Doubt on avoiding liveness failure - discussed in Effective Java - java

I am refering to page 261 - 262 of Joshua Bloch Effective Java
// Properly synchronized cooperative thread termination
public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}
private static synchronized boolean stopRequested() {
return stopRequested;
}
public static void main(String[] args) throws InterruptedException {
Thread backgroundThread = new Thread(new Runnable() {
public void run() {
int i = 0;
while (!stopRequested())
i++;
}
});
backgroundThread.start();
TimeUnit.SECONDS.sleep(1);
requestStop();
}
}
Note that both the write method
(requestStop) and the read method
(stop- Requested) are synchronized. It
is not sufficient to synchronize only
the write method! In fact,
synchronization has no effect unless
both read and write operations are
synchronized.
Joshua's example is synchronized on this. However My doubt is that, must synchronized be acted on the same object? Say, if I change the code to
private static void requestStop() {
synchronized(other_static_final_object_monitor) {
stopRequested = true;
}
}
private static synchronized boolean stopRequested() {
return stopRequested;
}
will this still able to avoid liveness failure?
That's is, we know grabbing monitor for a same object during read/write can avoid liveness failure (According to Joshua Bloch's example). But how about grabbing monitor for different object during read/write?

I don't believe it's guaranteed, although I wouldn't be surprised if it actually was okay in all existing implementations. The Java Language Specification, section 17.4.4 states this:
An unlock action on monitor m synchronizes-with all subsequent lock actions on m (where subsequent is defined according to the synchronization order).
I believe that all the safety of reading/writing shared variables within locks stems from that bullet point in the spec - and that only specifies anything about a lock and an unlock action on a single monitor.
EDIT: Even if this did work for a single variable, you wouldn't want to use it for multiple variables. If you update multiple variables while holding a monitor and only read from them when holding a monitor, you can ensure that you always read a consistent set of data: nothing's going to write to variable Y before you've read that but after you've read variable X. If you use different monitors for reading and writing, that consistency goes away: the values could be changed at any time while you're reading them.

Possibly, but there are no guarantees and it could be highly platform dependant. In your case there is no real test for liveliness so if the value is a few milli-seconds late your application will appear to work correctly anyway. The application will stop eventually without any synchronized and you may not see then difference.
The problem with memory consistency errors is I have seen examples where something can be updated correctly in a test 1 billion times and then fail when there is a different program running on the system. This is why guaranteed behaviour is more interesting.

According to the The Java Language Specification,
"We say that a read r of a variable v is allowed to observe a write w to v if, in the happens-before partial order of the execution trace:
r is not ordered before w (i.e., it is not the case that hb(r, w), and
there is no intervening write w' to v (i.e., no write w' to v such that hb(w, w') and hb(w', r).
Informally, a read r is allowed to see the result of a write w if there is no happens-before ordering to prevent that read."
This means that unless there is some explicit synchronization action that causes multiple threads to interleave their actions in some predictable way (i.e. there's a good happens-before relationship defined on their actions), then a thread is allowed to see pretty much any value of a variable at any point where it was written to.
If you synchronize on multiple different objects, there is no happens-before relationship connecting the reader and the writer. This means that the reading thread can keep seeing whatever value it wants for the stopRequested variable, which could either be the first value forever, or the new value as soon as its updated, or something delightfully in-between the two.

Theoretically it's wrong. Per lang spec v3, the background thread may not see the update.
Practically it'll work. VM just can't be that smart to optimize to such a degree. (In older version of Java, which has threading spec worded differently, it is possible that your suggestion is correct even in theory.)
In any case, don't do it.

If you use a different monitor, there is no synchronization. No other code is requesting the monitor of this or other_static_final_object_monitor.
Using a static object to synchronize is only useful, if you want to synchronize across classes and within methods.
Also, NEVER use a String as a lock/monitor. Always use something like this:
static final Object LOCK = new Object();

