How to add new line in table in Pdfbox - java

I have created a pdf where I have a table but if the length of the string exceeds then I want to use new line.
public static void drawtable1(PDPage page, PDPageContentStream contentStream, float y, float margin, String[][] content) throws IOException {
int rows = content.length;
int cols = content[0].length;
float rowHeight = 20f;
float tableWidth = page.getMediaBox().getWidth() - margin - margin;
float tableHeight = rowHeight * rows;
float colWidth = tableWidth / (float)cols;
float cellMargin = 5f;
PDFont font1 = PDType1Font.HELVETICA_BOLD;
PDFont font2 = PDType1Font.HELVETICA;
//draw the rows
float nexty = y;
for (int i = 0; i <= rows; i++) {
contentStream.moveTo(margin, nexty);
contentStream.lineTo(margin + tableWidth, nexty);
contentStream.setStrokingColor(220,220,220);
contentStream.stroke();
nexty -= rowHeight;
}
//draw the columns
float nextx = margin;
for (int i = 0; i <= cols ; i++) {
contentStream.moveTo(nextx, y);
contentStream.lineTo(nextx, y - tableHeight);
contentStream.setStrokingColor(220,220,220);
contentStream.stroke();
// contentStream.stroke();
if(content[0].length == 2){
if(i==0){
nextx += colWidth/2;
}if(i == 1){
nextx += colWidth + colWidth/2;
}
}else{
nextx += colWidth;
}
}
//now add the text
contentStream.setFont(PDType1Font.HELVETICA, 10);
float textx = margin + cellMargin;
float texty = y - 15;
float col = tableWidth / (float)cols;
for (int i = 0; i < content.length; i++) {
for (int j = 0; j < content[i].length; j++) {
String text = content[i][j];
contentStream.beginText();
// contentStream.setLeading(12.5f);
contentStream.newLineAtOffset(textx, texty);
if (j == 0 || j == 2){
if(font1.getStringWidth(content[i][j]) > col){
System.out.println(content[i][j]);
}
contentStream.setFont(font1, 10);
contentStream.showText(text);
contentStream.setFont(font2, 10);
}else{
contentStream.showText(text);
}
contentStream.endText();
if(content[0].length == 2){
if(j==0){
textx += colWidth/2;
}
if(j == 1){
textx += colWidth + colWidth/2;
}
}else{
textx += colWidth;
}
}
texty -= rowHeight;
textx = margin + cellMargin;
}
}
I tried comparing the length of the string and column width but it is not working. I have no idea how to display half string in the next line.

See actually only this thing worked for me,
String text = content[i][j];
List<String> strings = new ArrayList<String>();
int index = 0;
while (index < text.length()) {
strings.add(text.substring(index, Math.min(index + 25,text.length())));
index += 25;
}
for (String line: strings){
contentStream.showText(line);
contentStream.newLineAtOffset(0, -leading);
}
But here I have no idea how to increase height of the row which have many characters.

Related

Spaces between rectangles

I am going to develop an app where I draw rectangles with this method:
private int columnWidth = 1;
private int rowHeight = 1;
private int nbColumns = 1;
private int nbRows = 1;
public static final int DEFAULT_SIZE = 150;
private void initWorld() {
WindowManager wm = (WindowManager) getContext().getSystemService(Context.WINDOW_SERVICE);
Display display = wm.getDefaultDisplay();
Point point = new Point();
display.getSize(point);
// we calculate the number of columns and rows for our World
nbColumns = point.x / DEFAULT_SIZE;
nbRows = point.y / DEFAULT_SIZE;
// we calculate the column width and row height
columnWidth = point.x / nbColumns;
rowHeight = point.y / nbRows;
world = new World(nbColumns, nbRows);
}
// Method to draw each cell of the world on the canvas
private void drawCells(Canvas canvas) {
for (int i = 0; i < nbColumns; i++) {
for (int j = 0; j < nbRows; j++) {
Cell cell = world.get(i, j);
r.set((cell.x * columnWidth) - 1, (cell.y * rowHeight) - 1,
(cell.x * columnWidth + columnWidth) - 1,
(cell.y * rowHeight + rowHeight) - 1);
// we change the color according the alive status of the cell
p.setColor(cell.alive ? DEFAULT_ALIVE_COLOR : DEFAULT_DEAD_COLOR);
canvas.drawRect(r, p);
}
}
}
Can anyone tell me, how could I get some space or lines between the rectangles?

