I am currently coding a java applet to visual a modified version of breadth first search.
My problem is I am trying to convert a number coordinated to a pixel on a 2d array to a color.
Code : map is a 2d array of values that should be increasing by 1 as they go away from the starting location except for walls which are set to 0 and will appear as black.
String colorhex1 = Integer.toHexString(map[i][j]+100);
g.setColor(Color.decode("#"+colorhex1));
if (map[i][j]==1)
g.setColor(Color.white);
else if (map[i][j]==0)
g.setColor(Color.Black);
g.fillRect(i*10,j*10+40,10,10);
How the main search works is it increases the number of each cell next to it one unless it has been touched so in my visualization it should show a increase in vibrancy as we get farther away from the starting location. However with this design I have currently it will one start off as "black" which is the color of my walls. To which then two it will slowly head towards purple then randomly change color then again and again having it look quite weird.
Question : Is there a way for me to code a more gradual way of increasing this color by using the number value of the map array?
Related
So I'm trying to fill an ArrayList<Rectangle> with the bounds of each letter of an image file.
For example, given this .png image:
I want to fill an ArrayList<Rectangle> with 14 Rectangle(one rectangle for each letter)
We can assume that the image will contain only 2 colors, one for the background and one for the letters, in this case, pixels will be either white or red.
At first, I thought I could search for white columns in between the letters, then if I found a completely white column I could get for example the width by getting the lowest red pixel value and the highest red pixel value and width = maxX-minX and so on:
x = minX;
y = minY;
w = maxX-minX;
h = maxY-minY;
letterBounds.add(new Rectangle(x,y,w,h));
The problem is that there's no space in between the letters, not even 1 pixel:
My next idea was for each red pixel I find, look for a neighbor that hasn't been seen yet, then if I can't find a neighbor I have all the pixels to get the bounds of that letter. But with this approach, I will get 2 rectangles for letters like "i" I could then write some algorithm to merge those rectangles but I don't know how that will turn out with other multi part letters, and before I try that I wanted to ask here for more ideas
So do you guys have any ideas?
You can use the OpenCV cv2.findContours() function. Instead of using the cv2.drawcontours() function for drawing the contours, which will highlight the outline of the letter, you could instead draw a rectangle on the image by using the cv2.rectangle and by extracting the coordinates from cv2.findContours() function.
I think two step algorithm is enough to solve the problem if not using library like OpenCV.
histogram
seam calculation
1. histogram
C.....C..C...
.C.C.C...C...
. C.C....CCCC
1111111003111
dot(.) means background color(white)
C means any colors except background color(in your case, red)
accumulating the number of vertical pixels with non-background color generates histogram.
*
*
******..****
0123456789AB
It is clear the boundary exists at 6 and 7
2. seam calculation
Some cases like We, cannot be solved by histogram because there is no empty vertical lines at all.
Seam Carving algorithm gives us some hints
https://en.wikipedia.org/wiki/Seam_carving
More detail implementation is found at
princeton.edu - seamCarving.html
Energy calcuation for a pixel
The red numbers are not color values for pixels, but energy values calculated from adjacent pixels.
The vertical pathes with minimal energy give us the boundary of each characters.
3. On more...
Statistical data is required to determine whether to apply the seam carving or not.
Max and min width of characters
Even if histogram give us vertical boundaries, it is not clear there are two or more characters in a group.
I am trying to program a visualisation for the Mandelbrot set in java, and there are a couple of things that I am struggling with to program. I realize that questions around this topic have been asked a lot and there is a lot of documentation online but a lot of things seem very complicated and I am relatively new to programming.
The first issue
The first issue I have is to do with zooming in on the fractal. My goal is to make an "infinite" zoom on the fractal (of course not infinite, as far as a regular computer allows it regarding calculation time and precision). The approach I am currently going for is the following on a timer:
Draw the set using some number of iterations on the range (-2, 2) on the real axis and (2, 2) on the imaginary axis.
Change those ranges to zoom in.