Related

java instance variable not visible to other threads

I've encountered this code in a book. It states NoVisibility could loop forever because the value of ready might never become
visible to the reader thread.
I'm confused by this statement. In order for the loop to run forever, ready must always be false, which is the default value. This means it must fail at executing ready = true; because the reader thread will always read the ready variable from memory. the assignment happens in CPU and it must have some problem in flushing the data back to Main Memory. I think I need some explanation on a situation how it can fail, or I may have missed some other part.
public class NoVisibility {
private static boolean ready;
private static int number;
private static class ReaderThread extends Thread {
public void run() {
while (!ready)
Thread.yield();
System.out.println(number);
}
}
public static void main(String[] args) {
new ReaderThread().start();
number = 42;
ready = true;
}
}
Your understanding is flawed. You are assuming that Java will behave intuitively here. In fact, it may not. And, indeed, the Java Language specification allows non-intuitive behavior if you don't follow the rules.
To be more specific, in your example it is NOT GUARANTEED that the second thread will see the results of the first thread's assignment to ready1. This is due to such things as:
The compiler caching the value of ready in a register in the first or second thread.
The compiler not including instructions to force the write to be flushed from one core's memory cache to main memory, or similar.
If you want a guarantee that the second thread will see the result of the write then either reads and writes of ready by the two threads must be (properly) synchronized, or the ready variable must be declared to be volatile.
So ...
This means it must fail at executing ready = true; because the reader thread will always read the ready variable from memory.
is incorrect. The "because" is not guaranteed by the Java language specification in this example.
Yes. It is nonintuitive. Relying on your intuition based on your understanding of single-threaded programs is not reliable. If you want to want to understand what is and is not guaranteed, please study the specification of the "Java Memory Model" in Section 17.4 of the JLS.
In short, the book is correct.
1 - It might see the results immediately, or after a short or long delay. Or it might never see them. And the behavior is liable to vary from one system to the next, and with versions of the Java platform. So your program that (by luck) works all of the time on one system may not always work on another system.
The value of ready may be updated but the other thread may never know about it. There you need volatile variables! A thread assumes that the variable is only used by this and only thread. So, it reads its value from the stack that it created.
private static volatile boolean ready;
What volatile does is that it says to your program to ready from the memory, not from the stack.
Actually what jvm does is it translates:
while(flag){...}
To:
if(flag){
while(true){
}
The stack is created when the thread is created. It collectes the values of the variables in order to use them later.
This is what I have understand, correct me if I am wrong!