Efficient way to pixelate an image by manipulating pixels

I made two methods for a class called Picture, the name is self explanatory. The getAverageColor() method gets the average color of all the pixels in a certain area of the image specified by the parameters passed in. In the pixelate() method, it uses getAverageColor() to pixelate the image. The whole thing works, however it takes upwards of 2 minutes to pixelate a single image. It takes even longer if the pixelSize parameter is made smaller and the image is larger. So I was wondering if there is a better algorithm for doing this by manipulating the pixels.
/**
* NOTE: The smaller the pixelSize the longer the pixelation process takes
*/
public void pixelate(int pixelSize)
{
Pixel[][] pixels = this.getPixels2D();
int blockSize = pixelSize;
Color averageColor = null;
for(int row = 0; row < pixels.length; row += blockSize)
{
for (int col = 0; col < pixels[row].length; col += blockSize)
{
if (!((col + blockSize > pixels[0].length) || (row + blockSize > pixels.length)))
{
averageColor = getAverageColor(row, col, row+blockSize, col+blockSize);
}
for (int row_2 = row; (row_2 < row + blockSize) && (row_2 < pixels.length); row_2++)
{
for (int col_2 = col; (col_2 < col + blockSize) && (col_2 < pixels[0].length); col_2++)
{
pixels[row_2][col_2].setColor(averageColor);
}
}
}
}
}
public Color getAverageColor(int startRow, int startCol, int endRow, int endCol)
{
Pixel[][] pixels = this.getPixels2D();
Color averageColor = null;
int totalPixels = (endRow - startRow)*(endCol - startCol);
int totalRed = 0;
int averageRed = 0;
int totalGreen = 0;
int averageGreen = 0;
int totalBlue = 0;
int averageBlue = 0;
for (int row = startRow; row < endRow; row++)
{
for (int col = startCol; col < endCol; col++)
{
totalRed += pixels[row][col].getRed();
totalGreen += pixels[row][col].getGreen();
totalBlue += pixels[row][col].getBlue();
}
}
averageRed = totalRed / totalPixels;
averageGreen = totalGreen / totalPixels;
averageBlue = totalBlue / totalPixels;
averageColor = new Color(averageRed, averageGreen, averageBlue);
return averageColor;
}

Java can't show image [CANVAS]

I am currently making a game in Java and I am trying to draw an image on my screen, but nothing show up ( only a black screen but no errors ) :(
Here is the code to import the image:
public static Bitmap loadBitmap(String fileName) {
try {
BufferedImage img = ImageIO.read(Art.class.getResource(fileName));
int w = img.getWidth();
int h = img.getHeight();
Bitmap result = new Bitmap(w, h);
img.getRGB(0, 0, w, h, result.pixels, 0, w);
for (int I = 0; I < result.pixels.length; i++) {
int in = result.pixels[i];
int col = (in & 0xf) >> 2;
if (in == 0xffff00ff) col = -1;
result.pixels[i] = col;
}
return result;
} catch (Exception e) {
throw new RuntimeException(e);
}
}
And the Bitmap class:
public void draw(Bitmap bitmap, int xOffs, int yOffs)
{
for(int y = 0; y < bitmap.height; y++)
{
int yPix = y + yOffs;
if(yPix < 0 || yPix >= height) continue;
for(int x = 0; x < bitmap.width; x++)
{
int xPix = x + xOffs;
if(xPix < 0 || xPix >= width) continue;
int alpha = bitmap.pixels[x + y * bitmap.width];
if(alpha > 0)
pixels[xPix + yPix * width] = bitmap.pixels[x + y * bitmap.width];
}
}
}
And to draw all of this :
public void render(Game game)
{
for(int y = 0; y < height; y++)
{
float yd = ((y + 0.5f) - height / 2.0f) / height;
if(yd < 0) yd *= -1;
float z = 10 / yd;
for(int x = 0; x < width; x++)
{
float xd = (x - width / 2.0f) / height;
xd *= z;
int xx = (int) (xd) & 7;
int yy = (int) (z + game.time * 0.1f) & 7;
pixels[x + y * width] = Art.floors.pixels[xx + yy * 64];
}
}
}
I have no errors! I don't really understand.. is this a bug caused by alpha or something? Ho and my image.png is 64x64 made in paint.net

