visibility difference between synchronization of field reads and volatile - java

I have read following article from SO
Difference between synchronization of field reads and volatile
here questioner writes
the point of the synchronization is to ensure that the value of
acct.balance that are read by this thread is current and that any
pending writes to the fields of the object in acct.balance are also
written to main memory.
most popular answer:
You are correct.
please research this code:
public class VolatileTest {
static/* volatile */boolean done = false;
public VolatileTest() {
synchronized (this) {
}
}
public static void main(String[] args) throws Exception {
Runnable waiter = new Runnable() {
public void run() {
while (!done)
;
System.out.println("Exited loop");
}
};
new Thread(waiter).start();
Thread.sleep(100); // wait for JIT compilation
synchronized (VolatileTest.class) {
done = true;
}
System.out.println("done is true ");
}
}
On my pc this program doesn't terminate.
Thus I think that
if I change volatile variable I will see actual value in another thread
for any outstanding everywhere!
if I change variable in synchronized section with monitor "A" I will
see actual value only in synchronized section with monitor "A"(for example in another thread)
Am I correct ?

Yes, that is true because volatile write happens-before written value can be read from the variable.
Not exactly. There is a guarantee that another thread synchronized on the same monitor will see the updated value, because monitor release happens-before same monitor acquire by another thread. Without acquiring the same monitor, the other threads may see the updated value. The "only" in your formulation is too strong :)

You are correct)
The memory model is described here: Java Memory Model
In particular, it states:
An unlock on a monitor happens-before every subsequent lock on that
monitor.
AND
A write to a volatile field (§8.3.1.4) happens-before every subsequent
read of that field.
As such, only locks and unlocks on the same monitor will behave how you want, also all writes and reads of a volatile variable. Hence your program may not terminate, as you read without locking said monitor and there is no happens-before relationship.
One thing to note (and this is the reason multithreading bugs are so annoying):
You MAY see the change in other threads. Or may not. On most architectures you will likely see it during normal processing, and maybe a bug will manifest during high load, making it difficult to reproduce. The JVM does not give any guarantees what and when will see it if there is no happens-before (i.e. volatile, synchronized, in same thread or the other cases as in the link), but tries it's best to run smoothly.

Related

Threads does not work without volatile and reads the value from RAM instead of caching

Volatile is supposed to make the Threads read the values from RAM disabling thread cache, and without volatile caching will be enabled making a thread unaware of the variable change made by another thread but this does not work for the below code.
Why does this happen and code works the same with and without volatile keyword there?
public class Racing{
private boolean won = false; //without volatile keyword
public void race() throws InterruptedException{
Thread one = new Thread(()->{
System.out.println("Player-1 is racing...");
while(!won){
won=true;
}
System.out.println("Player-1 has won...");
});
Thread two=new Thread(()->{
System.out.println("Player-2 is racing...");
while(!won){
System.out.println("Player-2 Still Racing...");
}
});
one.start();
//Thread.sleep(2000);
two.start();
}
public static void main(String k[]) {
Racing racing=new Racing();
try{
racing.race();
}
catch(InterruptedException ie){}
}
Why does this behave the same with and without volatile ?
Volatile is supposed to make the threads read the values from RAM
disabling thread cache
No, this is not accurate. It depends on the architecture where the code is running. The Java language standard itself does not state anything about how the volatile should or not be implemented.
From Myths Programmers Believe about CPU Caches can read:
As a computer engineer who has spent half a decade working with caches
at Intel and Sun, I’ve learnt a thing or two about cache-coherency.
(...)
For another, if volatile variables were truly written/read from main-memory > every single time, they would be horrendously slow – main-memory references are > 200x slower than L1 cache references. In reality, volatile-reads (in Java) can > often be just as cheap as a L1 cache reference, putting to rest the notion that volatile forces reads/writes all the way to main memory. If you’ve been avoiding the use of volatiles because of performance concerns, you might have been a victim of the above misconceptions.
Unfortunately, there still are several articles online propagating this inaccuracy (i.e., that volatile forces variables to be read from main memory).
Accordingly to the language standard (§17.4):
A field may be declared volatile, in which case the Java Memory Model
ensures that all threads see a consistent value for the variable
So informally, all threads will have a view of the most updated value of that variable. There is nothing about how the hardware should enforce such constrain.
Why does this happen and code works same with and without volatile
Well (in your case) without the volatile is undefined behavior, meaning you might or not see the most updated value of the flag won, consequently, theoretically the race condition is still there. However, because you have added the following statement
System.out.println("Player-2 Still Racing...");
in:
Thread two = new Thread(()->{
System.out.println("Player-2 is racing...");
while(!won){
System.out.println("Player-2 Still Racing...");
}
});
two things will happen, you will avoid the Spin on field problem, and second if one looks at the System.out.println code:
public void println(String x) {
synchronized (this) {
print(x);
newLine();
}
}
one can see that there is a synchronized being called, which will increase the likelihood that the threads will be reading the most updated value of the field flag (before the called to the println method). However, even that might change based on the JVM implementation.
Without volatile, there is no guarantee that another thread will see updates written to a variable. That does not mean that another thread will not see those updates if the value is not volatile. Other threads may eventually see the modified value.
In your example, you are using System.out.printlns, which contain memory barriers. That means once the println works, all variables updated before that point are visible to all the threads. The program might work differently if you do not print anything.

Can anyone explain the need for atomicity and volatile variables in simple English? [duplicate]