how synchronized keyword works internally

I read the below program and answer in a blog.
int x = 0;
boolean bExit = false;
Thread 1 (not synchronized)
x = 1;
bExit = true;
Thread 2 (not synchronized)
if (bExit == true)
System.out.println("x=" + x);
is it possible for Thread 2 to print “x=0”?
Ans : Yes ( reason : Every thread has their own copy of variables. )
how do you fix it?
Ans: By using make both threads synchronized on a common mutex or make both variable volatile.
My doubt is : If we are making the 2 variable as volatile then the 2 threads will share the variables from the main memory. This make a sense, but in case of synchronization how it will be resolved as both the thread have their own copy of variables.
Please help me.
This is actually more complicated than it seems. There are several arcane things at work.
Caching
Saying "Every thread has their own copy of variables" is not exactly correct. Every thread may have their own copy of variables, and they may or may not flush these variables into the shared memory and/or read them from there, so the whole thing is non-deterministic. Moreover, the very term flushing is really implementation-dependent. There are strict terms such as memory consistency, happens-before order, and synchronization order.
Reordering
This one is even more arcane. This
x = 1;
bExit = true;
does not even guarantee that Thread 1 will first write 1 to x and then true to bExit. In fact, it does not even guarantee that any of these will happen at all. The compiler may optimize away some values if they are not used later. The compiler and CPU are also allowed to reorder instructions any way they want, provided that the outcome is indistinguishable from what would happen if everything was really in program order. That is, indistinguishable for the current thread! Nobody cares about other threads until...
Synchronization comes in
Synchronization does not only mean exclusive access to resources. It is also not just about preventing threads from interfering with each other. It's also about memory barriers. It can be roughly described as each synchronization block having invisible instructions at the entry and exit, the first one saying "read everything from the shared memory to be as up-to-date as possible" and the last one saying "now flush whatever you've been doing there to the shared memory". I say "roughly" because, again, the whole thing is an implementation detail. Memory barriers also restrict reordering: actions may still be reordered, but the results that appear in the shared memory after exiting the synchronized block must be identical to what would happen if everything was indeed in program order.
All that only works, of course, only if both blocks use the same locking object.
The whole thing is described in details in Chapter 17 of the JLS. In particular, what's important is the so-called "happens-before order". If you ever see in the documentation that "this happens-before that", it means that everything the first thread does before "this" will be visible to whoever does "that". This may even not require any locking. Concurrent collections are a good example: one thread puts there something, another one reads that, and that magically guarantees that the second thread will see everything the first thread did before putting that object into the collection, even if those actions had nothing to do with the collection itself!
Volatile variables
One last warning: you better give up on the idea that making variables volatile will solve things. In this case maybe making bExit volatile will suffice, but there are so many troubles that using volatiles can lead to that I'm not even willing to go into that. But one thing is for sure: using synchronized has much stronger effect than using volatile, and that goes for memory effects too. What's worse, volatile semantics changed in some Java version so there may exist some versions that still use the old semantics which was even more obscure and confusing, whereas synchronized always worked well provided you understand what it is and how to use it.
Pretty much the only reason to use volatile is performance because synchronized may cause lock contention and other troubles. Read Java Concurrency in Practice to figure all that out.
Q & A
1) You wrote "now flush whatever you've been doing there to the shared
memory" about synchronized blocks. But we will see only the variables
that we access in the synchronize block or all the changes that the
thread call synchronize made (even on the variables not accessed in the
synchronized block)?
Short answer: it will "flush" all variables that were updated during the synchronized block or before entering the synchronized block. And again, because flushing is an implementation detail, you don't even know whether it will actually flush something or do something entirely different (or doesn't do anything at all because the implementation and the specific situation already somehow guarantee that it will work).
Variables that wasn't accessed inside the synchronized block obviously won't change during the execution of the block. However, if you change some of those variables before entering the synchronized block, for example, then you have a happens-before relationship between those changes and whatever happens in the synchronized block (the first bullet in 17.4.5). If some other thread enters another synchronized block using the same lock object then it synchronizes-with the first thread exiting the synchronized block, which means that you have another happens-before relationship here. So in this case the second thread will see the variables that the first thread updated prior to entering the synchronized block.
If the second thread tries to read those variables without synchronizing on the same lock, then it is not guaranteed to see the updates. But then again, it isn't guaranteed to see the updates made inside the synchronized block as well. But this is because of the lack of the memory-read barrier in the second thread, not because the first one didn't "flush" its variables (memory-write barrier).
2) In this chapter you post (of JLS) it is written that: "A write to a
volatile field (§8.3.1.4) happens-before every subsequent read of that
field." Doesn't this mean that when the variable is volatile you will
see only changes of it (because it is written write happens-before
read, not happens-before every operation between them!). I mean
doesn't this mean that in the example, given in the description of the
problem, we can see bExit = true, but x = 0 in the second thread if
only bExit is volatile? I ask, because I find this question here: http://java67.blogspot.bg/2012/09/top-10-tricky-java-interview-questions-answers.html
and it is written that if bExit is volatile the program is OK. So the
registers will flush only bExits value only or bExits and x values?
By the same reasoning as in Q1, if you do bExit = true after x = 1, then there is an in-thread happens-before relationship because of the program order. Now since volatile writes happen-before volatile reads, it is guaranteed that the second thread will see whatever the first thread updated prior to writing true to bExit. Note that this behavior is only since Java 1.5 or so, so older or buggy implementations may or may not support this. I have seen bits in the standard Oracle implementation that use this feature (java.concurrent collections), so you can at least assume that it works there.
