.filter(permutation -> permutation > input)
.min()
.orElse(0);
}
}
Here some unit test:
package test;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
class NextNumberCalculatorTest {
private NextNumberCalculator calculator;
#BeforeEach
void setUp() {
calculator = new NextNumberCalculator();
}
#Test
void calculateNearest() {
Assertions.assertEquals(165, calculator.calculateNearest(156));
Assertions.assertEquals(0, calculator.calculateNearest(330));
Assertions.assertEquals(71127, calculator.calculateNearest(27711));
Assertions.assertEquals(414, calculator.calculateNearest(144));
}
}

Java - How to get all possible combinations of the letters in a string? [duplicate]

What is an elegant way to find all the permutations of a string. E.g. permutation for ba, would be ba and ab, but what about longer string such as abcdefgh? Is there any Java implementation example?
public static void permutation(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
(via Introduction to Programming in Java)
Use recursion.
Try each of the letters in turn as the first letter and then find all the permutations of the remaining letters using a recursive call.
The base case is when the input is an empty string the only permutation is the empty string.
Here is my solution that is based on the idea of the book "Cracking the Coding Interview" (P54):
/**
* List permutations of a string.
*
* #param s the input string
* #return the list of permutations
*/
public static ArrayList<String> permutation(String s) {
// The result
ArrayList<String> res = new ArrayList<String>();
// If input string's length is 1, return {s}
if (s.length() == 1) {
res.add(s);
} else if (s.length() > 1) {
int lastIndex = s.length() - 1;
// Find out the last character
String last = s.substring(lastIndex);
// Rest of the string
String rest = s.substring(0, lastIndex);
// Perform permutation on the rest string and
// merge with the last character
res = merge(permutation(rest), last);
}
return res;
}
/**
* #param list a result of permutation, e.g. {"ab", "ba"}
* #param c the last character
* #return a merged new list, e.g. {"cab", "acb" ... }
*/
public static ArrayList<String> merge(ArrayList<String> list, String c) {
ArrayList<String> res = new ArrayList<>();
// Loop through all the string in the list
for (String s : list) {
// For each string, insert the last character to all possible positions
// and add them to the new list
for (int i = 0; i <= s.length(); ++i) {
String ps = new StringBuffer(s).insert(i, c).toString();
res.add(ps);
}
}
return res;
}
Running output of string "abcd":
Step 1: Merge [a] and b:
[ba, ab]
Step 2: Merge [ba, ab] and c:
[cba, bca, bac, cab, acb, abc]
Step 3: Merge [cba, bca, bac, cab, acb, abc] and d:
[dcba, cdba, cbda, cbad, dbca, bdca, bcda, bcad, dbac, bdac, badc, bacd, dcab, cdab, cadb, cabd, dacb, adcb, acdb, acbd, dabc, adbc, abdc, abcd]
Of all the solutions given here and in other forums, I liked Mark Byers the most. That description actually made me think and code it myself.
Too bad I cannot voteup his solution as I am newbie.
Anyways here is my implementation of his description
public class PermTest {
public static void main(String[] args) throws Exception {
String str = "abcdef";
StringBuffer strBuf = new StringBuffer(str);
doPerm(strBuf,0);
}
private static void doPerm(StringBuffer str, int index){
if(index == str.length())
System.out.println(str);
else { //recursively solve this by placing all other chars at current first pos
doPerm(str, index+1);
for (int i = index+1; i < str.length(); i++) {//start swapping all other chars with current first char
swap(str,index, i);
doPerm(str, index+1);
swap(str,i, index);//restore back my string buffer
}
}
}
private static void swap(StringBuffer str, int pos1, int pos2){
char t1 = str.charAt(pos1);
str.setCharAt(pos1, str.charAt(pos2));
str.setCharAt(pos2, t1);
}
}
I prefer this solution ahead of the first one in this thread because this solution uses StringBuffer. I wouldn't say my solution doesn't create any temporary string (it actually does in system.out.println where the toString() of StringBuffer is called). But I just feel this is better than the first solution where too many string literals are created. May be some performance guy out there can evalute this in terms of 'memory' (for 'time' it already lags due to that extra 'swap')
A very basic solution in Java is to use recursion + Set ( to avoid repetitions ) if you want to store and return the solution strings :
public static Set<String> generatePerm(String input)
{
Set<String> set = new HashSet<String>();
if (input == "")
return set;
Character a = input.charAt(0);
if (input.length() > 1)
{
input = input.substring(1);
Set<String> permSet = generatePerm(input);
for (String x : permSet)
{
for (int i = 0; i <= x.length(); i++)
{
set.add(x.substring(0, i) + a + x.substring(i));
}
}
}
else
{
set.add(a + "");
}
return set;
}
All the previous contributors have done a great job explaining and providing the code. I thought I should share this approach too because it might help someone too. The solution is based on (heaps' algorithm )
Couple of things:
Notice the last item which is depicted in the excel is just for helping you better visualize the logic. So, the actual values in the last column would be 2,1,0 (if we were to run the code because we are dealing with arrays and arrays start with 0).
The swapping algorithm happens based on even or odd values of current position. It's very self explanatory if you look at where the swap method is getting called.You can see what's going on.
Here is what happens:
public static void main(String[] args) {
String ourword = "abc";
String[] ourArray = ourword.split("");
permute(ourArray, ourArray.length);
}
private static void swap(String[] ourarray, int right, int left) {
String temp = ourarray[right];
ourarray[right] = ourarray[left];
ourarray[left] = temp;
}
public static void permute(String[] ourArray, int currentPosition) {
if (currentPosition == 1) {
System.out.println(Arrays.toString(ourArray));
} else {
for (int i = 0; i < currentPosition; i++) {
// subtract one from the last position (here is where you are
// selecting the the next last item
permute(ourArray, currentPosition - 1);
// if it's odd position
if (currentPosition % 2 == 1) {
swap(ourArray, 0, currentPosition - 1);
} else {
swap(ourArray, i, currentPosition - 1);
}
}
}
}
Let's use input abc as an example.