Redraw that section of the set with the number of iterations.
It's the second step that I struggle with. This is my current code:
for (int Py = beginY; Py < endY; Py++) {
for (int Px = beginX; Px < endX; Px++) {
double x0 = map(Px, 0, height,-2, 2);
double y0 = map(Py, 0, width, -2, 2);
Px and Py are the coordinates of the pixels in the image. The image is 1000x1000. The map funtion takes a number, in this case Px or Py, with a range of (0, 1000) and devides it evenly over the range (-2, 2), so it returns the corresponding value in that range.
I think that in order to zoom in, I'll have to change the -2 and 2 values by some way in the timer, but whatever I try, it doesn't seem to work. The zoom always ends up slowing down after a while or it will end up zooming in on a part of the set that is in the set, so not the borders. I tried multiplying them by some scale factor every timer tick, but that doesn't really produce the result I was looking for.
Now I have two questions about this issue.
Is this the right approach to visualizing the set and zooming in(draw, change range, redraw)?
If it is, how do I zoom in properly on an area that is interesting and that will keep zooming in properly even after running for a minute?
The second issue
Of course when visualizing something, you need to get some actual visual thing. In this case I want to color the set in a way similar to what you see here: (https://upload.wikimedia.org/wikipedia/commons/f/fc/Mandel_zoom_08_satellite_antenna.jpg).
My guess is that you have use the amount of iterations a pixel went through to before breaking out of the loop to give it some color value. However, I only really know how to do this with a black and white color scheme. I tried making a color array that holds the same amount of different gray colors as the amount of max iterations, starting from black and ending in white. Here is my code:
Color[] colors = new Color[maxIterations + 2];
for (int i = 0; i < colors.length; i++) {
colors[i] = new Color((int)map(i, 0, maxIterations + 2, 0, 255),
(int)map(i, 0, maxIterations + 2, 0, 255),
(int)map(i, 0, maxIterations + 2, 0, 255));
}
I then just filled in the amount of iterations in the array and assigned that color to the pixel. I have two questions about this:
Will this also work as we zoom into the fractal in the previously described manner?
How can I add my own color scheme in this, like in the picture? I've read some things about "linear interpolation" but I don't really understand what it is and in what way it can help me.
It sounds like you've made a good start.
Re the first issue: I believe there are ways to automatically choose an "interesting" portion of the set to zoom in on, but I don't know what they are. And I'm quite sure it involves more than just applying some linear function to your current bounding rectangle, which is what it sounds like you're doing.
So you could try to find out what these methods are (might get mathematically complicated), but if you're new to programming, you'll probably find it easier to let the user choose where to zoom. This is also more fun in the beginning, since you can run your program repeatedly and explore a new part of the set each time.
A simple way to do this is to let the user draw a rectangle over the image, and use your map function to convert the pixel coordinates of the drawn rectangle to the new real and imaginary coordinates of your zoom area.
You could also combine both approaches: once you've found somewhere you find interesting by manually selecting the zoom area, you can set this as your "final destination", and have the code gradually and smoothly zoom into it, to create a nice movie.
It will always get gradually slower though, as you start using ever more precise coordinates, until you reach the limits of precision with double and it becomes a pixellated mess. From there, if you want to zoom further, you'll have to look into arbitrary-precision arithmetic with BigDecimal - and it will continue to get slower and slower.
Re the second issue: starting off by calculating a value of numIterations / maxIterations (i.e. between 0 and 1) for each pixel is the right idea (I think this is basically what you're doing).
From there, there are all sorts of ways to convert this value to a colour, it's time to get creative!
A simple one is to have an array of a few very different colours. E.g. if you had white (0.0), red (0.25), green (0.5), blue (0.75), black (1.0), then if your calculated number was exactly one of the ones listed, you'd use the corresponding colour. If it's somewhere between, you blend the colours, e.g. for 0.3 you'd take:
((0.5-0.3)*red + (0.3-0.25)*green) / (0.5 - 0.25)
= 0.8*red + 0.2*green
Taking a weighted average of two colours is something I'll leave as an exercise ;)
(hint: take separate averages of the r, g, and b values. Playing with the alpha values could maybe also work).