3) Why monitor matters when using synchronized blocks about memory
visibility? I mean when try to exit synchronized block aren't all
variables (which we accessed in this block or all variables in the
thread - this is related to the first question) flushed from registers
to main memory or broadcasted to all CPU caches? Why object of
synchronization matters? I just cannot imagine what are relations and
how they are made (between object of synchronization and memory).
I know that we should use the same monitor to see this changes, but I
don't understand how memory that should be visible is mapped to
objects. Sorry, for the long questions, but these are really
interesting questions for me and it is related to the question (I
would post questions exactly for this primer).
Ha, this one is really interesting. I don't know. Probably it flushes anyway, but Java specification is written with high abstraction in mind, so maybe it allows for some really weird hardware where partial flushes or other kinds of memory barriers are possible. Suppose you have a two-CPU machine with 2 cores on each CPU. Each CPU has some local cache for every core and also a common cache. A really smart VM may want to schedule two threads on one CPU and two threads on another one. Each pair of the threads uses its own monitor, and VM detects that variables modified by these two threads are not used in any other threads, so it only flushes them as far as the CPU-local cache.
See also this question about the same issue.
4) I thought that everything before writing a volatile will be up to
date when we read it (moreover when we use volatile a read that in
Java it is memory barrier), but the documentation don't say this.
It does:
17.4.5.
If x and y are actions of the same thread and x comes before y in program order, then hb(x, y).
If hb(x, y) and hb(y, z), then hb(x, z).
A write to a volatile field (§8.3.1.4) happens-before every subsequent
read of that field.
If x = 1 comes before bExit = true in program order, then we have happens-before between them. If some other thread reads bExit after that, then we have happens-before between write and read. And because of the transitivity, we also have happens-before between x = 1 and read of bExit by the second thread.
5) Also, if we have volatile Person p does we have some dependency
when we use p.age = 20 and print(p.age) or have we memory barrier in
this case(assume age is not volatile) ? - I think - No
You are correct. Since age is not volatile, then there is no memory barrier, and that's one of the trickiest things. Here is a fragment from CopyOnWriteArrayList, for example:
Object[] elements = getArray();
E oldValue = get(elements, index);
if (oldValue != element) {
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len);
newElements[index] = element;
setArray(newElements);
} else {
// Not quite a no-op; ensures volatile write semantics
setArray(elements);
Here, getArray and setArray are trivial setter and getter for the array field. But since the code changes elements of the array, it is necessary to write the reference to the array back to where it came from in order for the changes to the elements of the array to become visible. Note that it is done even if the element being replaced is the same element that was there in the first place! It is precisely because some fields of that element may have changed by the calling thread, and it's necessary to propagate these changes to future readers.
6) And is there any happens before 2 subsequent reads of volatile
field? I mean does the second read will see all changes from thread
which reads this field before it(of course we will have changes only
if volatile influence visibility of all changes before it - which I am
a little confused whether it is true or not)?
No, there is no relationship between volatile reads. Of course, if one thread performs a volatile write and then two other thread perform volatile reads, they are guaranteed to see everything at least up to date as it was before the volatile write, but there is no guarantee of whether one thread will see more up-to-date values than the other. Moreover, there is not even strict definition of one volatile read happening before another! It is wrong to think of everything happening on a single global timeline. It is more like parallel universes with independent timelines that sometimes sync their clocks by performing synchronization and exchanging data with memory barriers.
It depends on the implementation which decides if threads will keep a copy of the variables in their own memory. In case of class level variables threads have a shared access and in case of local variables threads will keep a copy of it. I will provide two examples which shows this fact , please have a look at it.
And in your example if I understood it correctly your code should look something like this--
package com.practice.multithreading;
public class LocalStaticVariableInThread {
static int x=0;
static boolean bExit = false;
public static void main(String[] args) {
Thread t1=new Thread(run1);
Thread t2=new Thread(run2);
t1.start();
t2.start();
}
static Runnable run1=()->{
x = 1;
bExit = true;
};
static Runnable run2=()->{
if (bExit == true)
System.out.println("x=" + x);
};
}
Output
x=1
I am getting this output always. It is because the threads share the variable and the when it is changed by one thread other thread can see it. But in real life scenarios we can never say which thread will start first, since here the threads are not doing anything we can see the expected result.
Now take this example--
Here if you make the i variable inside the for-loop` as static variable then threads won t keep a copy of it and you won t see desired outputs, i.e. the count value will not be 2000 every time even if u have synchronized the count increment.
package com.practice.multithreading;
public class RaceCondition2Fixed {
private int count;
int i;
/*making it synchronized forces the thread to acquire an intrinsic lock on the method, and another thread
cannot access it until this lock is released after the method is completed. */
public synchronized void increment() {
count++;
}
public static void main(String[] args) {
RaceCondition2Fixed rc= new RaceCondition2Fixed();
rc.doWork();
}
private void doWork() {
Thread t1 = new Thread(new Runnable() {
#Override
public void run() {
for ( i = 0; i < 1000; i++) {
increment();
}
}
});
Thread t2 = new Thread(new Runnable() {
#Override
public void run() {
for ( i = 0; i < 1000; i++) {
increment();
}
}
});
t1.start();
t2.start();
try {
t1.join();
t2.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
/*if we don t use join then count will be 0. Because when we call t1.start() and t2.start()
the threads will start updating count in the spearate threads, meanwhile the main thread will
print the value as 0. So. we need to wait for the threads to complete. */
System.out.println(Thread.currentThread().getName()+" Count is : "+count);
}
}

