im trying do develop a Zelda like game. So far i am using bitmaps and everything runs smooth. At this point the camera of the hero is fixed, meaning, that he can be anywhere on the screen.
The problem with that is scaling. Supporting every device and keeping every in perfect sized rects doesnt seem to be that easy :D
To prevent that i need a moving camera. Than i can scale everything to be equally sized on every device. The hero would than be in the middle of the screen for the first step.
The working solution for that is
xCam += hero.moveX;
yCam += hero.moveY;
canvas.translate(xCam,yCam);
drawRoom();
canvas.restore();
drawHero();
I do it like this, because i dont wand to rearrange every tile in the game. I guess that could be too much processing on some devices. As i said, this works just fine. the hero is in the middle of the screen, and the whole room is moving.
But the problem is collision detection.
Here a quick example:
wall.rect.intersects(hero.rect);
Assuming the wall was originally on (0/0) and the hero is on (screenWitdh/2 / screenHeight/2) they should collide on some point.
The problem is, that the x and y of the wall.rect never change. They are (0/0) at any point of the canvas translation, so they can never collide.
I know, that I can work with canvas.getClipBounds() and then use the coordinates of the returned rect to change every tile, but as I mentioned above, I am trying to avoid that plus, the returned rect only works with int values, and not float.
Do you guys know any solution for that problem, or has anyone ever fixed something like this?
Looking forward to your answers!
You can separate your model logic and view logic. Suppose your development dimension for the window is WxH. In this case if your sprite in the model is 100x100 and placed at 0,0, it will cover area from 0,0 to 100, 100. Let's add next sprite (same 100x100 dimension) at 105,0 (basically slightly to the right of the first one), which covers area from 105,0 to 205,100. It is obvious that in the model they are not colliding. Now, as for view if your target device happens to be WxH you just draw the model as it is. If your device has a screen with w = 2*W, h = 2*H, so twice as big in each direction. You just multiply the x and y by w / W and h / H respectively. Therefore we get 2x for x and y, which on screen becomes 1st object - from 0,0 to 200, 200, 2nd object - from 210,0 to 410, 200. As can be seen they are still not colliding. To sum up, separate your game logic from your drawing (rendering) logic.
I think you should have variables holding the player's position on the "map". So you can use this to determine the collision with the non changing wall. It should look something like (depensing on the rest of your code):
canvas.translate(-hero.rect.centerX(), -.rect.centerY());
drawRoom();
canvas.restore();
drawHero();
Generally you should do the calculations in map coordinates, not on screen. For rendering just use the (negative) player position for translation.
Related
Recently I switched from using an array of integers as my screen in Java to using a library. The library I'm using is LibGDX, and the conversion for me is quite different. Most things I have already started to get the hang of, and I'm still writing a bit of the code myself.
At this point, I'm curious if I can limit the rendering range of Sprites and any other factor of drawing, such as if a sprite stuck half-way out of a box, it wouldn't render the part that was sticking out (as so:)
Is there a way to render in a specific range, and if it is partially out of the range, it doesn't render what is out of the range, or will I have to do that myself?
You can do simple "clipping" to a rectangle with the LibGDX ScissorStack.
Because OpenGL is stateful and many of the LibGDX drawing APIs cache, be sure to "flush" or "end" your batches within the range of the scissors. See libgdx ScissorStack not working as expected and libgdx Cutting an image
If i did not missunderstand you, you are looking for camera.
The camera lets you define a Viewport (size) and you only see things inside this Viewport.
You can also move it arroung to see other parts of the world.
For example:
OrthographicCamera cam = new OrthographicCamera(80, 45);
This defines a camera, which showes you 80 units in x and 45 units in y. It P(0/0) by default is in the middle of the screen, so this camera shows objects from -40 to +40 in x and -22.5 to + 22.5 in y.
You can move it, so that the P(0/0) is in the left lower corner:
camera.position.x = -40;
camera.position.y = -22.5;
camera.update();
This should move the camera to the left by 40 units and down by 22.5 units, so that the P(0/0) is the left lower corner. Don't forget to call update() as this recalculates the projection and view matrix.
Finally, to draw with this camera, you need to set the SptieBatchs projectionMatrix to the one of the camera:
spriteBatch.setProjectionMatrix(camera.combined);
Now you can use this SpriteBatch to draw.
You should also consider to se ViewFrustum-Culling, which means, that you don't draw things out of the camera, because they will never appear on screen, but the draw call costs some performance.