How add custom view to layout?

I have a custom view
public GraphView(Context context, float[] values, String title, String[]horlabels, String[] verlabels, boolean type, int color) {
super(context);
if (values == null)
this.values = new float[0];
else
this.values = values;
if (title == null)
title = "";
else
this.title = title;
if (horlabels == null)
this.horlabels = new String[0];
else
this.horlabels = horlabels;
if (verlabels == null)
this.verlabels = new String[0];
else
this.verlabels = verlabels;
this.type = type;
paint = new Paint();
this.color = color;
}
#Override
protected void onDraw(Canvas canvas) {
float border = 20;
float horstart = border * 2;
float height = getHeight();
float width = getWidth() - 1;
float max = getMax();
float min = getMin();
float diff = max - min;
float graphheight = height - (2 * border);
float graphwidth = width - (2 * border);
paint.setTextAlign(Align.LEFT);
int vers = verlabels.length - 1;
for (int i = 0; i < verlabels.length; i++) {
paint.setColor(Color.DKGRAY);
float y = ((graphheight / vers) * i) + border;
canvas.drawLine(horstart, y, width, y, paint);
paint.setColor(Color.BLACK);
canvas.drawText(verlabels[i], 0, y, paint);
}
int hors = horlabels.length - 1;
for (int i = 0; i < horlabels.length; i++) {
paint.setColor(Color.DKGRAY);
float x = ((graphwidth / hors) * i) + horstart;
canvas.drawLine(x, height - border, x, border, paint);
paint.setTextAlign(Align.CENTER);
if (i==horlabels.length-1)
paint.setTextAlign(Align.RIGHT);
if (i==0)
paint.setTextAlign(Align.LEFT);
paint.setColor(Color.BLACK);
canvas.drawText(horlabels[i], x, height - 4, paint);
}
paint.setTextAlign(Align.CENTER);
canvas.drawText(title, (graphwidth / 2) + horstart, border - 4, paint);
if (max != min) {
paint.setColor(color);
if (type == BAR) {
float datalength = values.length;
float colwidth = (width - (2 * border)) / datalength;
for (int i = 0; i < values.length; i++) {
float val = values[i] - min;
float rat = val / diff;
float h = graphheight * rat;
canvas.drawRect((i * colwidth) + horstart, (border - h) + graphheight, ((i * colwidth) + horstart) + (colwidth - 1), height - (border - 1), paint);
}
} else {
float datalength = values.length;
float colwidth = (width - (2 * border)) / datalength;
float halfcol = colwidth / 2;
float lasth = 0;
for (int i = 0; i < values.length; i++) {
float val = values[i] - min;
float rat = val / diff;
float h = graphheight * rat;
if (i > 0)
canvas.drawLine(((i - 1) * colwidth) + (horstart + 1) + halfcol, (border - lasth) + graphheight, (i * colwidth) + (horstart + 1) + halfcol, (border - h) + graphheight, paint);
lasth = h;
}
}
}
}
private float getMax() {
float largest = Integer.MIN_VALUE;
for (int i = 0; i < values.length; i++)
if (values[i] > largest)
largest = values[i];
return largest;
}
private float getMin() {
float smallest = Integer.MAX_VALUE;
for (int i = 0; i < values.length; i++)
if (values[i] < smallest)
smallest = values[i];
return smallest;
}
and when i call
setContentView(graphView);
it's work good, but when i call
diagramRelativeLayout = (RelativeLayout)switcher.getChildAt(i).findViewById(R.id.diagramRelativeLayout);
diagramRelativeLayout.addView(graphView);
it's don't work.
Error:07-12 11:07:38.933: ERROR/AndroidRuntime(30488): java.lang.RuntimeException: Unable to resume activity {com.meters.src/com.meters.src.Main_Activity}: java.lang.IllegalStateException: The specified child already has a parent. You must call removeView() on the child's parent first.
RelativeLayout contained in ViewFlipper. How i can add my view to this layout?
You don't have to add your view using code, you can do it in xml like any android view :
in your case just add the following code in xml where you wan't your view
<com.your.package.GraphView android:id="#+id/myGraphView" />
Then in your activity you can retrieve it using
GraphView myGV = (GraphView) findViewById(R.id.myGraphView);
A view can only have a single parent. The view that you are adding (I am guessing re-using ie. graphView) is already part of another view hierarchy. If you really want to reuse it (I would suggest you probably dont) then you have to detach it from its parent in its existing view hierarchy.
Add the line of code like as follows,
diagramRelativeLayout = (RelativeLayout)switcher.getChildAt(i).findViewById(R.id.diagramRelativeLayout);
diagramRelativeLayout.removeAllViewsInLayout(); // <-- Add this and try
diagramRelativeLayout.addView(graphView);
I did it, I just made xml with one layout, and added a reference to it in diagramRelativeLayout:
my xml:
<RelativeLayout
android:id = "#+id/diagramRelativeLayout"
android:background="#layout/button_style"
android:layout_width="fill_parent"
android:layout_height = "fill_parent"
android:layout_marginTop = "10sp"
android:layout_marginLeft = "5sp"
android:layout_marginRight = "5sp"
android:layout_marginBottom = "10sp"
android:gravity="center">
<include android:id="#+id/graph" layout="#layout/graph"/>
</RelativeLayout>
My java:
graphLayout = (RelativeLayout)switcher.getChildAt(i).findViewById(R.id.graph);
graphLayout.addView(graphView);