Java: How exactly do synchronized operations relate to volatility?

Sorry this is such a long question.
Ive been doing lots of research lately into multi-threading as I slowly implement it into a personal project. However, probably due to an abundance of slightly incorrect examples, the use of synchronized blocks and volatility in certain situations is still a bit unclear to me.
My core question is this: Are changes to references and primitives automatically volatile (that is, performed on the main memory and not a cache) when a thread is inside a synchronized block, or does the read also have to be synchronized for it to work properly?
If so What is the purpose of synchronizing a simple getter method? (see example 1 ) Also, are ALL changes sent to main memory as long as the thread has synchronized on anything? eg if it is sent off to do loads of work all over the place inside a very high level sync will every single change then made be to main memory, and nothing ever to cache, until its unlocked again?
If not Does the change have to be explicitly inside a synchronized block, or can java actually pick up on, for example, uses of the Lock object? (see example 3)
If either Does the synchronized object need to be related to the reference/primitive being changed in any way (eg the immediate object that contains it)? Can I write by syncing on one object and read with another if its otherwise safe? (see example 2)
(please note for the following examples that I know that synchronized methods and synchronized(this) are frowned upon and why, but discussion about that is beyond the scope of my question)
Example 1:
class Counter{
int count = 0;
public synchronized void increment(){
count++;
}
public int getCount(){
return count;
}
}
In this example, increment() needs to be synchronized since ++ is not an atomic operation. As such, two threads incremending at the same time may result in a overall increase of 1 to the count. The count primitive needs to be atomic (eg not long/double/reference), and it is so thats fine.
Does getCount() need to be synchronized here and why exactly? The explanation I have heard the most is that I will have no guarantee whether the count returned will be the pre- or post-increment. However, this seems like the explanation for something slightly different, thats found itself in the wrong place. I mean if I were to synchronize getCount(), then I still see no guarantee - its now down to not knowing the locking order, insead of not knowing whether the actual read happens to be before/after the actual write.
Example 2:
Is the following example threadsafe, if you assume that through trickery not shown here that none of these methods will never be called at the same time? Will count increment in an expected way if its done so using a random method each time, and then be read properly, or does the lock have to be the same object? (btw I fully realise how rediculous this example is but Im more interested in theory than practice)
class Counter{
private final Object lock1 = new Object();
private final Object lock2 = new Object();
private final Object lock3 = new Object();
int count = 0;
public void increment1(){
synchronized(lock1){
count++;
}
}
public void increment2(){
synchronized(lock2){
count++;
}
}
public int getCount(){
synchronized(lock3){
return count;
}
}
}
Example 3:
Is the happens-before relationship simply a java concept, or is it an actual thing built into the JVM? Even though I can guarantee a conceptual happens-before relationship for this next example, is java smart enough to pick it up if its a built in thing? I am assuming it is not, but is this example actually threadsafe? If its threadsafe, what about if getCount() did no locking?
class Counter{
private final Lock lock = new Lock();
int count = 0;
public void increment(){
lock.lock();
count++;
lock.unlock();
}
public int getCount(){
lock.lock();
int count = this.count;
lock.unlock();
return count;
}
}
Yes, the read has to be synchronized as well. This page says:
The results of a write by one thread are guaranteed to be visible to a
read by another thread only if the write operation happens-before the
read operation.
[...]
An unlock (synchronized block or method exit) of a monitor
happens-before every subsequent lock (synchronized block or method
entry) of that same monitor
The same page says:
Actions prior to "releasing" synchronizer methods such as Lock.unlock,
Semaphore.release, and CountDownLatch.countDown happen-before actions
subsequent to a successful "acquiring" method such as Lock.lock
So locks offer the same visibility guarantees as synchronized blocks.
Whether you use synchronized blocks or locks, the visibility is only guaranteed if the reader thread uses the same monitor or lock as the writer thread.
Your Example 1 is incorrect: the getter must be synchronized as well if you want to see the latest value of the count.
Your example 2 is incorrect because it uses different locks to guard the same count.
Your example 3 is OK. If the getter did not lock, you could see an older value of the count. The happens-before is something that is guaranteed by the JVM. The JVM has to respect the rules specified, by flushing caches to the main memory for example.
Try to view it in terms of two distinct, simple operations:
Locking (mutual exclusion),
Memory barrier (cache sync, instruction reordering barrier).
Entering a synchronized block entails both locking and memory barrier; leaving the synchronized block entails unlocking + memory barrier; reading/writing a volatile field entails memory barrier only. Thinking in these terms I think you can clarify for yourself all the question above.
As for Example 1, the reading thread will not have any kind of memory barrier. It's not just between seeing the value before/after read, it's about never observing any change to the var after a thread is started.
Example 2. is the most interesting issue you raise. You are indeed given no guarantees by the JLS in this case. In practice you won't be given any ordering guarantees (it's as if the locking aspect wasn't there at all), but you'll still have the benefit of the memory barriers so you will observe changes, unlike the first example. Basically, this is exactly the same as removing synchronized and tagging the int as volatile (apart from the runtime costs of acquiring locks).
Regarding Example 3, by "just a Java thing" I feel you have generics with erasure in mind, something that only the static code checking is aware of. This is not like that -- both locks and memory barriers are pure runtime artifacts. In fact, the compiler can't reason about them at all.