At work today, I came across the volatile keyword in Java. Not being very familiar with it, I found this explanation.
Given the detail in which that article explains the keyword in question, do you ever use it or could you ever see a case in which you could use this keyword in the correct manner?
volatile has semantics for memory visibility. Basically, the value of a volatile field becomes visible to all readers (other threads in particular) after a write operation completes on it. Without volatile, readers could see some non-updated value.
To answer your question: Yes, I use a volatile variable to control whether some code continues a loop. The loop tests the volatile value and continues if it is true. The condition can be set to false by calling a "stop" method. The loop sees false and terminates when it tests the value after the stop method completes execution.
The book "Java Concurrency in Practice," which I highly recommend, gives a good explanation of volatile. This book is written by the same person who wrote the IBM article that is referenced in the question (in fact, he cites his book at the bottom of that article). My use of volatile is what his article calls the "pattern 1 status flag."
If you want to learn more about how volatile works under the hood, read up on the Java memory model. If you want to go beyond that level, check out a good computer architecture book like Hennessy & Patterson and read about cache coherence and cache consistency.
“… the volatile modifier guarantees that any thread that reads a field will see the most recently written value.” - Josh Bloch
If you are thinking about using volatile, read up on the package java.util.concurrent which deals with atomic behaviour.
The Wikipedia post on a Singleton Pattern shows volatile in use.
Volatile(vɒlətʌɪl): Easily evaporated at normal temperatures
Important point about volatile:
Synchronization in Java is possible by using Java keywords synchronized and volatile and locks.
In Java, we can not have synchronized variable. Using synchronized keyword with a variable is illegal and will result in compilation error. Instead of using the synchronized variable in Java, you can use the java volatile variable, which will instruct JVM threads to read the value of volatile variable from main memory and don’t cache it locally.
If a variable is not shared between multiple threads then there is no need to use the volatile keyword.
source
Example usage of volatile:
public class Singleton {
private static volatile Singleton _instance; // volatile variable
public static Singleton getInstance() {
if (_instance == null) {
synchronized (Singleton.class) {
if (_instance == null)
_instance = new Singleton();
}
}
return _instance;
}
}
We are creating instance lazily at the time the first request comes.
If we do not make the _instance variable volatile then the Thread which is creating the instance of Singleton is not able to communicate to the other thread. So if Thread A is creating Singleton instance and just after creation, the CPU corrupts etc, all other threads will not be able to see the value of _instance as not null and they will believe it is still assigned null.
Why does this happen? Because reader threads are not doing any locking and until the writer thread comes out of a synchronized block, the memory will not be synchronized and value of _instance will not be updated in main memory. With the Volatile keyword in Java, this is handled by Java itself and such updates will be visible by all reader threads.
Conclusion: volatile keyword is also used to communicate the content of memory between threads.
Example usage of without volatile:
public class Singleton {
private static Singleton _instance; //without volatile variable
public static Singleton getInstance() {
if (_instance == null) {
synchronized(Singleton.class) {
if (_instance == null)
_instance = new Singleton();
}
}
return _instance;
}
}
The code above is not thread-safe. Although it checks the value of instance once again within the synchronized block (for performance reasons), the JIT compiler can rearrange the bytecode in a way that the reference to the instance is set before the constructor has finished its execution. This means the method getInstance() returns an object that may not have been initialized completely. To make the code thread-safe, the keyword volatile can be used since Java 5 for the instance variable. Variables that are marked as volatile get only visible to other threads once the constructor of the object has finished its execution completely.
Source
volatile usage in Java:
The fail-fast iterators are typically implemented using a volatile counter on the list object.
When the list is updated, the counter is incremented.
When an Iterator is created, the current value of the counter is embedded in the Iterator object.
When an Iterator operation is performed, the method compares the two counter values and throws a ConcurrentModificationException if they are different.
The implementation of fail-safe iterators is typically light-weight. They typically rely on properties of the specific list implementation's data structures. There is no general pattern.
volatile is very useful to stop threads.
Not that you should be writing your own threads, Java 1.6 has a lot of nice thread pools. But if you are sure you need a thread, you'll need to know how to stop it.
The pattern I use for threads is:
public class Foo extends Thread {
private volatile boolean close = false;
public void run() {
while(!close) {
// do work
}
}
public void close() {
close = true;
// interrupt here if needed
}
}
In the above code segment, the thread reading close in the while loop is different from the one that calls close(). Without volatile, the thread running the loop may never see the change to close.
Notice how there's no need for synchronization
A variable declared with volatile keyword, has two main qualities which make it special.
If we have a volatile variable, it cannot be cached into the computer's(microprocessor) cache memory by any thread. Access always happened from main memory.
If there is a write operation going on a volatile variable, and suddenly a read operation is requested, it is guaranteed that the write operation will be finished prior to the read operation.
Two above qualities deduce that
All the threads reading a volatile variable will definitely read the latest value. Because no cached value can pollute it. And also the read request will be granted only after the completion of the current write operation.
And on the other hand,
If we further investigate the #2 that I have mentioned, we can see that volatile keyword is an ideal way to maintain a shared variable which has 'n' number of reader threads and only one writer thread to access it. Once we add the volatile keyword, it is done. No any other overhead about thread safety.
Conversly,
We can't make use of volatile keyword solely, to satisfy a shared variable which has more than one writer thread accessing it.
One common example for using volatile is to use a volatile boolean variable as a flag to terminate a thread. If you've started a thread, and you want to be able to safely interrupt it from a different thread, you can have the thread periodically check a flag. To stop it, set the flag to true. By making the flag volatile, you can ensure that the thread that is checking it will see it has been set the next time it checks it without having to even use a synchronized block.
No one has mentioned the treatment of read and write operation for long and double variable type. Reads and writes are atomic operations for reference variables and for most primitive variables, except for long and double variable types, which must use the volatile keyword to be atomic operations. #link
Yes, volatile must be used whenever you want a mutable variable to be accessed by multiple threads. It is not very common usecase because typically you need to perform more than a single atomic operation (e.g. check the variable state before modifying it), in which case you would use a synchronized block instead.
Volatile
volatile -> synchronized[About]
volatile says for a programmer that the value always will be up to date. The problem is that the value can be saved on different types of hardware memory. For example it can be CPU registers, CPU cache, RAM... СPU registers and CPU cache belong to CPU and can not share a data unlike of RAM which is on the rescue in multithreading envirompment
volatile keyword says that a variable will be read and written from/to RAM memory directly. It has some computation footprint
Java 5 extended volatile by supporting happens-before[About]
A write to a volatile field happens-before every subsequent read of that field.
Read is after write
volatile keyword does not cure a race condition[About] situation to sove it use synchronized keyword[About]
As a result it safety only when one thread writes and others just read the volatile value
In my opinion, two important scenarios other than stopping thread in which volatile keyword is used are:
Double-checked locking mechanism. Used often in Singleton design
pattern. In this the singleton object needs to be declared volatile.
Spurious Wakeups. Thread may sometimes wake up from wait call even if no notify call has been issued. This behavior is called spurious wakeup. This can be countered by using a conditional variable (boolean flag). Put the wait() call in a while loop as long as the flag is true. So if thread wakes up from wait call due to any reasons other than Notify/NotifyAll then it encounters flag is still true and hence calls wait again. Prior to calling notify set this flag to true. In this case the boolean flag is declared as volatile.
Assume that a thread modifies the value of a shared variable, if you didn't use volatile modifier for that variable. When other threads want to read this variable's value, they don't see the updated value because they read the variable's value from the CPU's cache instead of RAM memory. This problem also known as Visibility Problem.
By declaring the shared variable volatile, all writes to the counter variable will be written back to main memory immediately. Also, all reads of the counter variable will be read directly from main memory.
public class SharedObject {
public volatile int sharedVariable = 0;
}
With non-volatile variables there are no guarantees about when the Java Virtual Machine (JVM) reads data from main memory into CPU caches, or writes data from CPU caches to main memory. This can cause several problems which I will explain in the following sections.
Example:
Imagine a situation in which two or more threads have access to a shared object which contains a counter variable declared like this:
public class SharedObject {
public int counter = 0;
}
Imagine too, that only Thread 1 increments the counter variable, but both Thread 1 and Thread 2 may read the counter variable from time to time.
If the counter variable is not declared volatile there is no guarantee about when the value of the counter variable is written from the CPU cache back to main memory. This means, that the counter variable value in the CPU cache may not be the same as in main memory. This situation is illustrated here:
The problem with threads not seeing the latest value of a variable because it has not yet been written back to main memory by another thread, is called a "visibility" problem. The updates of one thread are not visible to other threads.
You'll need to use 'volatile' keyword, or 'synchronized' and any other concurrency control tools and techniques you might have at your disposal if you are developing a multithreaded application. Example of such application is desktop apps.
If you are developing an application that would be deployed to application server (Tomcat, JBoss AS, Glassfish, etc) you don't have to handle concurrency control yourself as it already addressed by the application server. In fact, if I remembered correctly the Java EE standard prohibit any concurrency control in servlets and EJBs, since it is part of the 'infrastructure' layer which you supposed to be freed from handling it. You only do concurrency control in such app if you're implementing singleton objects. This even already addressed if you knit your components using frameworkd like Spring.
So, in most cases of Java development where the application is a web application and using IoC framework like Spring or EJB, you wouldn't need to use 'volatile'.
volatile only guarantees that all threads, even themselves, are incrementing. For example: a counter sees the same face of the variable at the same time. It is not used instead of synchronized or atomic or other stuff, it completely makes the reads synchronized. Please do not compare it with other java keywords. As the example shows below volatile variable operations are also atomic they fail or succeed at once.
package io.netty.example.telnet;
import java.util.ArrayList;
import java.util.List;
public class Main {
public static volatile int a = 0;
public static void main(String args[]) throws InterruptedException{
List<Thread> list = new ArrayList<Thread>();
for(int i = 0 ; i<11 ;i++){
list.add(new Pojo());
}
for (Thread thread : list) {
thread.start();
}
Thread.sleep(20000);
System.out.println(a);
}
}
class Pojo extends Thread{
int a = 10001;
public void run() {
while(a-->0){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
Main.a++;
System.out.println("a = "+Main.a);
}
}
}
Even you put volatile or not results will always differ. But if you use AtomicInteger as below results will be always same. This is same with synchronized also.
package io.netty.example.telnet;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
public class Main {
public static volatile AtomicInteger a = new AtomicInteger(0);
public static void main(String args[]) throws InterruptedException{