Start off with just the last element (c) in a set (["c"]), then add the second last element (b) to its front, end and every possible positions in the middle, making it ["bc", "cb"] and then in the same manner it will add the next element from the back (a) to each string in the set making it:
"a" + "bc" = ["abc", "bac", "bca"] and "a" + "cb" = ["acb" ,"cab", "cba"]
Thus entire permutation:
["abc", "bac", "bca","acb" ,"cab", "cba"]
Code:
public class Test
{
static Set<String> permutations;
static Set<String> result = new HashSet<String>();
public static Set<String> permutation(String string) {
permutations = new HashSet<String>();
int n = string.length();
for (int i = n - 1; i >= 0; i--)
{
shuffle(string.charAt(i));
}
return permutations;
}
private static void shuffle(char c) {
if (permutations.size() == 0) {
permutations.add(String.valueOf(c));
} else {
Iterator<String> it = permutations.iterator();
for (int i = 0; i < permutations.size(); i++) {
String temp1;
for (; it.hasNext();) {
temp1 = it.next();
for (int k = 0; k < temp1.length() + 1; k += 1) {
StringBuilder sb = new StringBuilder(temp1);
sb.insert(k, c);
result.add(sb.toString());
}
}
}
permutations = result;
//'result' has to be refreshed so that in next run it doesn't contain stale values.
result = new HashSet<String>();
}
}
public static void main(String[] args) {
Set<String> result = permutation("abc");
System.out.println("\nThere are total of " + result.size() + " permutations:");
Iterator<String> it = result.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}
}
}
This one is without recursion
public static void permute(String s) {
if(null==s || s.isEmpty()) {
return;
}
// List containing words formed in each iteration
List<String> strings = new LinkedList<String>();
strings.add(String.valueOf(s.charAt(0))); // add the first element to the list
// Temp list that holds the set of strings for
// appending the current character to all position in each word in the original list
List<String> tempList = new LinkedList<String>();
for(int i=1; i< s.length(); i++) {
for(int j=0; j<strings.size(); j++) {
tempList.addAll(merge(s.charAt(i), strings.get(j)));
}
strings.removeAll(strings);
strings.addAll(tempList);
tempList.removeAll(tempList);
}
for(int i=0; i<strings.size(); i++) {
System.out.println(strings.get(i));
}
}
/**
* helper method that appends the given character at each position in the given string
* and returns a set of such modified strings
* - set removes duplicates if any(in case a character is repeated)
*/
private static Set<String> merge(Character c, String s) {
if(s==null || s.isEmpty()) {
return null;
}
int len = s.length();
StringBuilder sb = new StringBuilder();
Set<String> list = new HashSet<String>();
for(int i=0; i<= len; i++) {
sb = new StringBuilder();
sb.append(s.substring(0, i) + c + s.substring(i, len));
list.add(sb.toString());
}
return list;
}
Well here is an elegant, non-recursive, O(n!) solution:
public static StringBuilder[] permutations(String s) {
if (s.length() == 0)
return null;
int length = fact(s.length());
StringBuilder[] sb = new StringBuilder[length];
for (int i = 0; i < length; i++) {
sb[i] = new StringBuilder();
}
for (int i = 0; i < s.length(); i++) {
char ch = s.charAt(i);
int times = length / (i + 1);
for (int j = 0; j < times; j++) {
for (int k = 0; k < length / times; k++) {
sb[j * length / times + k].insert(k, ch);
}
}
}
return sb;
}
One of the simple solution could be just keep swapping the characters recursively using two pointers.
public static void main(String[] args)
{
String str="abcdefgh";
perm(str);
}
public static void perm(String str)
{ char[] char_arr=str.toCharArray();
helper(char_arr,0);
}
public static void helper(char[] char_arr, int i)
{
if(i==char_arr.length-1)
{
// print the shuffled string
String str="";
for(int j=0; j<char_arr.length; j++)
{
str=str+char_arr[j];
}
System.out.println(str);
}
else
{
for(int j=i; j<char_arr.length; j++)
{
char tmp = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp;
helper(char_arr,i+1);
char tmp1 = char_arr[i];
char_arr[i] = char_arr[j];
char_arr[j] = tmp1;
}
}
}
python implementation
def getPermutation(s, prefix=''):
if len(s) == 0:
print prefix
for i in range(len(s)):
getPermutation(s[0:i]+s[i+1:len(s)],prefix+s[i] )
getPermutation('abcd','')
This is what I did through basic understanding of Permutations and Recursive function calling. Takes a bit of time but it's done independently.
public class LexicographicPermutations {
public static void main(String[] args) {
// TODO Auto-generated method stub
String s="abc";
List<String>combinations=new ArrayList<String>();
combinations=permutations(s);
Collections.sort(combinations);
System.out.println(combinations);
}
private static List<String> permutations(String s) {
// TODO Auto-generated method stub
List<String>combinations=new ArrayList<String>();
if(s.length()==1){
combinations.add(s);
}
else{
for(int i=0;i<s.length();i++){
List<String>temp=permutations(s.substring(0, i)+s.substring(i+1));
for (String string : temp) {
combinations.add(s.charAt(i)+string);
}
}
}
return combinations;
}}
which generates Output as [abc, acb, bac, bca, cab, cba].
Basic logic behind it is
For each character, consider it as 1st character & find the combinations of remaining characters. e.g. [abc](Combination of abc)->.
a->[bc](a x Combination of (bc))->{abc,acb}
b->[ac](b x Combination of (ac))->{bac,bca}
c->[ab](c x Combination of (ab))->{cab,cba}
And then recursively calling each [bc],[ac] & [ab] independently.
Use recursion.
when the input is an empty string the only permutation is an empty string.Try for each of the letters in the string by making it as the first letter and then find all the permutations of the remaining letters using a recursive call.
import java.util.ArrayList;
import java.util.List;
class Permutation {
private static List<String> permutation(String prefix, String str) {
List<String> permutations = new ArrayList<>();
int n = str.length();
if (n == 0) {
permutations.add(prefix);
} else {
for (int i = 0; i < n; i++) {
permutations.addAll(permutation(prefix + str.charAt(i), str.substring(i + 1, n) + str.substring(0, i)));
}
}
return permutations;
}
public static void main(String[] args) {
List<String> perms = permutation("", "abcd");
String[] array = new String[perms.size()];
for (int i = 0; i < perms.size(); i++) {
array[i] = perms.get(i);
}
int x = array.length;
for (final String anArray : array) {
System.out.println(anArray);
}
}
}
this worked for me..
import java.util.Arrays;
public class StringPermutations{
public static void main(String args[]) {
String inputString = "ABC";
permute(inputString.toCharArray(), 0, inputString.length()-1);
}
public static void permute(char[] ary, int startIndex, int endIndex) {
if(startIndex == endIndex){
System.out.println(String.valueOf(ary));
}else{
for(int i=startIndex;i<=endIndex;i++) {
swap(ary, startIndex, i );
permute(ary, startIndex+1, endIndex);
swap(ary, startIndex, i );
}
}
}
public static void swap(char[] ary, int x, int y) {
char temp = ary[x];
ary[x] = ary[y];
ary[y] = temp;
}
}
Java implementation without recursion
public Set<String> permutate(String s){
Queue<String> permutations = new LinkedList<String>();
Set<String> v = new HashSet<String>();
permutations.add(s);
while(permutations.size()!=0){
String str = permutations.poll();
if(!v.contains(str)){
v.add(str);
for(int i = 0;i<str.length();i++){
String c = String.valueOf(str.charAt(i));
permutations.add(str.substring(i+1) + c + str.substring(0,i));
}
}
}
return v;
}
Let me try to tackle this problem with Kotlin:
fun <T> List<T>.permutations(): List<List<T>> {
//escape case
if (this.isEmpty()) return emptyList()
if (this.size == 1) return listOf(this)
if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))
//recursive case
return this.flatMap { lastItem ->
this.minus(lastItem).permutations().map { it.plus(lastItem) }
}
}
Core concept: Break down long list into smaller list + recursion
Long answer with example list [1, 2, 3, 4]:
Even for a list of 4 it already kinda get's confusing trying to list all the possible permutations in your head, and what we need to do is exactly to avoid that. It is easy for us to understand how to make all permutations of list of size 0, 1, and 2, so all we need to do is break them down to any of those sizes and combine them back up correctly. Imagine a jackpot machine: this algorithm will start spinning from the right to the left, and write down
return empty/list of 1 when list size is 0 or 1
handle when list size is 2 (e.g. [3, 4]), and generate the 2 permutations ([3, 4] & [4, 3])
For each item, mark that as the last in the last, and find all the permutations for the rest of the item in the list. (e.g. put [4] on the table, and throw [1, 2, 3] into permutation again)
Now with all permutation it's children, put itself back to the end of the list (e.g.: [1, 2, 3][,4], [1, 3, 2][,4], [2, 3, 1][, 4], ...)