Questions on Concurrency from Java Guide

So I've been reading on concurrency and have some questions on the way (guide I followed - though I'm not sure if its the best source):
Processes vs. Threads: Is the difference basically that a process is the program as a whole while a thread can be a (small) part of a program?
I am not exactly sure why there is a interrupted() method and a InterruptedException. Why should the interrupted() method even be used? It just seems to me that Java just adds an extra layer of indirection.
For synchronization (and specifically about the one in that link), how does adding the synchronize keyword even fix the problem? I mean, if Thread A gives back its incremented c and Thread B gives back the decremented c and store it to some other variable, I am not exactly sure how the problem is solved. I mean this may be answering my own question, but is it supposed to be assumed that after one of the threads return an answer, terminate? And if that is the case, why would adding synchronize make a difference?
I read (from some random PDF) that if you have two Threads start() subsequently, you cannot guarantee that the first thread will occur before the second thread. How would you guarantee it, though?
In synchronization statements, I am not completely sure whats the point of adding synchronized within the method. What is wrong with leaving it out? Is it because one expects both to mutate separately, but to be obtained together? Why not just have the two non-synchronized?
Is volatile just a keyword for variables and is synonymous with synchronized?
In the deadlock problem, how does synchronize even help the situation? What makes this situation different from starting two threads that change a variable?
Moreover, where is the "wait"/lock for the other person to bowBack? I would have thought that bow() was blocked, not bowBack().
I'll stop here because I think if I went any further without these questions answered, I will not be able to understand the later lessons.
Answers:
Yes, a process is an operating system process that has an address space, a thread is a unit of execution, and there can be multiple units of execution in a process.
The interrupt() method and InterruptedException are generally used to wake up threads that are waiting to either have them do something or terminate.
Synchronizing is a form of mutual exclusion or locking, something very standard and required in computer programming. Google these terms and read up on that and you will have your answer.
True, this cannot be guaranteed, you would have to have some mechanism, involving synchronization that the threads used to make sure they ran in the desired order. This would be specific to the code in the threads.
See answer to #3
Volatile is a way to make sure that a particular variable can be properly shared between different threads. It is necessary on multi-processor machines (which almost everyone has these days) to make sure the value of the variable is consistent between the processors. It is effectively a way to synchronize a single value.
Read about deadlocking in more general terms to understand this. Once you first understand mutual exclusion and locking you will be able to understand how deadlocks can happen.
I have not read the materials that you read, so I don't understand this one. Sorry.
I find that the examples used to explain synchronization and volatility are contrived and difficult to understand the purpose of. Here are my preferred examples:
Synchronized:
private Value value;
public void setValue(Value v) {
value = v;
}
public void doSomething() {
if(value != null) {
doFirstThing();
int val = value.getInt(); // Will throw NullPointerException if another
// thread calls setValue(null);
doSecondThing(val);
}
}
The above code is perfectly correct if run in a single-threaded environment. However with even 2 threads there is the possibility that value will be changed in between the check and when it is used. This is because the method doSomething() is not atomic.
To address this, use synchronization:
private Value value;
private Object lock = new Object();
public void setValue(Value v) {
synchronized(lock) {
value = v;
}
}
public void doSomething() {
synchronized(lock) { // Prevents setValue being called by another thread.
if(value != null) {
doFirstThing();
int val = value.getInt(); // Cannot throw NullPointerException.
doSecondThing(val);
}
}
}
Volatile:
private boolean running = true;
// Called by Thread 1.
public void run() {
while(running) {
doSomething();
}
}
// Called by Thread 2.
public void stop() {
running = false;
}
To explain this requires knowledge of the Java Memory Model. It is worth reading about in depth, but the short version for this example is that Threads have their own copies of variables which are only sync'd to main memory on a synchronized block and when a volatile variable is reached. The Java compiler (specifically the JIT) is allowed to optimise the code into this:
public void run() {
while(true) { // Will never end
doSomething();
}
}
To prevent this optimisation you can set a variable to be volatile, which forces the thread to access main memory every time it reads the variable. Note that this is unnecessary if you are using synchronized statements as both keywords cause a sync to main memory.
I haven't addressed your questions directly as Francis did so. I hope these examples can give you an idea of the concepts in a better way than the examples you saw in the Oracle tutorial.