List<Thread> list = new ArrayList<Thread>();
for(int i = 0 ; i<11 ;i++){
list.add(new Pojo());
}
for (Thread thread : list) {
thread.start();
}
Thread.sleep(20000);
System.out.println(a.get());
}
}
class Pojo extends Thread{
int a = 10001;
public void run() {
while(a-->0){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
Main.a.incrementAndGet();
System.out.println("a = "+Main.a);
}
}
}
While I see many good Theoretical explanations in the answers mentioned here, I am adding a practical example with an explanation here:
1.
CODE RUN WITHOUT VOLATILE USE
public class VisibilityDemonstration {
private static int sCount = 0;
public static void main(String[] args) {
new Consumer().start();
try {
Thread.sleep(100);
} catch (InterruptedException e) {
return;
}
new Producer().start();
}
static class Consumer extends Thread {
#Override
public void run() {
int localValue = -1;
while (true) {
if (localValue != sCount) {
System.out.println("Consumer: detected count change " + sCount);
localValue = sCount;
}
if (sCount >= 5) {
break;
}
}
System.out.println("Consumer: terminating");
}
}
static class Producer extends Thread {
#Override
public void run() {
while (sCount < 5) {
int localValue = sCount;
localValue++;
System.out.println("Producer: incrementing count to " + localValue);
sCount = localValue;
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
return;
}
}
System.out.println("Producer: terminating");
}
}
}
In the above code, there are two threads - Producer and Consumer.
The producer thread iterates over the loop 5 times (with a sleep of 1000 milliSecond or 1 Sec) in between. In every iteration, the producer thread increases the value of sCount variable by 1. So, the producer changes the value of sCount from 0 to 5 in all iterations
The consumer thread is in a constant loop and print whenever the value of sCount changes until the value reaches 5 where it ends.
Both the loops are started at the same time. So both the producer and consumer should print the value of sCount 5 times.
OUTPUT
Consumer: detected count change 0
Producer: incrementing count to 1
Producer: incrementing count to 2
Producer: incrementing count to 3
Producer: incrementing count to 4
Producer: incrementing count to 5
Producer: terminating
ANALYSIS
In the above program, when the producer thread updates the value of sCount, it does update the value of the variable in the main memory(memory from where every thread is going to initially read the value of variable). But the consumer thread reads the value of sCount only the first time from this main memory and then caches the value of that variable inside its own memory. So, even if the value of original sCount in main memory has been updated by the producer thread, the consumer thread is reading from its cached value which is not updated. This is called VISIBILITY PROBLEM .
2.
CODE RUN WITH VOLATILE USE
In the above code, replace the line of code where sCount is declared by the following :
private volatile static int sCount = 0;
OUTPUT
Consumer: detected count change 0
Producer: incrementing count to 1
Consumer: detected count change 1
Producer: incrementing count to 2
Consumer: detected count change 2
Producer: incrementing count to 3
Consumer: detected count change 3
Producer: incrementing count to 4
Consumer: detected count change 4
Producer: incrementing count to 5
Consumer: detected count change 5
Consumer: terminating
Producer: terminating
ANALYSIS
When we declare a variable volatile, it means that all reads and all writes to this variable or from this variable will go directly into the main memory. The values of these variables will never be cached.
As the value of the sCount variable is never cached by any thread, the consumer always reads the original value of sCount from the main memory(where it is being updated by producer thread). So, In this case the output is correct where both the threads prints the different values of sCount 5 times.
In this way, the volatile keyword solves the VISIBILITY PROBLEM .
Yes, I use it quite a lot - it can be very useful for multi-threaded code. The article you pointed to is a good one. Though there are two important things to bear in mind:
You should only use volatile if you
completely understand what it does
and how it differs to synchronized.
In many situations volatile appears,
on the surface, to be a simpler more
performant alternative to
synchronized, when often a better
understanding of volatile would make
clear that synchronized is the only
option that would work.
volatile doesn't actually work in a
lot of older JVMs, although
synchronized does. I remember seeing a document that referenced the various levels of support in different JVMs but unfortunately I can't find it now. Definitely look into it if you're using Java pre 1.5 or if you don't have control over the JVMs that your program will be running on.
Absolutely, yes. (And not just in Java, but also in C#.) There are times when you need to get or set a value that is guaranteed to be an atomic operation on your given platform, an int or boolean, for example, but do not require the overhead of thread locking. The volatile keyword allows you to ensure that when you read the value that you get the current value and not a cached value that was just made obsolete by a write on another thread.
Every thread accessing a volatile field will read its current value before continuing, instead of (potentially) using a cached value.
Only member variable can be volatile or transient.
There are two different uses of volatile keyword.
Prevents JVM from reading values from register (assume as cache), and forces its value to be read from memory.
Reduces the risk of memory in-consistency errors.
Prevents JVM from reading values in register, and forces its
value to be read from memory.
A busy flag is used to prevent a thread from continuing while the device is busy and the flag is not protected by a lock:
while (busy) {
/* do something else */
}
The testing thread will continue when another thread turns off the busy flag:
busy = 0;
However, since busy is accessed frequently in the testing thread, the JVM may optimize the test by placing the value of busy in a register, then test the contents of the register without reading the value of busy in memory before every test. The testing thread would never see busy change and the other thread would only change the value of busy in memory, resulting in deadlock. Declaring the busy flag as volatile forces its value to be read before each test.
Reduces the risk of memory consistency errors.
Using volatile variables reduces the risk of memory consistency errors, because any write to a volatile variable establishes a
"happens-before" relationship with subsequent reads of that same variable. This means that changes to a volatile variable are always visible to other threads.
The technique of reading, writing without memory consistency errors is called atomic action.
An atomic action is one that effectively happens all at once. An atomic action cannot stop in the middle: it either happens completely, or it doesn't happen at all. No side effects of an atomic action are visible until the action is complete.
Below are actions you can specify that are atomic:
Reads and writes are atomic for reference variables and for most
primitive variables (all types except long and double).
Reads and writes are atomic for all variables declared volatile
(including long and double variables).
Cheers!
Volatile does following.
1> Read and write of volatile variables by different threads are always from memory, not from thread's own cache or cpu register. So each thread always deals with the latest value.
2> When 2 different threads work with same instance or static variables in heap, one may see other's actions as out of order. See jeremy manson's blog on this. But volatile helps here.
Following fully running code shows how a number of threads can execute in predefined order and print outputs without using synchronized keyword.
thread 0 prints 0
thread 1 prints 1
thread 2 prints 2
thread 3 prints 3
thread 0 prints 0
thread 1 prints 1
thread 2 prints 2
thread 3 prints 3
thread 0 prints 0
thread 1 prints 1
thread 2 prints 2
thread 3 prints 3
To achieve this we may use the following full fledged running code.
public class Solution {
static volatile int counter = 0;
static int print = 0;
public static void main(String[] args) {
// TODO Auto-generated method stub
Thread[] ths = new Thread[4];
for (int i = 0; i < ths.length; i++) {
ths[i] = new Thread(new MyRunnable(i, ths.length));
ths[i].start();
}
}
static class MyRunnable implements Runnable {
final int thID;
final int total;
public MyRunnable(int id, int total) {
thID = id;
this.total = total;
}
#Override
public void run() {
// TODO Auto-generated method stub
while (true) {
if (thID == counter) {
System.out.println("thread " + thID + " prints " + print);
print++;
if (print == total)
print = 0;
counter++;
if (counter == total)
counter = 0;
} else {
try {
Thread.sleep(30);
} catch (InterruptedException e) {
// log it
}
}
}
}
}
}
The following github link has a readme, which gives proper explanation.
https://github.com/sankar4git/volatile_thread_ordering
From oracle documentation page, the need for volatile variable arises to fix memory consistency issues:
Using volatile variables reduces the risk of memory consistency errors, because any write to a volatile variable establishes a happens-before relationship with subsequent reads of that same variable.
This means that changes to a volatile variable are always visible to other threads. It also means that when a thread reads a volatile variable, it sees not just the latest change to the volatile, but also the side effects of the code that led up the change.
As explained in Peter Parker answer, in absence of volatile modifier, each thread's stack may have their own copy of variable. By making the variable as volatile, memory consistency issues have been fixed.
Have a look at jenkov tutorial page for better understanding.
Have a look at related SE question for some more details on volatile & use cases to use volatile:
Difference between volatile and synchronized in Java
One practical use case:
You have many threads, which need to print current time in a particular format for example : java.text.SimpleDateFormat("HH-mm-ss"). Yon can have one class, which converts current time into SimpleDateFormat and updated the variable for every one second. All other threads can simply use this volatile variable to print current time in log files.
Volatile Variables are light-weight synchronization. When visibility of latest data among all threads is requirement and atomicity can be compromised , in such situations Volatile Variables must be preferred. Read on volatile variables always return most recent write done by any thread since they are neither cached in registers nor in caches where other processors can not see. Volatile is Lock-Free. I use volatile, when scenario meets criteria as mentioned above.
volatile variable is basically used for instant update (flush) in main shared cache line once it updated, so that changes reflected to all worker threads immediately.
If you have a multithread system and these multiple threads work on some shared data, those threads will load data in their own cache. If we do not lock the resource, any change made in one thread is NOT gonna be available in another thread.
With a locking mechanism, we add read/write access to the data source. If one thread modifies the data source, that data will be stored in the main memory instead of in its cache. When others threads need this data, they will read it from the main memory. This will increase the latency dramatically.
To reduce the latency, we declare variables as volatile. It means that whenever the value of the variable is modified in any of the processors, the other threads will be forced to read it. It still has some delays but better than reading from the main memory.
Below is a very simple code to demonstrate the requirement of volatile for variable which is used to control the Thread execution from other thread (this is one scenario where volatile is required).
// Code to prove importance of 'volatile' when state of one thread is being mutated from another thread.
// Try running this class with and without 'volatile' for 'state' property of Task class.
public class VolatileTest {
public static void main(String[] a) throws Exception {
Task task = new Task();
new Thread(task).start();
Thread.sleep(500);
long stoppedOn = System.nanoTime();
task.stop(); // -----> do this to stop the thread
System.out.println("Stopping on: " + stoppedOn);
}
}
class Task implements Runnable {
// Try running with and without 'volatile' here
private volatile boolean state = true;
private int i = 0;
public void stop() {
state = false;
}
#Override
public void run() {
while(state) {
i++;
}
System.out.println(i + "> Stopped on: " + System.nanoTime());
}
}
When volatile is not used: you'll never see 'Stopped on: xxx' message even after 'Stopping on: xxx', and the program continues to run.
Stopping on: 1895303906650500
When volatile used: you'll see the 'Stopped on: xxx' immediately.
Stopping on: 1895285647980000
324565439> Stopped on: 1895285648087300
Demo: https://repl.it/repls/SilverAgonizingObjectcode
The volatile key when used with a variable, will make sure that threads reading this variable will see the same value . Now if you have multiple threads reading and writing to a variable, making the variable volatile will not be enough and data will be corrupted . Image threads have read the same value but each one has done some chages (say incremented a counter) , when writing back to the memory, data integrity is violated . That is why it is necessary to make the varible synchronized (diffrent ways are possible)
If the changes are done by 1 thread and the others need just to read this value, the volatile will be suitable.