Canny Edge Detection using Processing

I am looking for a copy paste implementation of Canny Edge Detection in the processing language. I have zero idea about Image processing and very little clue about Processing, though I understand java pretty well.
Can some processing expert tell me if there is a way of implementing this http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java in processing?
I think if you treat processing in lights of Java then some of the problems could be solved very easily. What it means is that you can use Java classes as such.
For the demo I am using the implementation which you have shared.
>>Original Image
>>Changed Image
>>Code
import java.awt.image.BufferedImage;
import java.util.Arrays;
PImage orig;
PImage changed;
void setup() {
orig = loadImage("c:/temp/image.png");
size(250, 166);
CannyEdgeDetector detector = new CannyEdgeDetector();
detector.setLowThreshold(0.5f);
detector.setHighThreshold(1f);
detector.setSourceImage((java.awt.image.BufferedImage)orig.getImage());
detector.process();
BufferedImage edges = detector.getEdgesImage();
changed = new PImage(edges);
noLoop();
}
void draw()
{
//image(orig, 0,0, width, height);
image(changed, 0,0, width, height);
}
// The code below is taken from "http://www.tomgibara.com/computer-vision/CannyEdgeDetector.java"
// I have stripped the comments for conciseness
public class CannyEdgeDetector {
// statics
private final static float GAUSSIAN_CUT_OFF = 0.005f;
private final static float MAGNITUDE_SCALE = 100F;
private final static float MAGNITUDE_LIMIT = 1000F;
private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);
// fields
private int height;
private int width;
private int picsize;
private int[] data;
private int[] magnitude;
private BufferedImage sourceImage;
private BufferedImage edgesImage;
private float gaussianKernelRadius;
private float lowThreshold;
private float highThreshold;
private int gaussianKernelWidth;
private boolean contrastNormalized;
private float[] xConv;
private float[] yConv;
private float[] xGradient;
private float[] yGradient;
// constructors
/**
* Constructs a new detector with default parameters.
*/
public CannyEdgeDetector() {
lowThreshold = 2.5f;
highThreshold = 7.5f;
gaussianKernelRadius = 2f;
gaussianKernelWidth = 16;
contrastNormalized = false;
}
public BufferedImage getSourceImage() {
return sourceImage;
}
public void setSourceImage(BufferedImage image) {
sourceImage = image;
}
public BufferedImage getEdgesImage() {
return edgesImage;
}
public void setEdgesImage(BufferedImage edgesImage) {
this.edgesImage = edgesImage;
}
public float getLowThreshold() {
return lowThreshold;
}
public void setLowThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
lowThreshold = threshold;
}
public float getHighThreshold() {
return highThreshold;
}
public void setHighThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
highThreshold = threshold;
}
public int getGaussianKernelWidth() {
return gaussianKernelWidth;
}
public void setGaussianKernelWidth(int gaussianKernelWidth) {
if (gaussianKernelWidth < 2) throw new IllegalArgumentException();
this.gaussianKernelWidth = gaussianKernelWidth;
}
public float getGaussianKernelRadius() {
return gaussianKernelRadius;
}
public void setGaussianKernelRadius(float gaussianKernelRadius) {
if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException();
this.gaussianKernelRadius = gaussianKernelRadius;
}
public boolean isContrastNormalized() {
return contrastNormalized;
}
public void setContrastNormalized(boolean contrastNormalized) {