Is this way of detecting heartbeats threadsafe and consistent?

This question has been discussed in two blog posts (http://dow.ngra.de/2008/10/27/when-systemcurrenttimemillis-is-too-slow/, http://dow.ngra.de/2008/10/28/what-do-we-really-know-about-non-blocking-concurrency-in-java/), but I haven't heard a definitive answer yet. If we have one thread that does this:
public class HeartBeatThread extends Thread {
public static int counter = 0;
public static volatile int cacheFlush = 0;
public HeartBeatThread() {
setDaemon(true);
}
static {
new HeartBeatThread().start();
}
public void run() {
while (true) {
try {
Thread.sleep(500);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
counter++;
cacheFlush++;
}
}
}
And many clients that run the following:
if (counter == HeartBeatThread.counter) return;
counter = HeartBeatThread.cacheFlush;
is it threadsafe or not?
Within the java memory model? No, you are not ok.
I've seen a number of attempts to head towards a very 'soft flush' approach like this, but without an explicit fence, you're definitely playing with fire.
The 'happens before' semantics in
http://java.sun.com/docs/books/jls/third_edition/html/memory.html#17.7
start to referring to purely inter-thread actions as 'actions' at the end of 17.4.2. This drives a lot of confusion since prior to that point they distinguish between inter- and intra- thread actions. Consequently, the intra-thread action of manipulating counter isn't explicitly synchronized across the volatile action by the happens-before relationship. You have two threads of reasoning to follow about synchronization, one governs local consistency and is subject to all the nice tricks of alias analysis, etc to shuffle operations The other is about global consistency and is only defined for inter-thread operations.
One for the intra-thread logic that says within the thread the reads and writes are consistently reordered and one for the inter-thread logic that says things like volatile reads/writes and that synchronization starts/ends are appropriately fenced.
The problem is the visibility of the non-volatile write is undefined as it is an intra-thread operation and therefore not covered by the specification. The processor its running on should be able to see it as it you executed those statements serially, but its sequentialization for inter-thread purposes is potentially undefined.
Now, the reality of whether or not this can affect you is another matter entirely.
While running java on x86 and x86-64 platforms? Technically you're in murky territory, but practically the very strong guarantees x86 places on reads and writes including the total order on the read/write across the access to cacheflush and the local ordering on the two writes and the two reads should enable this code to execute correctly provided it makes it through the compiler unmolested. That assumes the compiler doesn't step in and try to use the freedom it is permitted under the standard to reorder operations on you due to the provable lack of aliasing between the two intra-thread operations.
If you move to a memory with weaker release semantics like an ia64? Then you're back on your own.
A compiler could in perfectly good faith break this program in java on any platform, however. That it functions right now is an artifact of current implementations of the standard, not of the standard.
As an aside, in the CLR, the runtime model is stronger, and this sort of trick is legal because the individual writes from each thread have ordered visibility, so be careful trying to translate any examples from there.
Well, I don't think it is.
The first if-statement:
if (counter == HeartBeatThread.counter)
return;
Does not access any volatile field and is not synchronized. So you might read stale data forever and never get to the point of accessing the volatile field.
Quoting from one of the comments in the second blog entry: "anything that was visible to thread A when it writes to volatile field f becomes visible to thread B when it reads f."
But in your case B (the client) never reads f (=cacheFlush). So changes to HeartBeatThread.counter do not have to become visible to the client.

Categories

Resources