how synchronized keyword works internally

I read the below program and answer in a blog.
int x = 0;
boolean bExit = false;
Thread 1 (not synchronized)
x = 1;
bExit = true;
Thread 2 (not synchronized)
if (bExit == true)
System.out.println("x=" + x);
is it possible for Thread 2 to print “x=0”?
Ans : Yes ( reason : Every thread has their own copy of variables. )
how do you fix it?
Ans: By using make both threads synchronized on a common mutex or make both variable volatile.
My doubt is : If we are making the 2 variable as volatile then the 2 threads will share the variables from the main memory. This make a sense, but in case of synchronization how it will be resolved as both the thread have their own copy of variables.
Please help me.
This is actually more complicated than it seems. There are several arcane things at work.
Caching
Saying "Every thread has their own copy of variables" is not exactly correct. Every thread may have their own copy of variables, and they may or may not flush these variables into the shared memory and/or read them from there, so the whole thing is non-deterministic. Moreover, the very term flushing is really implementation-dependent. There are strict terms such as memory consistency, happens-before order, and synchronization order.
Reordering
This one is even more arcane. This
x = 1;
bExit = true;
does not even guarantee that Thread 1 will first write 1 to x and then true to bExit. In fact, it does not even guarantee that any of these will happen at all. The compiler may optimize away some values if they are not used later. The compiler and CPU are also allowed to reorder instructions any way they want, provided that the outcome is indistinguishable from what would happen if everything was really in program order. That is, indistinguishable for the current thread! Nobody cares about other threads until...
Synchronization comes in
Synchronization does not only mean exclusive access to resources. It is also not just about preventing threads from interfering with each other. It's also about memory barriers. It can be roughly described as each synchronization block having invisible instructions at the entry and exit, the first one saying "read everything from the shared memory to be as up-to-date as possible" and the last one saying "now flush whatever you've been doing there to the shared memory". I say "roughly" because, again, the whole thing is an implementation detail. Memory barriers also restrict reordering: actions may still be reordered, but the results that appear in the shared memory after exiting the synchronized block must be identical to what would happen if everything was indeed in program order.
All that only works, of course, only if both blocks use the same locking object.
The whole thing is described in details in Chapter 17 of the JLS. In particular, what's important is the so-called "happens-before order". If you ever see in the documentation that "this happens-before that", it means that everything the first thread does before "this" will be visible to whoever does "that". This may even not require any locking. Concurrent collections are a good example: one thread puts there something, another one reads that, and that magically guarantees that the second thread will see everything the first thread did before putting that object into the collection, even if those actions had nothing to do with the collection itself!
Volatile variables
One last warning: you better give up on the idea that making variables volatile will solve things. In this case maybe making bExit volatile will suffice, but there are so many troubles that using volatiles can lead to that I'm not even willing to go into that. But one thing is for sure: using synchronized has much stronger effect than using volatile, and that goes for memory effects too. What's worse, volatile semantics changed in some Java version so there may exist some versions that still use the old semantics which was even more obscure and confusing, whereas synchronized always worked well provided you understand what it is and how to use it.
Pretty much the only reason to use volatile is performance because synchronized may cause lock contention and other troubles. Read Java Concurrency in Practice to figure all that out.
Q & A
1) You wrote "now flush whatever you've been doing there to the shared
memory" about synchronized blocks. But we will see only the variables
that we access in the synchronize block or all the changes that the
thread call synchronize made (even on the variables not accessed in the
synchronized block)?
Short answer: it will "flush" all variables that were updated during the synchronized block or before entering the synchronized block. And again, because flushing is an implementation detail, you don't even know whether it will actually flush something or do something entirely different (or doesn't do anything at all because the implementation and the specific situation already somehow guarantee that it will work).
Variables that wasn't accessed inside the synchronized block obviously won't change during the execution of the block. However, if you change some of those variables before entering the synchronized block, for example, then you have a happens-before relationship between those changes and whatever happens in the synchronized block (the first bullet in 17.4.5). If some other thread enters another synchronized block using the same lock object then it synchronizes-with the first thread exiting the synchronized block, which means that you have another happens-before relationship here. So in this case the second thread will see the variables that the first thread updated prior to entering the synchronized block.
If the second thread tries to read those variables without synchronizing on the same lock, then it is not guaranteed to see the updates. But then again, it isn't guaranteed to see the updates made inside the synchronized block as well. But this is because of the lack of the memory-read barrier in the second thread, not because the first one didn't "flush" its variables (memory-write barrier).
2) In this chapter you post (of JLS) it is written that: "A write to a
volatile field (§8.3.1.4) happens-before every subsequent read of that
field." Doesn't this mean that when the variable is volatile you will
see only changes of it (because it is written write happens-before
read, not happens-before every operation between them!). I mean
doesn't this mean that in the example, given in the description of the
problem, we can see bExit = true, but x = 0 in the second thread if
only bExit is volatile? I ask, because I find this question here: http://java67.blogspot.bg/2012/09/top-10-tricky-java-interview-questions-answers.html
and it is written that if bExit is volatile the program is OK. So the
registers will flush only bExits value only or bExits and x values?
By the same reasoning as in Q1, if you do bExit = true after x = 1, then there is an in-thread happens-before relationship because of the program order. Now since volatile writes happen-before volatile reads, it is guaranteed that the second thread will see whatever the first thread updated prior to writing true to bExit. Note that this behavior is only since Java 1.5 or so, so older or buggy implementations may or may not support this. I have seen bits in the standard Oracle implementation that use this feature (java.concurrent collections), so you can at least assume that it works there.
3) Why monitor matters when using synchronized blocks about memory
visibility? I mean when try to exit synchronized block aren't all
variables (which we accessed in this block or all variables in the
thread - this is related to the first question) flushed from registers
to main memory or broadcasted to all CPU caches? Why object of
synchronization matters? I just cannot imagine what are relations and
how they are made (between object of synchronization and memory).
I know that we should use the same monitor to see this changes, but I
don't understand how memory that should be visible is mapped to
objects. Sorry, for the long questions, but these are really
interesting questions for me and it is related to the question (I
would post questions exactly for this primer).
Ha, this one is really interesting. I don't know. Probably it flushes anyway, but Java specification is written with high abstraction in mind, so maybe it allows for some really weird hardware where partial flushes or other kinds of memory barriers are possible. Suppose you have a two-CPU machine with 2 cores on each CPU. Each CPU has some local cache for every core and also a common cache. A really smart VM may want to schedule two threads on one CPU and two threads on another one. Each pair of the threads uses its own monitor, and VM detects that variables modified by these two threads are not used in any other threads, so it only flushes them as far as the CPU-local cache.
See also this question about the same issue.
4) I thought that everything before writing a volatile will be up to
date when we read it (moreover when we use volatile a read that in
Java it is memory barrier), but the documentation don't say this.
It does:
17.4.5.
If x and y are actions of the same thread and x comes before y in program order, then hb(x, y).
If hb(x, y) and hb(y, z), then hb(x, z).
A write to a volatile field (§8.3.1.4) happens-before every subsequent
read of that field.
If x = 1 comes before bExit = true in program order, then we have happens-before between them. If some other thread reads bExit after that, then we have happens-before between write and read. And because of the transitivity, we also have happens-before between x = 1 and read of bExit by the second thread.
5) Also, if we have volatile Person p does we have some dependency
when we use p.age = 20 and print(p.age) or have we memory barrier in
this case(assume age is not volatile) ? - I think - No
You are correct. Since age is not volatile, then there is no memory barrier, and that's one of the trickiest things. Here is a fragment from CopyOnWriteArrayList, for example:
Object[] elements = getArray();
E oldValue = get(elements, index);
if (oldValue != element) {
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len);
newElements[index] = element;
setArray(newElements);
} else {
// Not quite a no-op; ensures volatile write semantics
setArray(elements);
Here, getArray and setArray are trivial setter and getter for the array field. But since the code changes elements of the array, it is necessary to write the reference to the array back to where it came from in order for the changes to the elements of the array to become visible. Note that it is done even if the element being replaced is the same element that was there in the first place! It is precisely because some fields of that element may have changed by the calling thread, and it's necessary to propagate these changes to future readers.
6) And is there any happens before 2 subsequent reads of volatile
field? I mean does the second read will see all changes from thread
which reads this field before it(of course we will have changes only
if volatile influence visibility of all changes before it - which I am
a little confused whether it is true or not)?
No, there is no relationship between volatile reads. Of course, if one thread performs a volatile write and then two other thread perform volatile reads, they are guaranteed to see everything at least up to date as it was before the volatile write, but there is no guarantee of whether one thread will see more up-to-date values than the other. Moreover, there is not even strict definition of one volatile read happening before another! It is wrong to think of everything happening on a single global timeline. It is more like parallel universes with independent timelines that sometimes sync their clocks by performing synchronization and exchanging data with memory barriers.
It depends on the implementation which decides if threads will keep a copy of the variables in their own memory. In case of class level variables threads have a shared access and in case of local variables threads will keep a copy of it. I will provide two examples which shows this fact , please have a look at it.
And in your example if I understood it correctly your code should look something like this--
package com.practice.multithreading;
public class LocalStaticVariableInThread {
static int x=0;
static boolean bExit = false;
public static void main(String[] args) {
Thread t1=new Thread(run1);
Thread t2=new Thread(run2);
t1.start();
t2.start();
}
static Runnable run1=()->{
x = 1;
bExit = true;
};
static Runnable run2=()->{
if (bExit == true)
System.out.println("x=" + x);
};
}
Output
x=1
I am getting this output always. It is because the threads share the variable and the when it is changed by one thread other thread can see it. But in real life scenarios we can never say which thread will start first, since here the threads are not doing anything we can see the expected result.
Now take this example--
Here if you make the i variable inside the for-loop` as static variable then threads won t keep a copy of it and you won t see desired outputs, i.e. the count value will not be 2000 every time even if u have synchronized the count increment.
package com.practice.multithreading;
public class RaceCondition2Fixed {
private int count;
int i;
/*making it synchronized forces the thread to acquire an intrinsic lock on the method, and another thread
cannot access it until this lock is released after the method is completed. */
public synchronized void increment() {
count++;
}
public static void main(String[] args) {
RaceCondition2Fixed rc= new RaceCondition2Fixed();
rc.doWork();
}
private void doWork() {
Thread t1 = new Thread(new Runnable() {
#Override
public void run() {
for ( i = 0; i < 1000; i++) {
increment();
}
}
});
Thread t2 = new Thread(new Runnable() {
#Override
public void run() {
for ( i = 0; i < 1000; i++) {
increment();
}
}
});
t1.start();
t2.start();
try {
t1.join();
t2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
/*if we don t use join then count will be 0. Because when we call t1.start() and t2.start()
the threads will start updating count in the spearate threads, meanwhile the main thread will
print the value as 0. So. we need to wait for the threads to complete. */
System.out.println(Thread.currentThread().getName()+" Count is : "+count);
}
}

understanding Volatile keyword in Java [duplicate]