this.contrastNormalized = contrastNormalized;
}
// methods
public void process() {
width = sourceImage.getWidth();
height = sourceImage.getHeight();
picsize = width * height;
initArrays();
readLuminance();
if (contrastNormalized) normalizeContrast();
computeGradients(gaussianKernelRadius, gaussianKernelWidth);
int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
int high = Math.round( highThreshold * MAGNITUDE_SCALE);
performHysteresis(low, high);
thresholdEdges();
writeEdges(data);
}
// private utility methods
private void initArrays() {
if (data == null || picsize != data.length) {
data = new int[picsize];
magnitude = new int[picsize];
xConv = new float[picsize];
yConv = new float[picsize];
xGradient = new float[picsize];
yGradient = new float[picsize];
}
}
private void computeGradients(float kernelRadius, int kernelWidth) {
//generate the gaussian convolution masks
float kernel[] = new float[kernelWidth];
float diffKernel[] = new float[kernelWidth];
int kwidth;
for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
float g1 = gaussian(kwidth, kernelRadius);
if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
float g2 = gaussian(kwidth - 0.5f, kernelRadius);
float g3 = gaussian(kwidth + 0.5f, kernelRadius);
kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
diffKernel[kwidth] = g3 - g2;
}
int initX = kwidth - 1;
int maxX = width - (kwidth - 1);
int initY = width * (kwidth - 1);
int maxY = width * (height - (kwidth - 1));
//perform convolution in x and y directions
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
float sumX = data[index] * kernel[0];
float sumY = sumX;
int xOffset = 1;
int yOffset = width;
for(; xOffset < kwidth ;) {
sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
yOffset += width;
xOffset++;
}
yConv[index] = sumY;
xConv[index] = sumX;
}
}
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0f;
int index = x + y;
for (int i = 1; i < kwidth; i++)
sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
xGradient[index] = sum;
}
}
for (int x = kwidth; x < width - kwidth; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0.0f;
int index = x + y;
int yOffset = width;
for (int i = 1; i < kwidth; i++) {
sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
yOffset += width;
}
yGradient[index] = sum;
}
}
initX = kwidth;
maxX = width - kwidth;
initY = width * kwidth;
maxY = width * (height - kwidth);
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
int indexN = index - width;
int indexS = index + width;
int indexW = index - 1;
int indexE = index + 1;
int indexNW = indexN - 1;
int indexNE = indexN + 1;
int indexSW = indexS - 1;
int indexSE = indexS + 1;
float xGrad = xGradient[index];
float yGrad = yGradient[index];
float gradMag = hypot(xGrad, yGrad);
//perform non-maximal supression
float nMag = hypot(xGradient[indexN], yGradient[indexN]);
float sMag = hypot(xGradient[indexS], yGradient[indexS]);
float wMag = hypot(xGradient[indexW], yGradient[indexW]);
float eMag = hypot(xGradient[indexE], yGradient[indexE]);
float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
float tmp;
if (xGrad * yGrad <= (float) 0 /*(1)*/
? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
&& tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
: Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
&& tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
) {
magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
//NOTE: The orientation of the edge is not employed by this
//implementation. It is a simple matter to compute it at