I've recently been looking into LibGDX and seem to have hit a wall, seen in the picture, the blue dot represents the users finger, the map generation it self is where i seem to get stuck, does LibGDX provide a method of dynamically drawing curved objects? I could simply generate them myself as images but then the image is hugely stretched to the point of the gap for the finger can fit 3! But also would need to be 1000's of PX tall to accommodate the whole level design.
Is it such that i should be drawing hundreds of polygons close together to make a curved line?
On a side not i'll need a way of determining when the object has from bottom to top so i can generate another 'chunk' of map.
You don't need hundreds of polygons to make a curve like you drew. You could get away with 40 quads on the left, and 40 on the right, and it would look pretty smooth. Raise that to 100 on each side and it will look almost perfectly smooth, and no modern device is going to have any trouble running that at 60fps.
You could use the Mesh class to generate a procedural mesh for each side. You can make the mesh stay in one spot, locked to the camera, and modify it's vertices and UVs to make it look like you are panning down an infinitely long corridor. This will take a fair amount of math up front but should be smooth sailing once you have that down.
Basically, your level design could be based on some kind of equation that takes Y offset as an input. Or it could be a long array of offsets, and you could use a spline equation or linear equation to interpolate between them. The output would be the UV and X coordinates which can be used to update each of the vertices of your two meshes.
You can use the vertex shader to efficiently update the UV coordinates, using a constant offset uniform parameter that you update each frame. That way you don't have to move UV data to the GPU every frame.
For the vertex positions, use your Mesh's underlying float[] and call setVertices() each frame to update it. Info here.
Actually, it might look better if you leave the UV's and the X positions alone, and just scroll the Y positions up. Keep a couple quads of padding off top and bottom of screen, and just move the top quad to the bottom after it scrolls off screen.
How about creating a set of curved forms that can be put together variably. Like the gap in the middle will at the top and bottom of each image be in the middle (with the same curvature at end and beginning points)...
And inbetween the start and end points you can go crazy on the shape.
And finally, you can randomly put those images together and get an endless world.
If you don't want to stop in the middle each time, you could also have like three entry and exit points (left, middle, right)... and after an image that ends left, you of course need to add an image that starts left, but might end somewhere else...
I am programming a 2D, grid-based Pacman game. All the tiles are 8x8 in size. In-game, the map tiles are treated as 16x16, and the characters (Pacman and the ghosts) are treated as 32x32. In actuality, they are all pulled from a spritesheet of 8x8 tiles. I store positions as the center point of each character. Since the character tiles are bigger than the map tiles, the map is built in a way that requires the characters being able to "overlap" onto blocked tiles.
To deal with this set of problems, I created an invisible Rectangle and attached it to the character's position. Where the position is an (x,y) point, the Rectangle is a box surrounding that point. This rectangle is essentially 16x16 in-game, and is in the center of the character, which allows for the overlap necessary.
This works fine if you're working with 8px as the global movement speed, but I'd like to treat 8px as "100% speed" and have complete control over character speed with a double that is in the range [0,1). The positions are stored as double points, so on that level, this is fine. I read the positions back as integers, though, since I'm working with pixels.
So the question I ask is essentially "if this moves X amount of pixels to direction Y now, will my collision box be touching a blocked tile? But if you're moving 5px at a time, this eventually causes a very obvious issue. Say you're at x = 0, moving right. The tiles are 16x16 in-game, as stated before, and you have two of these open before the third, which is blocked. So you move, x = 5, x = 10, x = 15, x = 20, we just got to the 2nd tile, x = 25, x = 30, x = 35 now we're in the 3rd tile... but wait. We can't go there, because X = 35 collides. And unfortunately, we needed to turn and start moving down, but we can't, because now our Y-axis isn't aligned properly with the grid. Our X position needs to be 32, but can't.
My question for everyone here is, what are my options? What are some ideas or insights you have? I have a feeling I'm making it more difficult than I need to.
sounds like you have...
Why not give your "pac-man" sprite a velocity vector? The vector will describe not only the speed at which "pac-man" is traveling but in what direction, meaning you can see ahead.
"pac-man" should be calculating and ultimately making a decision based upon the following conversation..."hey, moving at this speed and in this direction..in so many seconds I'm going to hit a wall, when does that happen?". The seconds don't even have to be seconds...they could be "squares".
You would need a function which takes in the initial movement vector (direction and speed) which returns a coordinate of an X,Y point where "pac-man" must stop, where he cannot go further and must change direction (the center of a tile adjacent to a wall). Each time "pac-man" changes direction, run this calculation again...you do not need to keep checking if the next square is passable. If his direction hasn't changed and his speed is constant..you only need calculate once and let the coordinate system do the rest.
With this approach, square size and velocity is irrelevant...until "pac-man" hits or within his next movement exceeds the stopping point, continue to move along the vector.