import java.io.IOException;
import java.util.ArrayList;
import java.util.Scanner;
public class hello {
public static void main(String[] args) throws IOException {
hello h = new hello();
h.printcomp();
}
int fact=1;
public void factrec(int a,int k){
if(a>=k)
{fact=fact*k;
k++;
factrec(a,k);
}
else
{System.out.println("The string will have "+fact+" permutations");
}
}
public void printcomp(){
String str;
int k;
Scanner in = new Scanner(System.in);
System.out.println("enter the string whose permutations has to b found");
str=in.next();
k=str.length();
factrec(k,1);
String[] arr =new String[fact];
char[] array = str.toCharArray();
while(p<fact)
printcomprec(k,array,arr);
// if incase u need array containing all the permutation use this
//for(int d=0;d<fact;d++)
//System.out.println(arr[d]);
}
int y=1;
int p = 0;
int g=1;
int z = 0;
public void printcomprec(int k,char array[],String arr[]){
for (int l = 0; l < k; l++) {
for (int b=0;b<k-1;b++){
for (int i=1; i<k-g; i++) {
char temp;
String stri = "";
temp = array[i];
array[i] = array[i + g];
array[i + g] = temp;
for (int j = 0; j < k; j++)
stri += array[j];
arr[z] = stri;
System.out.println(arr[z] + " " + p++);
z++;
}
}
char temp;
temp=array[0];
array[0]=array[y];
array[y]=temp;
if (y >= k-1)
y=y-(k-1);
else
y++;
}
if (g >= k-1)
g=1;
else
g++;
}
}
/** Returns an array list containing all
* permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
ArrayList<String> perms = new ArrayList<>();
int slen = s.length();
if (slen > 0) {
// Add the first character from s to the perms array list.
perms.add(Character.toString(s.charAt(0)));
// Repeat for all additional characters in s.
for (int i = 1; i < slen; ++i) {
// Get the next character from s.
char c = s.charAt(i);
// For each of the strings currently in perms do the following:
int size = perms.size();
for (int j = 0; j < size; ++j) {
// 1. remove the string
String p = perms.remove(0);
int plen = p.length();
// 2. Add plen + 1 new strings to perms. Each new string
// consists of the removed string with the character c
// inserted into it at a unique location.
for (int k = 0; k <= plen; ++k) {
perms.add(p.substring(0, k) + c + p.substring(k));
}
}
}
}
return perms;
}
Here is a straightforward minimalist recursive solution in Java:
public static ArrayList<String> permutations(String s) {
ArrayList<String> out = new ArrayList<String>();
if (s.length() == 1) {
out.add(s);
return out;
}
char first = s.charAt(0);
String rest = s.substring(1);
for (String permutation : permutations(rest)) {
out.addAll(insertAtAllPositions(first, permutation));
}
return out;
}
public static ArrayList<String> insertAtAllPositions(char ch, String s) {
ArrayList<String> out = new ArrayList<String>();
for (int i = 0; i <= s.length(); ++i) {
String inserted = s.substring(0, i) + ch + s.substring(i);
out.add(inserted);
}
return out;
}
We can use factorial to find how many strings started with particular letter.
Example: take the input abcd. (3!) == 6 strings will start with every letter of abcd.
static public int facts(int x){
int sum = 1;
for (int i = 1; i < x; i++) {
sum *= (i+1);
}
return sum;
}
public static void permutation(String str) {
char[] str2 = str.toCharArray();
int n = str2.length;
int permutation = 0;
if (n == 1) {
System.out.println(str2[0]);
} else if (n == 2) {
System.out.println(str2[0] + "" + str2[1]);
System.out.println(str2[1] + "" + str2[0]);
} else {
for (int i = 0; i < n; i++) {
if (true) {
char[] str3 = str.toCharArray();
char temp = str3[i];
str3[i] = str3[0];
str3[0] = temp;
str2 = str3;
}
for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
if (j != n-1) {
char temp1 = str2[j+1];
str2[j+1] = str2[j];
str2[j] = temp1;
} else {
char temp1 = str2[n-1];
str2[n-1] = str2[1];
str2[1] = temp1;
j = 1;
} // end of else block
permutation++;
System.out.print("permutation " + permutation + " is -> ");
for (int k = 0; k < n; k++) {
System.out.print(str2[k]);
} // end of loop k
System.out.println();
} // end of loop j
} // end of loop i
}
}
//insert each character into an arraylist
static ArrayList al = new ArrayList();
private static void findPermutation (String str){
for (int k = 0; k < str.length(); k++) {
addOneChar(str.charAt(k));
}
}
//insert one char into ArrayList
private static void addOneChar(char ch){
String lastPerStr;
String tempStr;
ArrayList locAl = new ArrayList();
for (int i = 0; i < al.size(); i ++ ){
lastPerStr = al.get(i).toString();
//System.out.println("lastPerStr: " + lastPerStr);
for (int j = 0; j <= lastPerStr.length(); j++) {
tempStr = lastPerStr.substring(0,j) + ch +
lastPerStr.substring(j, lastPerStr.length());
locAl.add(tempStr);
//System.out.println("tempStr: " + tempStr);
}
}
if(al.isEmpty()){
al.add(ch);
} else {
al.clear();
al = locAl;
}
}
private static void printArrayList(ArrayList al){
for (int i = 0; i < al.size(); i++) {
System.out.print(al.get(i) + " ");
}
}
//Rotate and create words beginning with all letter possible and push to stack 1
//Read from stack1 and for each word create words with other letters at the next location by rotation and so on
/* eg : man
1. push1 - man, anm, nma
2. pop1 - nma , push2 - nam,nma
pop1 - anm , push2 - amn,anm
pop1 - man , push2 - mna,man
*/
public class StringPermute {
static String str;
static String word;
static int top1 = -1;
static int top2 = -1;
static String[] stringArray1;
static String[] stringArray2;
static int strlength = 0;
public static void main(String[] args) throws IOException {
System.out.println("Enter String : ");
InputStreamReader isr = new InputStreamReader(System.in);