At work today, I came across the volatile keyword in Java. Not being very familiar with it, I found this explanation.
Given the detail in which that article explains the keyword in question, do you ever use it or could you ever see a case in which you could use this keyword in the correct manner?
volatile has semantics for memory visibility. Basically, the value of a volatile field becomes visible to all readers (other threads in particular) after a write operation completes on it. Without volatile, readers could see some non-updated value.
To answer your question: Yes, I use a volatile variable to control whether some code continues a loop. The loop tests the volatile value and continues if it is true. The condition can be set to false by calling a "stop" method. The loop sees false and terminates when it tests the value after the stop method completes execution.
The book "Java Concurrency in Practice," which I highly recommend, gives a good explanation of volatile. This book is written by the same person who wrote the IBM article that is referenced in the question (in fact, he cites his book at the bottom of that article). My use of volatile is what his article calls the "pattern 1 status flag."
If you want to learn more about how volatile works under the hood, read up on the Java memory model. If you want to go beyond that level, check out a good computer architecture book like Hennessy & Patterson and read about cache coherence and cache consistency.
“… the volatile modifier guarantees that any thread that reads a field will see the most recently written value.” - Josh Bloch
If you are thinking about using volatile, read up on the package java.util.concurrent which deals with atomic behaviour.
The Wikipedia post on a Singleton Pattern shows volatile in use.
Volatile(vɒlətʌɪl): Easily evaporated at normal temperatures
Important point about volatile:
Synchronization in Java is possible by using Java keywords synchronized and volatile and locks.
In Java, we can not have synchronized variable. Using synchronized keyword with a variable is illegal and will result in compilation error. Instead of using the synchronized variable in Java, you can use the java volatile variable, which will instruct JVM threads to read the value of volatile variable from main memory and don’t cache it locally.
If a variable is not shared between multiple threads then there is no need to use the volatile keyword.
source
Example usage of volatile:
public class Singleton {
private static volatile Singleton _instance; // volatile variable
public static Singleton getInstance() {
if (_instance == null) {
synchronized (Singleton.class) {
if (_instance == null)
_instance = new Singleton();
}
}
return _instance;
}
}
We are creating instance lazily at the time the first request comes.
If we do not make the _instance variable volatile then the Thread which is creating the instance of Singleton is not able to communicate to the other thread. So if Thread A is creating Singleton instance and just after creation, the CPU corrupts etc, all other threads will not be able to see the value of _instance as not null and they will believe it is still assigned null.
Why does this happen? Because reader threads are not doing any locking and until the writer thread comes out of a synchronized block, the memory will not be synchronized and value of _instance will not be updated in main memory. With the Volatile keyword in Java, this is handled by Java itself and such updates will be visible by all reader threads.
Conclusion: volatile keyword is also used to communicate the content of memory between threads.
Example usage of without volatile:
public class Singleton {
private static Singleton _instance; //without volatile variable
public static Singleton getInstance() {
if (_instance == null) {
synchronized(Singleton.class) {
if (_instance == null)
_instance = new Singleton();
}
}
return _instance;
}
}
The code above is not thread-safe. Although it checks the value of instance once again within the synchronized block (for performance reasons), the JIT compiler can rearrange the bytecode in a way that the reference to the instance is set before the constructor has finished its execution. This means the method getInstance() returns an object that may not have been initialized completely. To make the code thread-safe, the keyword volatile can be used since Java 5 for the instance variable. Variables that are marked as volatile get only visible to other threads once the constructor of the object has finished its execution completely.
Source
volatile usage in Java:
The fail-fast iterators are typically implemented using a volatile counter on the list object.
When the list is updated, the counter is incremented.
When an Iterator is created, the current value of the counter is embedded in the Iterator object.
When an Iterator operation is performed, the method compares the two counter values and throws a ConcurrentModificationException if they are different.
The implementation of fail-safe iterators is typically light-weight. They typically rely on properties of the specific list implementation's data structures. There is no general pattern.
volatile is very useful to stop threads.
Not that you should be writing your own threads, Java 1.6 has a lot of nice thread pools. But if you are sure you need a thread, you'll need to know how to stop it.
The pattern I use for threads is:
public class Foo extends Thread {
private volatile boolean close = false;
public void run() {
while(!close) {
// do work
}
}
public void close() {
close = true;
// interrupt here if needed
}
}
In the above code segment, the thread reading close in the while loop is different from the one that calls close(). Without volatile, the thread running the loop may never see the change to close.
Notice how there's no need for synchronization
A variable declared with volatile keyword, has two main qualities which make it special.
If we have a volatile variable, it cannot be cached into the computer's(microprocessor) cache memory by any thread. Access always happened from main memory.
If there is a write operation going on a volatile variable, and suddenly a read operation is requested, it is guaranteed that the write operation will be finished prior to the read operation.
Two above qualities deduce that
All the threads reading a volatile variable will definitely read the latest value. Because no cached value can pollute it. And also the read request will be granted only after the completion of the current write operation.
And on the other hand,
If we further investigate the #2 that I have mentioned, we can see that volatile keyword is an ideal way to maintain a shared variable which has 'n' number of reader threads and only one writer thread to access it. Once we add the volatile keyword, it is done. No any other overhead about thread safety.
Conversly,
We can't make use of volatile keyword solely, to satisfy a shared variable which has more than one writer thread accessing it.
One common example for using volatile is to use a volatile boolean variable as a flag to terminate a thread. If you've started a thread, and you want to be able to safely interrupt it from a different thread, you can have the thread periodically check a flag. To stop it, set the flag to true. By making the flag volatile, you can ensure that the thread that is checking it will see it has been set the next time it checks it without having to even use a synchronized block.
No one has mentioned the treatment of read and write operation for long and double variable type. Reads and writes are atomic operations for reference variables and for most primitive variables, except for long and double variable types, which must use the volatile keyword to be atomic operations. #link
Yes, volatile must be used whenever you want a mutable variable to be accessed by multiple threads. It is not very common usecase because typically you need to perform more than a single atomic operation (e.g. check the variable state before modifying it), in which case you would use a synchronized block instead.
Volatile
volatile -> synchronized[About]
volatile says for a programmer that the value always will be up to date. The problem is that the value can be saved on different types of hardware memory. For example it can be CPU registers, CPU cache, RAM... СPU registers and CPU cache belong to CPU and can not share a data unlike of RAM which is on the rescue in multithreading envirompment
volatile keyword says that a variable will be read and written from/to RAM memory directly. It has some computation footprint
Java 5 extended volatile by supporting happens-before[About]
A write to a volatile field happens-before every subsequent read of that field.
Read is after write
volatile keyword does not cure a race condition[About] situation to sove it use synchronized keyword[About]
As a result it safety only when one thread writes and others just read the volatile value
In my opinion, two important scenarios other than stopping thread in which volatile keyword is used are:
Double-checked locking mechanism. Used often in Singleton design
pattern. In this the singleton object needs to be declared volatile.