//this point as: Math.atan2(yGrad, xGrad);
} else {
magnitude[index] = 0;
}
}
}
}
private float hypot(float x, float y) {
return (float) Math.hypot(x, y);
}
private float gaussian(float x, float sigma) {
return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
}
private void performHysteresis(int low, int high) {
Arrays.fill(data, 0);
int offset = 0;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
if (data[offset] == 0 && magnitude[offset] >= high) {
follow(x, y, offset, low);
}
offset++;
}
}
}
private void follow(int x1, int y1, int i1, int threshold) {
int x0 = x1 == 0 ? x1 : x1 - 1;
int x2 = x1 == width - 1 ? x1 : x1 + 1;
int y0 = y1 == 0 ? y1 : y1 - 1;
int y2 = y1 == height -1 ? y1 : y1 + 1;
data[i1] = magnitude[i1];
for (int x = x0; x <= x2; x++) {
for (int y = y0; y <= y2; y++) {
int i2 = x + y * width;
if ((y != y1 || x != x1)
&& data[i2] == 0
&& magnitude[i2] >= threshold) {
follow(x, y, i2, threshold);
return;
}
}
}
}
private void thresholdEdges() {
for (int i = 0; i < picsize; i++) {
data[i] = data[i] > 0 ? -1 : 0xff000000;
}
}
private int luminance(float r, float g, float b) {
return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
}
private void readLuminance() {
int type = sourceImage.getType();
if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
int p = pixels[i];
int r = (p & 0xff0000) >> 16;
int g = (p & 0xff00) >> 8;
int b = p & 0xff;
data[i] = luminance(r, g, b);
}
} else if (type == BufferedImage.TYPE_BYTE_GRAY) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xff);
}
} else if (type == BufferedImage.TYPE_USHORT_GRAY) {
short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xffff) / 256;
}
} else if (type == BufferedImage.TYPE_3BYTE_BGR) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
int offset = 0;
for (int i = 0; i < picsize; i++) {
int b = pixels[offset++] & 0xff;
int g = pixels[offset++] & 0xff;
int r = pixels[offset++] & 0xff;
data[i] = luminance(r, g, b);
}
} else {
throw new IllegalArgumentException("Unsupported image type: " + type);
}
}
private void normalizeContrast() {
int[] histogram = new int[256];
for (int i = 0; i < data.length; i++) {
histogram[data[i]]++;
}
int[] remap = new int[256];
int sum = 0;
int j = 0;
for (int i = 0; i < histogram.length; i++) {
sum += histogram[i];
int target = sum*255/picsize;
for (int k = j+1; k <=target; k++) {
remap[k] = i;
}
j = target;
}
for (int i = 0; i < data.length; i++) {
data[i] = remap[data[i]];
}
}
private void writeEdges(int pixels[]) {
if (edgesImage == null) {
edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
}
edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);
}
}
I've been spending some time with the Gibara Canny implementation and I'm inclined to agree with Settembrini's comment above; further to this one needs to change the implementation of the Gaussian Kernel generation.
The Gibara Canny uses:
(g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius)
The averaging across a pixel (+-0.5 pixels) in (g1 + g2 + g3) / 3f is great, but the correct variance calculation on the bottom half of the equation for single dimensions is:
(g1 + g2 + g3) / 3f / (Math.sqrt(2f * (float) Math.PI) * kernelRadius)
The standard deviation kernelRadius is sigma in the following equation:
Single direction gaussian
I'm assuming that Gibara is attempting to implement the two dimensional gaussian from the following equation: Two dimensional gaussian where the convolution is a direct product of each gaussian. Whilst this is probably possible and more concise, the following code will correctly convolve in two directions with the above variance calculation:
// First Convolution
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
int index = x + y;
float sumX = data[index] * kernel[0];
int xOffset = 1;
int yOffset = sourceImage.width;
for(; xOffset < k ;) {;
sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
yOffset += sourceImage.width;
xOffset++;
}
xConv[index] = sumX;
}
}
// Second Convolution
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
int index = x + y;
float sumY = xConv[index] * kernel[0];
int xOffset = 1;
int yOffset = sourceImage.width;
for(; xOffset < k ;) {;
sumY += xConv[xOffset] * (xConv[index - xOffset] + xConv[index + xOffset]);
yOffset += sourceImage.width;
xOffset++;
}
yConv[index] = sumY;
}
}
NB the yConv[] is now the bidirectional convolution, so the following gradient Sobel calculations are as follows:
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
float sum = 0f;
int index = x + y;
for (int i = 1; i < k; i++)
sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
xGradient[index] = sum;
}
}
for (int x = k; x < sourceImage.width - k; x++) {
for (int y = initY; y < maxY; y += sourceImage.width) {
float sum = 0.0f;
int index = x + y;
int yOffset = sourceImage.width;
for (int i = 1; i < k; i++) {
sum += diffKernel[i] * (yConv[index - yOffset] - yConv[index + yOffset]);
yOffset += sourceImage.width;
}
yGradient[index] = sum;
}
}
Gibara's very neat implementation of non-maximum suppression requires that these gradients be calculated seperately, however if you want to output an image with these gradients one can sum them using either Euclidean or Manhattan distances, the Euclidean would look like so:
// Calculate the Euclidean distance between x & y gradients prior to suppression
int [] gradients = new int [picsize];
for (int i = 0; i < xGradient.length; i++) {
gradients[i] = Math.sqrt(Math.sq(xGradient[i]) + Math.sq(yGradient[i]));
}
Hope this helps, is all in order and apologies for my code! Critique most welcome
In addition to Favonius' answer, you might want to try Greg's OpenCV Processing library which you can now easily install via Sketch > Import Library... > Add Library... and select OpenCV for Processing
After you install the library, you can have a play with the FindEdges example:
import gab.opencv.*;
OpenCV opencv;
PImage src, canny, scharr, sobel;
void setup() {
src = loadImage("test.jpg");
size(src.width, src.height);
opencv = new OpenCV(this, src);
opencv.findCannyEdges(20,75);
canny = opencv.getSnapshot();
opencv.loadImage(src);
opencv.findScharrEdges(OpenCV.HORIZONTAL);
scharr = opencv.getSnapshot();
opencv.loadImage(src);
opencv.findSobelEdges(1,0);
sobel = opencv.getSnapshot();
}
void draw() {
pushMatrix();
scale(0.5);
image(src, 0, 0);
image(canny, src.width, 0);
image(scharr, 0, src.height);
image(sobel, src.width, src.height);
popMatrix();
text("Source", 10, 25);
text("Canny", src.width/2 + 10, 25);
text("Scharr", 10, src.height/2 + 25);
text("Sobel", src.width/2 + 10, src.height/2 + 25);
}
Just as I side note. I studied the Gibara Canny implementation some time ago and found some flaws. E.g. he separates the Gauss-Filtering in 1d filters in x and y direction (which is ok and efficient as such), but then he doesn't apply two passes of those filters (one after another) but just applies SobelX to the x-first-pass-Gauss and SobelY to the y-first-pass-Gauss, which of course leads to low quality gradients. Thus be careful just by copy-past such code.

Categories

Resources