BufferedReader bfr = new BufferedReader(isr);
str = bfr.readLine();
word = str;
strlength = str.length();
int n = 1;
for (int i = 1; i <= strlength; i++) {
n = n * i;
}
stringArray1 = new String[n];
stringArray2 = new String[n];
push(word, 1);
doPermute();
display();
}
public static void push(String word, int x) {
if (x == 1)
stringArray1[++top1] = word;
else
stringArray2[++top2] = word;
}
public static String pop(int x) {
if (x == 1)
return stringArray1[top1--];
else
return stringArray2[top2--];
}
public static void doPermute() {
for (int j = strlength; j >= 2; j--)
popper(j);
}
public static void popper(int length) {
// pop from stack1 , rotate each word n times and push to stack 2
if (top1 > -1) {
while (top1 > -1) {
word = pop(1);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 2);
}
}
}
// pop from stack2 , rotate each word n times w.r.t position and push to
// stack 1
else {
while (top2 > -1) {
word = pop(2);
for (int j = 0; j < length; j++) {
rotate(length);
push(word, 1);
}
}
}
}
public static void rotate(int position) {
char[] charstring = new char[100];
for (int j = 0; j < word.length(); j++)
charstring[j] = word.charAt(j);
int startpos = strlength - position;
char temp = charstring[startpos];
for (int i = startpos; i < strlength - 1; i++) {
charstring[i] = charstring[i + 1];
}
charstring[strlength - 1] = temp;
word = new String(charstring).trim();
}
public static void display() {
int top;
if (top1 > -1) {
while (top1 > -1)
System.out.println(stringArray1[top1--]);
} else {
while (top2 > -1)
System.out.println(stringArray2[top2--]);
}
}
}
Another simple way is to loop through the string, pick the character that is not used yet and put it to a buffer, continue the loop till the buffer size equals to the string length. I like this back tracking solution better because:
Easy to understand
Easy to avoid duplication
The output is sorted
Here is the java code:
List<String> permute(String str) {
if (str == null) {
return null;
}
char[] chars = str.toCharArray();
boolean[] used = new boolean[chars.length];
List<String> res = new ArrayList<String>();
StringBuilder sb = new StringBuilder();
Arrays.sort(chars);
helper(chars, used, sb, res);
return res;
}
void helper(char[] chars, boolean[] used, StringBuilder sb, List<String> res) {
if (sb.length() == chars.length) {
res.add(sb.toString());
return;
}
for (int i = 0; i < chars.length; i++) {
// avoid duplicates
if (i > 0 && chars[i] == chars[i - 1] && !used[i - 1]) {
continue;
}
// pick the character that has not used yet
if (!used[i]) {
used[i] = true;
sb.append(chars[i]);
helper(chars, used, sb, res);
// back tracking
sb.deleteCharAt(sb.length() - 1);
used[i] = false;
}
}
}
Input str: 1231
Output list: {1123, 1132, 1213, 1231, 1312, 1321, 2113, 2131, 2311, 3112, 3121, 3211}
Noticed that the output is sorted, and there is no duplicate result.
Recursion is not necessary, even you can calculate any permutation directly, this solution uses generics to permute any array.
Here is a good information about this algorihtm.
For C# developers here is more useful implementation.
public static void main(String[] args) {
String word = "12345";
Character[] array = ArrayUtils.toObject(word.toCharArray());
long[] factorials = Permutation.getFactorials(array.length + 1);
for (long i = 0; i < factorials[array.length]; i++) {
Character[] permutation = Permutation.<Character>getPermutation(i, array, factorials);
printPermutation(permutation);
}
}
private static void printPermutation(Character[] permutation) {
for (int i = 0; i < permutation.length; i++) {
System.out.print(permutation[i]);
}
System.out.println();
}
This algorithm has O(N) time and space complexity to calculate each permutation.
public class Permutation {
public static <T> T[] getPermutation(long permutationNumber, T[] array, long[] factorials) {
int[] sequence = generateSequence(permutationNumber, array.length - 1, factorials);
T[] permutation = generatePermutation(array, sequence);
return permutation;
}
public static <T> T[] generatePermutation(T[] array, int[] sequence) {
T[] clone = array.clone();
for (int i = 0; i < clone.length - 1; i++) {
swap(clone, i, i + sequence[i]);
}
return clone;
}
private static int[] generateSequence(long permutationNumber, int size, long[] factorials) {
int[] sequence = new int[size];
for (int j = 0; j < sequence.length; j++) {
long factorial = factorials[sequence.length - j];
sequence[j] = (int) (permutationNumber / factorial);
permutationNumber = (int) (permutationNumber % factorial);
}
return sequence;
}
private static <T> void swap(T[] array, int i, int j) {
T t = array[i];
array[i] = array[j];
array[j] = t;
}
public static long[] getFactorials(int length) {
long[] factorials = new long[length];
long factor = 1;
for (int i = 0; i < length; i++) {
factor *= i <= 1 ? 1 : i;
factorials[i] = factor;
}
return factorials;
}
}
My implementation based on Mark Byers's description above:
static Set<String> permutations(String str){
if (str.isEmpty()){
return Collections.singleton(str);
}else{
Set <String> set = new HashSet<>();
for (int i=0; i<str.length(); i++)
for (String s : permutations(str.substring(0, i) + str.substring(i+1)))
set.add(str.charAt(i) + s);
return set;
}
}
Permutation of String:
public static void main(String args[]) {
permu(0,"ABCD");
}
static void permu(int fixed,String s) {
char[] chr=s.toCharArray();
if(fixed==s.length())
System.out.println(s);
for(int i=fixed;i<s.length();i++) {
char c=chr[i];
chr[i]=chr[fixed];
chr[fixed]=c;
permu(fixed+1,new String(chr));
}
}
Here is another simpler method of doing Permutation of a string.