Spurious Wakeups. Thread may sometimes wake up from wait call even if no notify call has been issued. This behavior is called spurious wakeup. This can be countered by using a conditional variable (boolean flag). Put the wait() call in a while loop as long as the flag is true. So if thread wakes up from wait call due to any reasons other than Notify/NotifyAll then it encounters flag is still true and hence calls wait again. Prior to calling notify set this flag to true. In this case the boolean flag is declared as volatile.
Assume that a thread modifies the value of a shared variable, if you didn't use volatile modifier for that variable. When other threads want to read this variable's value, they don't see the updated value because they read the variable's value from the CPU's cache instead of RAM memory. This problem also known as Visibility Problem.
By declaring the shared variable volatile, all writes to the counter variable will be written back to main memory immediately. Also, all reads of the counter variable will be read directly from main memory.
public class SharedObject {
public volatile int sharedVariable = 0;
}
With non-volatile variables there are no guarantees about when the Java Virtual Machine (JVM) reads data from main memory into CPU caches, or writes data from CPU caches to main memory. This can cause several problems which I will explain in the following sections.
Example:
Imagine a situation in which two or more threads have access to a shared object which contains a counter variable declared like this:
public class SharedObject {
public int counter = 0;
}
Imagine too, that only Thread 1 increments the counter variable, but both Thread 1 and Thread 2 may read the counter variable from time to time.
If the counter variable is not declared volatile there is no guarantee about when the value of the counter variable is written from the CPU cache back to main memory. This means, that the counter variable value in the CPU cache may not be the same as in main memory. This situation is illustrated here:
The problem with threads not seeing the latest value of a variable because it has not yet been written back to main memory by another thread, is called a "visibility" problem. The updates of one thread are not visible to other threads.
You'll need to use 'volatile' keyword, or 'synchronized' and any other concurrency control tools and techniques you might have at your disposal if you are developing a multithreaded application. Example of such application is desktop apps.
If you are developing an application that would be deployed to application server (Tomcat, JBoss AS, Glassfish, etc) you don't have to handle concurrency control yourself as it already addressed by the application server. In fact, if I remembered correctly the Java EE standard prohibit any concurrency control in servlets and EJBs, since it is part of the 'infrastructure' layer which you supposed to be freed from handling it. You only do concurrency control in such app if you're implementing singleton objects. This even already addressed if you knit your components using frameworkd like Spring.
So, in most cases of Java development where the application is a web application and using IoC framework like Spring or EJB, you wouldn't need to use 'volatile'.
volatile only guarantees that all threads, even themselves, are incrementing. For example: a counter sees the same face of the variable at the same time. It is not used instead of synchronized or atomic or other stuff, it completely makes the reads synchronized. Please do not compare it with other java keywords. As the example shows below volatile variable operations are also atomic they fail or succeed at once.
package io.netty.example.telnet;
import java.util.ArrayList;
import java.util.List;
public class Main {
public static volatile int a = 0;
public static void main(String args[]) throws InterruptedException{
List<Thread> list = new ArrayList<Thread>();
for(int i = 0 ; i<11 ;i++){
list.add(new Pojo());
}
for (Thread thread : list) {
thread.start();
}
Thread.sleep(20000);
System.out.println(a);
}
}
class Pojo extends Thread{
int a = 10001;
public void run() {
while(a-->0){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
Main.a++;
System.out.println("a = "+Main.a);
}
}
}
Even you put volatile or not results will always differ. But if you use AtomicInteger as below results will be always same. This is same with synchronized also.
package io.netty.example.telnet;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.atomic.AtomicInteger;
public class Main {
public static volatile AtomicInteger a = new AtomicInteger(0);
public static void main(String args[]) throws InterruptedException{
List<Thread> list = new ArrayList<Thread>();
for(int i = 0 ; i<11 ;i++){
list.add(new Pojo());
}
for (Thread thread : list) {
thread.start();
}
Thread.sleep(20000);
System.out.println(a.get());
}
}
class Pojo extends Thread{
int a = 10001;
public void run() {
while(a-->0){
try {
Thread.sleep(1);
} catch (InterruptedException e) {
e.printStackTrace();
}
Main.a.incrementAndGet();
System.out.println("a = "+Main.a);
}
}
}
While I see many good Theoretical explanations in the answers mentioned here, I am adding a practical example with an explanation here:
1.
CODE RUN WITHOUT VOLATILE USE
public class VisibilityDemonstration {
private static int sCount = 0;
public static void main(String[] args) {
new Consumer().start();
try {
Thread.sleep(100);
} catch (InterruptedException e) {
return;
}
new Producer().start();
}
static class Consumer extends Thread {
#Override
public void run() {
int localValue = -1;
while (true) {
if (localValue != sCount) {
System.out.println("Consumer: detected count change " + sCount);
localValue = sCount;
}
if (sCount >= 5) {
break;
}
}
System.out.println("Consumer: terminating");
}
}
static class Producer extends Thread {
#Override
public void run() {
while (sCount < 5) {
int localValue = sCount;
localValue++;
System.out.println("Producer: incrementing count to " + localValue);
sCount = localValue;
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
return;
}
}
System.out.println("Producer: terminating");
}
}
}
In the above code, there are two threads - Producer and Consumer.
The producer thread iterates over the loop 5 times (with a sleep of 1000 milliSecond or 1 Sec) in between. In every iteration, the producer thread increases the value of sCount variable by 1. So, the producer changes the value of sCount from 0 to 5 in all iterations
The consumer thread is in a constant loop and print whenever the value of sCount changes until the value reaches 5 where it ends.
Both the loops are started at the same time. So both the producer and consumer should print the value of sCount 5 times.
OUTPUT
Consumer: detected count change 0
Producer: incrementing count to 1
Producer: incrementing count to 2
Producer: incrementing count to 3
Producer: incrementing count to 4
Producer: incrementing count to 5
Producer: terminating
ANALYSIS
In the above program, when the producer thread updates the value of sCount, it does update the value of the variable in the main memory(memory from where every thread is going to initially read the value of variable). But the consumer thread reads the value of sCount only the first time from this main memory and then caches the value of that variable inside its own memory. So, even if the value of original sCount in main memory has been updated by the producer thread, the consumer thread is reading from its cached value which is not updated. This is called VISIBILITY PROBLEM .
2.
CODE RUN WITH VOLATILE USE
In the above code, replace the line of code where sCount is declared by the following :
private volatile static int sCount = 0;
OUTPUT
Consumer: detected count change 0
Producer: incrementing count to 1
Consumer: detected count change 1
Producer: incrementing count to 2
Consumer: detected count change 2
Producer: incrementing count to 3
Consumer: detected count change 3
Producer: incrementing count to 4
Consumer: detected count change 4
Producer: incrementing count to 5
Consumer: detected count change 5
Consumer: terminating
Producer: terminating
ANALYSIS
When we declare a variable volatile, it means that all reads and all writes to this variable or from this variable will go directly into the main memory. The values of these variables will never be cached.
As the value of the sCount variable is never cached by any thread, the consumer always reads the original value of sCount from the main memory(where it is being updated by producer thread). So, In this case the output is correct where both the threads prints the different values of sCount 5 times.
In this way, the volatile keyword solves the VISIBILITY PROBLEM .
Yes, I use it quite a lot - it can be very useful for multi-threaded code. The article you pointed to is a good one. Though there are two important things to bear in mind:
You should only use volatile if you
completely understand what it does
and how it differs to synchronized.
In many situations volatile appears,
on the surface, to be a simpler more
performant alternative to
synchronized, when often a better
understanding of volatile would make
clear that synchronized is the only
option that would work.
volatile doesn't actually work in a
lot of older JVMs, although