I am developing an augmented reality application for android and trying to use openGl to place cubes at locations in the world. My current method can be seen in the code below:
for(Marker ma: ARData.getMarkerlist().values()) {
Log.d("populating", "");
gl.glPushMatrix();
Location maLoc = new Location("loc");
maLoc.setLatitude(ma.lat);
maLoc.setLongitude(ma.lng);
maLoc.setAltitude(ma.alt);
float distance = currentLoc.distanceTo(maLoc);
float bearing = currentLoc.bearingTo(maLoc);
Log.d("distance", String.valueOf(distance));
Log.d("bearing", String.valueOf(bearing));
gl.glRotatef(bearing,0,0,1);
gl.glTranslatef(0,0,-distance);
ma.cube.draw(gl);
gl.glPopMatrix();
}
gl.glRotatef(y, 0, 1, 0);
gl.glRotatef(x, 1, 0, 0);`
Where y is yaw and x is the pitch. currently I am getting a single cube on the screen at a 45 degree angle someway in the distance. It looks like I am getting sensible bearing and distance values. Could it have something to do with the phones orientation? If you need more code let me know.
EDIT: I updated bearing rotation to gl.glRotatef(bearing,0,1,0); I am now getting my cubes mapped horizontally along the screen at different depths. Still no movement using heading and pitch but #Mirkules has identified some reasons why that might be.
EDIT 2: I am now attempting to place the cubes by rotating the matrix by the difference in angle between heading and bearing to a marker. However, all I get is a sort of jittering where the cubes appear to be rendered in a new position and then jump back to there old position. Code as above except for the following:
float angleDiff = bearing - y;
gl.glRotatef((angleDiff),0,1,0);
gl.glTranslatef(0,0,-distance);
bearing and y are both normalised to a 0 - 360 scale. Also, I moveed my "camera rotation" to above the code where I set the markers.
EDIT 3: I have heading working now using, float angleDiff = (bearing + y)/2;. However, I cant seem to get pitch working. I have attempted to use gl.glRotatef(-x,1,0,0); but that doesn't seem to work.
It's tricky to tell exactly what you're trying to do here, but there are a few things that stick out as potential problems.
Firstly, your final two rotations don't seem to actually apply to anything. If these are supposed to represent a movement of the world or camera (which mostly amounts to much the same thing) then they need to happen before drawing anything.
Then your rotations themselves perhaps won't entirely do what you intend.
Your cube is rotated around the Z axis. The usual convention in GL is for the camera to look down the Z axis, with the Y axis being considered 'up'. You can naturally interpret axes however you like, but a rotation around 'Z' would not typically be 'bearing', but 'roll'. 'Bearing' to me would be analogous to 'yaw'.
As you translate along the Z axis, I assume you are trying to position the object by rotating and translating, but obviously if the rotation is around the same axis as you translate along, it won't actually alter the position of the cube - it will always just be directly in front of the camera, spinning on its axis.
I'm not really clear on why you're trying to position the cube like that when it seems like you start off with a more specific location. You could probably directly construct a more appropriate matrix.
Finally, your camera/world rotation is two concatenated rotations around Y and X. You call these pitch and roll, but typically using euler angles for a camera rotation does not result in an intuitive result where terms like pitch and roll make complete sense. It is common to maintain an orientation and apply individual rotations to that in order to update it, rather than attempting to update several dependent rotations.
So yes, I would expect that this code, in the absence of other matrix operations, would likely result in drawing one or more cubes straight ahead which are simply rotated by some angle around the view direction.
For an assignment, I need to make a "doll" in Java where you can move it around and rotate the arms and legs to make funny/cool poses. In addition, the legs should be able to stretch (but not get wider, this is important).
The way I wanted to handle the leg stretching was invert the rotation done to the leg to get it back in the neutral straight position, scale it in the y direction, and then re-perform the rotation. However, it appears the scaling is always going to be in the y direction, so once it's rotated, the leg will become wider. It will only look as it should if it's brought back straight and standing.
The code I have right now looks something like this:
leg.transform(AffineTransform.getRotateInstance(legAngle,pivot.getX(),pivot.getY()).createInverse());
leg.transform(AffineTransform.getScaleInstance(1,scaleFactor);
leg.transform(AffineTransform.getRotateInstance(legAngle,pivot.getX(),pivot.getY()));
How can I make sure the scaling stays relative to the image after rotation?
There are a couple of ways that come to mind. The first (simplest, but slowest) method is to render the stretched leg image to an image, then rotate and render that image. Another way is to use Math.cos and Math.sin to apply the proper scaling in each dimension for the desired effect in the image.