public class Solution4 {
public static void main(String[] args) {
String a = "Protijayi";
per(a, 0);
}
static void per(String a , int start ) {
//bse case;
if(a.length() == start) {System.out.println(a);}
char[] ca = a.toCharArray();
//swap
for (int i = start; i < ca.length; i++) {
char t = ca[i];
ca[i] = ca[start];
ca[start] = t;
per(new String(ca),start+1);
}
}//per
}
A java implementation to print all the permutations of a given string considering duplicate characters and prints only unique characters is as follow:
import java.util.Set;
import java.util.HashSet;
public class PrintAllPermutations2
{
public static void main(String[] args)
{
String str = "AAC";
PrintAllPermutations2 permutation = new PrintAllPermutations2();
Set<String> uniqueStrings = new HashSet<>();
permutation.permute("", str, uniqueStrings);
}
void permute(String prefixString, String s, Set<String> set)
{
int n = s.length();
if(n == 0)
{
if(!set.contains(prefixString))
{
System.out.println(prefixString);
set.add(prefixString);
}
}
else
{
for(int i=0; i<n; i++)
{
permute(prefixString + s.charAt(i), s.substring(0,i) + s.substring(i+1,n), set);
}
}
}
}
String permutaions using Es6
Using reduce() method
const permutations = str => {
if (str.length <= 2)
return str.length === 2 ? [str, str[1] + str[0]] : [str];
return str
.split('')
.reduce(
(acc, letter, index) =>
acc.concat(permutations(str.slice(0, index) + str.slice(index + 1)).map(val => letter + val)),
[]
);
};
console.log(permutations('STR'));
In case anyone wants to generate the permutations to do something with them, instead of just printing them via a void method:
static List<int[]> permutations(int n) {
class Perm {
private final List<int[]> permutations = new ArrayList<>();
private void perm(int[] array, int step) {
if (step == 1) permutations.add(array.clone());
else for (int i = 0; i < step; i++) {
perm(array, step - 1);
int j = (step % 2 == 0) ? i : 0;
swap(array, step - 1, j);
}
}
private void swap(int[] array, int i, int j) {
int buffer = array[i];
array[i] = array[j];
array[j] = buffer;
}
}
int[] nVector = new int[n];
for (int i = 0; i < n; i++) nVector [i] = i;
Perm perm = new Perm();
perm.perm(nVector, n);
return perm.permutations;
}

recursively get combinations of word

I have been struggling with this for days and I can't seem to
finish it. The question is as follows:
Write a recursive method called String[] perm(int n) that accepts
one argument: Integer n. The method returns an array of all words
with exactly n syllables. The words available for use are: "Foo"
and "Bar"
I have the following code without recursion:
static String[] words = {"Foo","Bar"};
static int n = 2;
static int count = 0;
public static String[] perm(int n) {
String[] wordsArray = new String[4];
for(int i = 0; i < words.length; i++) {
for(int j = 0; j < words.length; j++) {
wordsArray[count] = words[i] + words[j];
count++;
}
}
return wordsArray;
}
I can't seem to get the below results by using recursion
and returning a string Array along the way. So I was
wondering if you could help me.
The Following should be the results with 2 Syllables:
FooFoo
FooBar
BarFoo
BarBar
Here is an initial approach please modify it accord to your need ...
public static void permutationForAString(String str) {
permutation("", str);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0) System.out.println(prefix);
else {
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
Note this doesn't consider repetition ...
permutationForAString("ABC");
will give output as
ABC
ACB
BAC
BCA
CAB
CBA
Here is something that is working as you required.
public List<String> permute(String[] stringInput, int curr)
{
List<String> permutations = new ArrayList<String>();
if (curr >= stringInput.length-1)
{
return Arrays.asList(stringInput);
}
else
{
for (int i = 0; i < stringInput.length; i++)
{
String currentCharacter = stringInput[i];
List<String> permutationsOutput = permute(stringInput,curr+1);
for (String singlePermutation : permutationsOutput)
{
String currentPermutations = currentCharacter + singlePermutation;
permutations.add(currentPermutations);
}
}
return permutations;
}
}
Call it like this
permute(arr, 0);
where 0 is the start index from which to start permuting it will also act as the limiting condition in case of recursion.
Output::
FooFoo
FooBar
BarFoo
BarBar

Java compressing Strings

I need to create a method that receives a String and also returns a String.
Ex input: AAABBBBCC
Ex output: 3A4B2C
Well, this is quite embarrassing and I couldn't manage to do it on the interview that I had today ( I was applying for a Junior position ), now, trying at home I made something that works statically, I mean, not using a loop which is kind of useless but I don't know if I'm not getting enough hours of sleep or something but I can't figure it out how my for loop should look like. This is the code:
public static String Comprimir(String texto){
StringBuilder objString = new StringBuilder();
int count;
char match;
count = texto.substring(texto.indexOf(texto.charAt(1)), texto.lastIndexOf(texto.charAt(1))).length()+1;
match = texto.charAt(1);
objString.append(count);
objString.append(match);
return objString.toString();
}
Thanks for your help, I'm trying to improve my logic skills.
Loop through the string remembering what you last saw. Every time you see the same letter count. When you see a new letter put what you have counted onto the output and set the new letter as what you have last seen.
String input = "AAABBBBCC";
int count = 1;
char last = input.charAt(0);
StringBuilder output = new StringBuilder();
for(int i = 1; i < input.length(); i++){
if(input.charAt(i) == last){
count++;
}else{
if(count > 1){
output.append(""+count+last);
}else{
output.append(last);
}
count = 1;
last = input.charAt(i);
}
}
if(count > 1){
output.append(""+count+last);
}else{
output.append(last);
}
System.out.println(output.toString());
You can do that using the following steps:
Create a HashMap
For every character, Get the value from the hashmap
-If the value is null, enter 1
-else, replace the value with (value+1)
Iterate over the HashMap and keep concatenating (Value+Key)
use StringBuilder (you did that)
define two variables - previousChar and counter
loop from 0 to str.length() - 1
each time get str.charat(i) and compare it to what's stored in the previousChar variable
if the previous char is the same, increment a counter
if the previous char is not the same, and counter is 1, increment counter
if the previous char is not the same, and counter is >1, append counter + currentChar, reset counter
after the comparison, assign the current char previousChar
cover corner cases like "first char"
Something like that.
The easiest approach:- Time Complexity - O(n)
public static void main(String[] args) {
String str = "AAABBBBCC"; //input String
int length = str.length(); //length of a String
//Created an object of a StringBuilder class
StringBuilder sb = new StringBuilder();
int count=1; //counter for counting number of occurances
for(int i=0; i<length; i++){
//if i reaches at the end then append all and break the loop
if(i==length-1){
sb.append(str.charAt(i)+""+count);
break;
}
//if two successive chars are equal then increase the counter
if(str.charAt(i)==str.charAt(i+1)){
count++;
}
else{
//else append character with its count
sb.append(str.charAt(i)+""+count);
count=1; //reseting the counter to 1
}
}
//String representation of a StringBuilder object
System.out.println(sb.toString());
}
In the count=... line, lastIndexOf will not care about consecutive values, and will just give the last occurence.
For instance, in the string "ABBA", the substring would be the whole string.
Also, taking the length of the substring is equivalent to subtracting the two indexes.
I really think that you need a loop.