synchronized does. I remember seeing a document that referenced the various levels of support in different JVMs but unfortunately I can't find it now. Definitely look into it if you're using Java pre 1.5 or if you don't have control over the JVMs that your program will be running on.
Absolutely, yes. (And not just in Java, but also in C#.) There are times when you need to get or set a value that is guaranteed to be an atomic operation on your given platform, an int or boolean, for example, but do not require the overhead of thread locking. The volatile keyword allows you to ensure that when you read the value that you get the current value and not a cached value that was just made obsolete by a write on another thread.
Every thread accessing a volatile field will read its current value before continuing, instead of (potentially) using a cached value.
Only member variable can be volatile or transient.
There are two different uses of volatile keyword.
Prevents JVM from reading values from register (assume as cache), and forces its value to be read from memory.
Reduces the risk of memory in-consistency errors.
Prevents JVM from reading values in register, and forces its
value to be read from memory.
A busy flag is used to prevent a thread from continuing while the device is busy and the flag is not protected by a lock:
while (busy) {
/* do something else */
}
The testing thread will continue when another thread turns off the busy flag:
busy = 0;
However, since busy is accessed frequently in the testing thread, the JVM may optimize the test by placing the value of busy in a register, then test the contents of the register without reading the value of busy in memory before every test. The testing thread would never see busy change and the other thread would only change the value of busy in memory, resulting in deadlock. Declaring the busy flag as volatile forces its value to be read before each test.
Reduces the risk of memory consistency errors.
Using volatile variables reduces the risk of memory consistency errors, because any write to a volatile variable establishes a
"happens-before" relationship with subsequent reads of that same variable. This means that changes to a volatile variable are always visible to other threads.
The technique of reading, writing without memory consistency errors is called atomic action.
An atomic action is one that effectively happens all at once. An atomic action cannot stop in the middle: it either happens completely, or it doesn't happen at all. No side effects of an atomic action are visible until the action is complete.
Below are actions you can specify that are atomic:
Reads and writes are atomic for reference variables and for most
primitive variables (all types except long and double).
Reads and writes are atomic for all variables declared volatile
(including long and double variables).
Cheers!
Volatile does following.
1> Read and write of volatile variables by different threads are always from memory, not from thread's own cache or cpu register. So each thread always deals with the latest value.
2> When 2 different threads work with same instance or static variables in heap, one may see other's actions as out of order. See jeremy manson's blog on this. But volatile helps here.
Following fully running code shows how a number of threads can execute in predefined order and print outputs without using synchronized keyword.
thread 0 prints 0
thread 1 prints 1
thread 2 prints 2
thread 3 prints 3
thread 0 prints 0
thread 1 prints 1
thread 2 prints 2
thread 3 prints 3
thread 0 prints 0
thread 1 prints 1
thread 2 prints 2
thread 3 prints 3
To achieve this we may use the following full fledged running code.
public class Solution {
static volatile int counter = 0;
static int print = 0;
public static void main(String[] args) {
// TODO Auto-generated method stub
Thread[] ths = new Thread[4];
for (int i = 0; i < ths.length; i++) {
ths[i] = new Thread(new MyRunnable(i, ths.length));
ths[i].start();
}
}
static class MyRunnable implements Runnable {
final int thID;
final int total;
public MyRunnable(int id, int total) {
thID = id;
this.total = total;
}
#Override
public void run() {
// TODO Auto-generated method stub
while (true) {
if (thID == counter) {
System.out.println("thread " + thID + " prints " + print);
print++;
if (print == total)
print = 0;
counter++;
if (counter == total)
counter = 0;
} else {
try {
Thread.sleep(30);
} catch (InterruptedException e) {
// log it
}
}
}
}
}
}
The following github link has a readme, which gives proper explanation.
https://github.com/sankar4git/volatile_thread_ordering
From oracle documentation page, the need for volatile variable arises to fix memory consistency issues:
Using volatile variables reduces the risk of memory consistency errors, because any write to a volatile variable establishes a happens-before relationship with subsequent reads of that same variable.
This means that changes to a volatile variable are always visible to other threads. It also means that when a thread reads a volatile variable, it sees not just the latest change to the volatile, but also the side effects of the code that led up the change.
As explained in Peter Parker answer, in absence of volatile modifier, each thread's stack may have their own copy of variable. By making the variable as volatile, memory consistency issues have been fixed.
Have a look at jenkov tutorial page for better understanding.
Have a look at related SE question for some more details on volatile & use cases to use volatile:
Difference between volatile and synchronized in Java
One practical use case:
You have many threads, which need to print current time in a particular format for example : java.text.SimpleDateFormat("HH-mm-ss"). Yon can have one class, which converts current time into SimpleDateFormat and updated the variable for every one second. All other threads can simply use this volatile variable to print current time in log files.
Volatile Variables are light-weight synchronization. When visibility of latest data among all threads is requirement and atomicity can be compromised , in such situations Volatile Variables must be preferred. Read on volatile variables always return most recent write done by any thread since they are neither cached in registers nor in caches where other processors can not see. Volatile is Lock-Free. I use volatile, when scenario meets criteria as mentioned above.
volatile variable is basically used for instant update (flush) in main shared cache line once it updated, so that changes reflected to all worker threads immediately.
If you have a multithread system and these multiple threads work on some shared data, those threads will load data in their own cache. If we do not lock the resource, any change made in one thread is NOT gonna be available in another thread.
With a locking mechanism, we add read/write access to the data source. If one thread modifies the data source, that data will be stored in the main memory instead of in its cache. When others threads need this data, they will read it from the main memory. This will increase the latency dramatically.
To reduce the latency, we declare variables as volatile. It means that whenever the value of the variable is modified in any of the processors, the other threads will be forced to read it. It still has some delays but better than reading from the main memory.
Below is a very simple code to demonstrate the requirement of volatile for variable which is used to control the Thread execution from other thread (this is one scenario where volatile is required).
// Code to prove importance of 'volatile' when state of one thread is being mutated from another thread.
// Try running this class with and without 'volatile' for 'state' property of Task class.
public class VolatileTest {
public static void main(String[] a) throws Exception {
Task task = new Task();
new Thread(task).start();
Thread.sleep(500);
long stoppedOn = System.nanoTime();
task.stop(); // -----> do this to stop the thread
System.out.println("Stopping on: " + stoppedOn);
}
}
class Task implements Runnable {
// Try running with and without 'volatile' here
private volatile boolean state = true;
private int i = 0;
public void stop() {
state = false;
}
#Override
public void run() {
while(state) {
i++;
}
System.out.println(i + "> Stopped on: " + System.nanoTime());
}
}
When volatile is not used: you'll never see 'Stopped on: xxx' message even after 'Stopping on: xxx', and the program continues to run.
Stopping on: 1895303906650500
When volatile used: you'll see the 'Stopped on: xxx' immediately.
Stopping on: 1895285647980000
324565439> Stopped on: 1895285648087300
Demo: https://repl.it/repls/SilverAgonizingObjectcode
The volatile key when used with a variable, will make sure that threads reading this variable will see the same value . Now if you have multiple threads reading and writing to a variable, making the variable volatile will not be enough and data will be corrupted . Image threads have read the same value but each one has done some chages (say incremented a counter) , when writing back to the memory, data integrity is violated . That is why it is necessary to make the varible synchronized (diffrent ways are possible)
If the changes are done by 1 thread and the others need just to read this value, the volatile will be suitable.