Here is an example :
public static String compress(String text) {
String result = "";
int index = 0;
while (index < text.length()) {
char c = text.charAt(index);
int count = count(text, index);
if (count == 1)
result += "" + c;
else
result += "" + count + c;
index += count;
}
return result;
}
public static int count(String text, int index) {
char c = text.charAt(index);
int i = 1;
while (index + i < text.length() && text.charAt(index + i) == c)
i++;
return i;
}
public static void main(String[] args) {
String test = "AAABBCCC";
System.out.println(compress(test));
}
Please try this one. This may help to print the count of characters which we pass on string format through console.
import java.util.*;
public class CountCharacterArray {
private static Scanner inp;
public static void main(String args[]) {
inp = new Scanner(System.in);
String str=inp.nextLine();
List<Character> arrlist = new ArrayList<Character>();
for(int i=0; i<str.length();i++){
arrlist.add(str.charAt(i));
}
for(int i=0; i<str.length();i++){
int freq = Collections.frequency(arrlist, str.charAt(i));
System.out.println("Frequency of "+ str.charAt(i)+ " is: "+freq);
}
}
}
Java's not my main language, hardly ever use it, but I wanted to give it a shot :]
Not even sure if your assignment requires a loop, but here's a regexp approach:
public static String compress_string(String inp) {
String compressed = "";
Pattern pattern = Pattern.compile("([\\w])\\1*");
Matcher matcher = pattern.matcher(inp);
while(matcher.find()) {
String group = matcher.group();
if (group.length() > 1) compressed += group.length() + "";
compressed += group.charAt(0);
}
return compressed;
}
This is just one more way of doing it.
public static String compressor(String raw) {
StringBuilder builder = new StringBuilder();
int counter = 0;
int length = raw.length();
int j = 0;
while (counter < length) {
j = 0;
while (counter + j < length && raw.charAt(counter + j) == raw.charAt(counter)) {
j++;
}
if (j > 1) {
builder.append(j);
}
builder.append(raw.charAt(counter));
counter += j;
}
return builder.toString();
}
The following can be used if you are looking for a basic solution. Iterate through the string with one element and after finding all the element occurrences, remove that character. So that it will not interfere in the next search.
public static void main(String[] args) {
String string = "aaabbbbbaccc";
int counter;
String result="";
int i=0;
while (i<string.length()){
counter=1;
for (int j=i+1;j<string.length();j++){
System.out.println("string length ="+string.length());
if (string.charAt(i) == string.charAt(j)){
counter++;
}
}
result = result+string.charAt(i)+counter;
string = string.replaceAll(String.valueOf(string.charAt(i)), "");
}
System.out.println("result is = "+result);
}
And the output will be :=
result is = a4b5c3
private String Comprimir(String input){
String output="";
Map<Character,Integer> map=new HashMap<Character,Integer>();
for(int i=0;i<input.length();i++){
Character character=input.charAt(i);
if(map.containsKey(character)){
map.put(character, map.get(character)+1);
}else
map.put(character, 1);
}
for (Entry<Character, Integer> entry : map.entrySet()) {
output+=entry.getValue()+""+entry.getKey().charValue();
}
return output;
}
One other simple way using Multiset of guava-
import java.util.Arrays;
import com.google.common.collect.HashMultiset;
import com.google.common.collect.Multiset;
import com.google.common.collect.Multiset.Entry;
public class WordSpit {
public static void main(String[] args) {
String output="";
Multiset<String> wordsMultiset = HashMultiset.create();
String[] words="AAABBBBCC".split("");
wordsMultiset.addAll(Arrays.asList(words));
for (Entry<String> string : wordsMultiset.entrySet()) {
if(!string.getElement().isEmpty())
output+=string.getCount()+""+string.getElement();
}
System.out.println(output);
}
}
consider the below Solution in which the String s1 identifies the unique characters that are available in a given String s (for loop 1), in the second for loop build a string s2 that contains unique character and no of times it is repeated by comparing string s1 with s.
public static void main(String[] args)
{
// TODO Auto-generated method stub
String s = "aaaabbccccdddeee";//given string
String s1 = ""; // string to identify how many unique letters are available in a string
String s2=""; //decompressed string will be appended to this string
int count=0;
for(int i=0;i<s.length();i++) {
if(s1.indexOf(s.charAt(i))<0) {
s1 = s1+s.charAt(i);
}
}
for(int i=0;i<s1.length();i++) {
for(int j=0;j<s.length();j++) {
if(s1.charAt(i)==s.charAt(j)) {
count++;
}
}
s2=s2+s1.charAt(i)+count;
count=0;
}
System.out.println(s2);
}
It may help you.
public class StringCompresser
{
public static void main(String[] args)
{
System.out.println(compress("AAABBBBCC"));
System.out.println(compress("AAABC"));
System.out.println(compress("A"));
System.out.println(compress("ABBDCC"));
System.out.println(compress("AZXYC"));
}
static String compress(String str)
{
StringBuilder stringBuilder = new StringBuilder();
char[] charArray = str.toCharArray();
int count = 1;
char lastChar = 0;
char nextChar = 0;
lastChar = charArray[0];
for (int i = 1; i < charArray.length; i++)
{
nextChar = charArray[i];
if (lastChar == nextChar)
{
count++;
}
else
{
stringBuilder.append(count).append(lastChar);
count = 1;
lastChar = nextChar;
}
}
stringBuilder.append(count).append(lastChar);
String compressed = stringBuilder.toString();
return compressed;
}
}
Output:
3A4B2C
3A1B1C
1A
1A2B1D2C
1A1Z1X1Y1C
The answers which used Map will not work for cases like aabbbccddabc as in that case the output should be a2b3c2d2a1b1c1.
In that case this implementation can be used :
private String compressString(String input) {
String output = "";
char[] arr = input.toCharArray();
Map<Character, Integer> myMap = new LinkedHashMap<>();
for (int i = 0; i < arr.length; i++) {
if (i > 0 && arr[i] != arr[i - 1]) {
output = output + arr[i - 1] + myMap.get(arr[i - 1]);
myMap.put(arr[i - 1], 0);
}
if (myMap.containsKey(arr[i])) {
myMap.put(arr[i], myMap.get(arr[i]) + 1);
} else {
myMap.put(arr[i], 1);
}
}
for (Character c : myMap.keySet()) {
if (myMap.get(c) != 0) {
output = output + c + myMap.get(c);
}
}
return output;
}
O(n) approach
No need for hashing. The idea is to find the first Non-matching character.
The count of each character would be the difference in the indices of both characters.
for a detailed answer: https://stackoverflow.com/a/55898810/7972621
The only catch is that we need to add a dummy letter so that the comparison for
the last character is possible.
private static String compress(String s){
StringBuilder result = new StringBuilder();
int j = 0;
s = s + '#';
for(int i=1; i < s.length(); i++){
if(s.charAt(i) != s.charAt(j)){
result.append(i-j);
result.append(s.charAt(j));
j = i;
}
}
return result.toString();
}
The code below will ask the user for user to input a specific character to count the occurrence .
import java.util.Scanner;
class CountingOccurences {
public static void main(String[] args) {
Scanner inp = new Scanner(System.in);
String str;
char ch;
int count=0;
System.out.println("Enter the string:");
str=inp.nextLine();
System.out.println("Enter th Char to see the occurence\n");
ch=inp.next().charAt(0);
for(int i=0;i<str.length();i++)
{
if(str.charAt(i)==ch)
{
count++;
}
}
System.out.println("The Character is Occuring");
System.out.println(count+"Times");
}
}
public static char[] compressionTester( char[] s){
if(s == null){
throw new IllegalArgumentException();
}
HashMap<Character, Integer> map = new HashMap<>();
for (int i = 0 ; i < s.length ; i++) {
if(!map.containsKey(s[i])){
map.put(s[i], 1);
}
else{
int value = map.get(s[i]);
value++;
map.put(s[i],value);
}
}
String newer="";
for( Character n : map.keySet()){
newer = newer + n + map.get(n);
}
char[] n = newer.toCharArray();
if(s.length > n.length){
return n;
}
else{
return s;
}
}
package com.tell.datetime;
import java.util.Stack;
public class StringCompression {
public static void main(String[] args) {
String input = "abbcccdddd";
System.out.println(compressString(input));
}
public static String compressString(String input) {
if (input == null || input.length() == 0)
return input;
String finalCompressedString = "";
String lastElement="";
char[] charArray = input.toCharArray();
Stack stack = new Stack();
int elementCount = 0;
for (int i = 0; i < charArray.length; i++) {
char currentElement = charArray[i];
if (i == 0) {
stack.push((currentElement+""));
continue;
} else {
if ((currentElement+"").equalsIgnoreCase((String)stack.peek())) {
stack.push(currentElement + "");
if(i==charArray.length-1)
{
while (!stack.isEmpty()) {
lastElement = (String)stack.pop();
elementCount++;
}
finalCompressedString += lastElement + "" + elementCount;
}else
continue;
}
else {
while (!stack.isEmpty()) {
lastElement = (String)stack.pop();
elementCount++;
}
finalCompressedString += lastElement + "" + elementCount;
elementCount=0;
stack.push(currentElement+"");
}
}
}
if (finalCompressedString.length() >= input.length())
return input;
else
return finalCompressedString;
}
}
public class StringCompression {
public static void main(String[] args){
String s = "aabcccccaaazdaaa";
char check = s.charAt(0);
int count = 0;
for(int i=0; i<s.length(); i++){
if(s.charAt(i) == check) {
count++;
if(i==s.length()-1){
System.out.print(s.charAt(i));
System.out.print(count);
}
} else {
System.out.print(s.charAt(i-1));
System.out.print(count);
check = s.charAt(i);
count = 1;
if(i==s.length()-1){
System.out.print(s.charAt(i));
System.out.print(count);
}
}
}
}
// O(N) loop through entire character array
// match current char with next one, if they matches count++
// if don't then just append current char and counter value and then reset counter.
// special case is the last characters, for that just check if count value is > 0, if it's then append the counter value and the last char
private String compress(String str) {
char[] c = str.toCharArray();
String newStr = "";
int count = 1;
for (int i = 0; i < c.length - 1; i++) {
int j = i + 1;
if (c[i] == c[j]) {
count++;
} else {
newStr = newStr + c[i] + count;
count = 1;
}
}
// this is for the last strings...
if (count > 0) {
newStr = newStr + c[c.length - 1] + count;
}
return newStr;
}
public class StringCompression {
public static void main(String... args){
String s="aabbcccaa";
//a2b2c3a2
for(int i=0;i<s.length()-1;i++){
int count=1;
while(i<s.length()-1 && s.charAt(i)==s.charAt(i+1)){
count++;
i++;
}
System.out.print(s.charAt(i));
System.out.print(count);
}
System.out.println(" ");
}
}
This is a leet code problem 443. Most of the answers here uses StringBuilder or a HashMap, the actual problem statement is to solve using the input char array and in place array modification.
public int compress(char[] chars) {
int startIndex = 0;
int lastArrayIndex = 0;
if (chars.length == 1) {
return 1;
}
if (chars.length == 0) {
return 0;
}
for (int j = startIndex + 1; j < chars.length; j++) {
if (chars[startIndex] != chars[j]) {
chars[lastArrayIndex] = chars[startIndex];
lastArrayIndex++;
if ((j - startIndex) > 1) {
for (char c : String.valueOf(j - startIndex).toCharArray()) {
chars[lastArrayIndex] = c;
lastArrayIndex++;
}
}
startIndex = j;
}
if (j == chars.length - 1) {
if (j - startIndex >= 1) {
j = chars.length;
chars[lastArrayIndex] = chars[startIndex];
lastArrayIndex++;
for (char c : String.valueOf(j - startIndex).toCharArray()) {
chars[lastArrayIndex] = c;
lastArrayIndex++;
}
} else {
chars[lastArrayIndex] = chars[startIndex];
lastArrayIndex++;
}
}
}
return lastArrayIndex;
}
}

Indexes of all occurrences of character in a string

The following code will print 2
String word = "bannanas";
String guess = "n";
int index;
System.out.println(
index = word.indexOf(guess)
);
I would like to know how to get all the indexes of "n" ("guess") in the string "bannanas"
The expected result would be: [2,3,5]
This should print the list of positions without the -1 at the end that Peter Lawrey's solution has had.
int index = word.indexOf(guess);
while (index >= 0) {
System.out.println(index);
index = word.indexOf(guess, index + 1);
}
It can also be done as a for loop:
for (int index = word.indexOf(guess);
index >= 0;
index = word.indexOf(guess, index + 1))
{
System.out.println(index);
}
[Note: if guess can be longer than a single character, then it is possible, by analyzing the guess string, to loop through word faster than the above loops do. The benchmark for such an approach is the Boyer-Moore algorithm. However, the conditions that would favor using such an approach do not seem to be present.]
Try the following (Which does not print -1 at the end now!)
int index = word.indexOf(guess);
while(index >= 0) {
System.out.println(index);
index = word.indexOf(guess, index+1);
}
This can be done in a functional way with Java 9 using regular expression:
Pattern.compile(Pattern.quote(guess)) // sanitize input and create pattern
.matcher(word) // create matcher
.results() // get the MatchResults, Java 9 method
.map(MatchResult::start) // get the first index
.collect(Collectors.toList()) // collect found indices into a list
);
Here's the Kotlin Solution to add this logic as a new a new methods into CharSequence API using extension method:
// Extension method
fun CharSequence.indicesOf(input: String): List<Int> =
Regex(Pattern.quote(input)) // build regex
.findAll(this) // get the matches
.map { it.range.first } // get the index
.toCollection(mutableListOf()) // collect the result as list
// call the methods as
"Banana".indicesOf("a") // [1, 3, 5]
String string = "bannanas";
ArrayList<Integer> list = new ArrayList<Integer>();
char character = 'n';
for(int i = 0; i < string.length(); i++){
if(string.charAt(i) == character){
list.add(i);
}
}
Result would be used like this :
for(Integer i : list){
System.out.println(i);
}
Or as a array :
list.toArray();
With Java9, one can make use of the iterate(int seed, IntPredicate hasNext,IntUnaryOperator next) as follows:-
List<Integer> indexes = IntStream
.iterate(word.indexOf(c), index -> index >= 0, index -> word.indexOf(c, index + 1))
.boxed()
.collect(Collectors.toList());
System.out.printlnt(indexes);
int index = -1;
while((index = text.indexOf("on", index + 1)) >= 0) {
LOG.d("index=" + index);
}
Java 8+
To find all the indexes of a particular character in a String, one can create an IntStream of all the indexes and filter over it.
import java.util.stream.Collectors;
import java.util.stream.IntStream;
//...