Doubt on avoiding liveness failure - discussed in Effective Java

I am refering to page 261 - 262 of Joshua Bloch Effective Java
// Properly synchronized cooperative thread termination
public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}
private static synchronized boolean stopRequested() {
return stopRequested;
}
public static void main(String[] args) throws InterruptedException {
Thread backgroundThread = new Thread(new Runnable() {
public void run() {
int i = 0;
while (!stopRequested())
i++;
}
});
backgroundThread.start();
TimeUnit.SECONDS.sleep(1);
requestStop();
}
}
Note that both the write method
(requestStop) and the read method
(stop- Requested) are synchronized. It
is not sufficient to synchronize only
the write method! In fact,
synchronization has no effect unless
both read and write operations are
synchronized.
Joshua's example is synchronized on this. However My doubt is that, must synchronized be acted on the same object? Say, if I change the code to
private static void requestStop() {
synchronized(other_static_final_object_monitor) {
stopRequested = true;
}
}
private static synchronized boolean stopRequested() {
return stopRequested;
}
will this still able to avoid liveness failure?
That's is, we know grabbing monitor for a same object during read/write can avoid liveness failure (According to Joshua Bloch's example). But how about grabbing monitor for different object during read/write?
I don't believe it's guaranteed, although I wouldn't be surprised if it actually was okay in all existing implementations. The Java Language Specification, section 17.4.4 states this:
An unlock action on monitor m synchronizes-with all subsequent lock actions on m (where subsequent is defined according to the synchronization order).
I believe that all the safety of reading/writing shared variables within locks stems from that bullet point in the spec - and that only specifies anything about a lock and an unlock action on a single monitor.
EDIT: Even if this did work for a single variable, you wouldn't want to use it for multiple variables. If you update multiple variables while holding a monitor and only read from them when holding a monitor, you can ensure that you always read a consistent set of data: nothing's going to write to variable Y before you've read that but after you've read variable X. If you use different monitors for reading and writing, that consistency goes away: the values could be changed at any time while you're reading them.
Possibly, but there are no guarantees and it could be highly platform dependant. In your case there is no real test for liveliness so if the value is a few milli-seconds late your application will appear to work correctly anyway. The application will stop eventually without any synchronized and you may not see then difference.
The problem with memory consistency errors is I have seen examples where something can be updated correctly in a test 1 billion times and then fail when there is a different program running on the system. This is why guaranteed behaviour is more interesting.
According to the The Java Language Specification,
"We say that a read r of a variable v is allowed to observe a write w to v if, in the happens-before partial order of the execution trace:
r is not ordered before w (i.e., it is not the case that hb(r, w), and
there is no intervening write w' to v (i.e., no write w' to v such that hb(w, w') and hb(w', r).
Informally, a read r is allowed to see the result of a write w if there is no happens-before ordering to prevent that read."
This means that unless there is some explicit synchronization action that causes multiple threads to interleave their actions in some predictable way (i.e. there's a good happens-before relationship defined on their actions), then a thread is allowed to see pretty much any value of a variable at any point where it was written to.
If you synchronize on multiple different objects, there is no happens-before relationship connecting the reader and the writer. This means that the reading thread can keep seeing whatever value it wants for the stopRequested variable, which could either be the first value forever, or the new value as soon as its updated, or something delightfully in-between the two.
Theoretically it's wrong. Per lang spec v3, the background thread may not see the update.
Practically it'll work. VM just can't be that smart to optimize to such a degree. (In older version of Java, which has threading spec worded differently, it is possible that your suggestion is correct even in theory.)
In any case, don't do it.
If you use a different monitor, there is no synchronization. No other code is requesting the monitor of this or other_static_final_object_monitor.
Using a static object to synchronize is only useful, if you want to synchronize across classes and within methods.
Also, NEVER use a String as a lock/monitor. Always use something like this:
static final Object LOCK = new Object();

Categories

Resources