String word = "bannanas";
char search = 'n';
//To get List of indexes:
List<Integer> indexes = IntStream.range(0, word.length())
.filter(i -> word.charAt(i) == search).boxed()
.collect(Collectors.toList());
//To get array of indexes:
int[] indexes = IntStream.range(0, word.length())
.filter(i -> word.charAt(i) == search).toArray();
String word = "bannanas";
String guess = "n";
String temp = word;
while(temp.indexOf(guess) != -1) {
int index = temp.indexOf(guess);
System.out.println(index);
temp = temp.substring(index + 1);
}
String input = "GATATATGCG";
String substring = "G";
String temp = input;
String indexOF ="";
int tempIntex=1;
while(temp.indexOf(substring) != -1)
{
int index = temp.indexOf(substring);
indexOF +=(index+tempIntex)+" ";
tempIntex+=(index+1);
temp = temp.substring(index + 1);
}
Log.e("indexOf ","" + indexOF);
Also, if u want to find all indexes of a String in a String.
int index = word.indexOf(guess);
while (index >= 0) {
System.out.println(index);
index = word.indexOf(guess, index + guess.length());
}
I had this problem as well, until I came up with this method.
public static int[] indexesOf(String s, String flag) {
int flagLen = flag.length();
String current = s;
int[] res = new int[s.length()];
int count = 0;
int base = 0;
while(current.contains(flag)) {
int index = current.indexOf(flag);
res[count] = index + base;
base += index + flagLen;
current = current.substring(current.indexOf(flag) + flagLen, current.length());
++ count;
}
return Arrays.copyOf(res, count);
}
This method can be used to find indexes of any flag of any length in a string, for example:
public class Main {
public static void main(String[] args) {
int[] indexes = indexesOf("Hello, yellow jello", "ll");
// Prints [2, 9, 16]
System.out.println(Arrays.toString(indexes));
}
public static int[] indexesOf(String s, String flag) {
int flagLen = flag.length();
String current = s;
int[] res = new int[s.length()];
int count = 0;
int base = 0;
while(current.contains(flag)) {
int index = current.indexOf(flag);
res[count] = index + base;
base += index + flagLen;
current = current.substring(current.indexOf(flag) + flagLen, current.length());
++ count;
}
return Arrays.copyOf(res, count);
}
}
A class for splitting strings I came up with. A short test is provided at the end.
SplitStringUtils.smartSplitToShorterStrings(String str, int maxLen, int maxParts) will split by spaces without breaking words, if possible, and if not, will split by indexes according to maxLen.
Other methods provided to control how it is split: bruteSplitLimit(String str, int maxLen, int maxParts), spaceSplit(String str, int maxLen, int maxParts).
public class SplitStringUtils {
public static String[] smartSplitToShorterStrings(String str, int maxLen, int maxParts) {
if (str.length() <= maxLen) {
return new String[] {str};
}
if (str.length() > maxLen*maxParts) {
return bruteSplitLimit(str, maxLen, maxParts);
}
String[] res = spaceSplit(str, maxLen, maxParts);
if (res != null) {
return res;
}
return bruteSplitLimit(str, maxLen, maxParts);
}
public static String[] bruteSplitLimit(String str, int maxLen, int maxParts) {
String[] bruteArr = bruteSplit(str, maxLen);
String[] ret = Arrays.stream(bruteArr)
.limit(maxParts)
.collect(Collectors.toList())
.toArray(new String[maxParts]);
return ret;
}
public static String[] bruteSplit(String name, int maxLen) {
List<String> res = new ArrayList<>();
int start =0;
int end = maxLen;
while (end <= name.length()) {
String substr = name.substring(start, end);
res.add(substr);
start = end;
end +=maxLen;
}
String substr = name.substring(start, name.length());
res.add(substr);
return res.toArray(new String[res.size()]);
}
public static String[] spaceSplit(String str, int maxLen, int maxParts) {
List<Integer> spaceIndexes = findSplitPoints(str, ' ');
List<Integer> goodSplitIndexes = new ArrayList<>();
int goodIndex = -1;
int curPartMax = maxLen;
for (int i=0; i< spaceIndexes.size(); i++) {
int idx = spaceIndexes.get(i);
if (idx < curPartMax) {
goodIndex = idx;
} else {
goodSplitIndexes.add(goodIndex+1);
curPartMax = goodIndex+1+maxLen;
}
}
if (goodSplitIndexes.get(goodSplitIndexes.size()-1) != str.length()) {
goodSplitIndexes.add(str.length());
}
if (goodSplitIndexes.size()<=maxParts) {
List<String> res = new ArrayList<>();
int start = 0;
for (int i=0; i<goodSplitIndexes.size(); i++) {
int end = goodSplitIndexes.get(i);
if (end-start > maxLen) {
return null;
}
res.add(str.substring(start, end));
start = end;
}
return res.toArray(new String[res.size()]);
}
return null;
}
private static List<Integer> findSplitPoints(String str, char c) {
List<Integer> list = new ArrayList<Integer>();
for (int i = 0; i < str.length(); i++) {
if (str.charAt(i) == c) {
list.add(i);
}
}
list.add(str.length());
return list;
}
}
Simple test code:
public static void main(String[] args) {
String [] testStrings = {
"123",
"123 123 123 1123 123 123 123 123 123 123",
"123 54123 5123 513 54w567 3567 e56 73w45 63 567356 735687 4678 4678 u4678 u4678 56rt64w5 6546345",
"1345678934576235784620957029356723578946",
"12764444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444",
"3463356 35673567567 3567 35 3567 35 675 653 673567 777777777777777777777777777777777777777777777777777777777777777777"
};
int max = 35;
int maxparts = 2;
for (String str : testStrings) {
System.out.println("TEST\n |"+str+"|");
printSplitDetails(max, maxparts);
String[] res = smartSplitToShorterStrings(str, max, maxparts);
for (int i=0; i< res.length;i++) {
System.out.println(" "+i+": "+res[i]);
}
System.out.println("===========================================================================================================================================================");
}
}
static void printSplitDetails(int max, int maxparts) {
System.out.print(" X: ");
for (int i=0; i<max*maxparts; i++) {
if (i%max == 0) {
System.out.print("|");
} else {
System.out.print("-");
}
}
System.out.println();
}
This is a java 8 solution.
public int[] solution (String s, String subString){
int initialIndex = s.indexOf(subString);
List<Integer> indexList = new ArrayList<>();
while (initialIndex >=0){
indexList.add(initialIndex);
initialIndex = s.indexOf(subString, initialIndex+1);
}
int [] intA = indexList.stream().mapToInt(i->i).toArray();
return intA;
}
This can be done by iterating myString and shifting fromIndex parameter in indexOf():
int currentIndex = 0;
while (
myString.indexOf(
mySubstring,
currentIndex) >= 0) {
System.out.println(currentIndex);
currentIndex++;
}
Try this
String str = "helloslkhellodjladfjhello";
String findStr = "hello";
System.out.println(StringUtils.countMatches(str, findStr));

Categories

Resources