Another one, if you want to get more mathsy, is to take an equation for a spiral and use it to calculate a point on a plane in HSB colour space (you can keep the brightness at some fixed value, say 1). In fact, any curve in 2D or 3D which you know how to write as an equation of one real variable can be used this way to give you smoothly changing colours, if you interpret the coordinates as points in some colour space.
Hope that's enough to keep you going! Let me know if it's not clear.
I am attempting to create a very simple top-down game in Java, but I am unsure how to approach a problem dealing with program performance.
I used a 2D array to store certain values that represent certain things, such as the surrounding environment and the player's position. I then used the paint() method to draw a grid to the screen based on a section of the 2D array. The player is always in the center of the grid. I have it coded such that the player never truly "moves", but rather the environment around him "moves" (if you press a key to move up, a new section of the array is drawn that is the same as the past section except it has a new row at the top and the bottom-most row is now the past section's second-to-bottom row, all the while the player stays in the center, if that makes sense).
Thus, we have a situation where the whole screen needs to be redrawn each time the player moves. As you might have gathered, this is bad for the program's performance, since it has to iterate through a 2D array and draw it the screen each time I call repaint(). If the user hits the key to move upwards twice in succession, the program will lag and the screen will flicker as it redraws the whole section of the array.
How can I improve the performance issue, given that I want to keep the player in the center of the screen at all times and have the environment move around him? Should I instead investigate Jscrollpanes? Is iterating through arrays in the paint() method not the way to go?
Thank you so much for both your time and also helping an inexperienced programmer.
I've set up a grid of 52x52 black tiles, and now I want to create a method which will remove 52 black tiles and replace them with grey squares.
I do not want to apply these replacements purely at random, and I also do not want grey tiles to replace other grey tiles. My goal is to have an initial point which is randomly chosen to be replaced (which I have already done), then the next replaced tile is to be randomly selected from one of the 8 adjacent black tile surrounding that initial grey tile. When that is done I want one of the black tiles adjacent to the newly replaced tile to be selected and replaced, and so forth until I get 52 replacements.
I've being mulling it over for a little while now, and I can't figure out a way to pull it off. I can't lay every possibility out in a switch statement, as doing so would obviously be an impossibly lengthy feat. I considered trying to create an ArrayList to memorize the coordinates that have already been input which can be checked against whenever my program has selected a place to put a new tile, but I wasn't able to figure out how to store and compare the coordinates. Beyond that no solid solutions come to mind, just slight permutations of what I have already mentioned.
Do you have any advice on what course of action I could take here?
I've recently been looking into LibGDX and seem to have hit a wall, seen in the picture, the blue dot represents the users finger, the map generation it self is where i seem to get stuck, does LibGDX provide a method of dynamically drawing curved objects? I could simply generate them myself as images but then the image is hugely stretched to the point of the gap for the finger can fit 3! But also would need to be 1000's of PX tall to accommodate the whole level design.
Is it such that i should be drawing hundreds of polygons close together to make a curved line?
On a side not i'll need a way of determining when the object has from bottom to top so i can generate another 'chunk' of map.
You don't need hundreds of polygons to make a curve like you drew. You could get away with 40 quads on the left, and 40 on the right, and it would look pretty smooth. Raise that to 100 on each side and it will look almost perfectly smooth, and no modern device is going to have any trouble running that at 60fps.
You could use the Mesh class to generate a procedural mesh for each side. You can make the mesh stay in one spot, locked to the camera, and modify it's vertices and UVs to make it look like you are panning down an infinitely long corridor. This will take a fair amount of math up front but should be smooth sailing once you have that down.
Basically, your level design could be based on some kind of equation that takes Y offset as an input. Or it could be a long array of offsets, and you could use a spline equation or linear equation to interpolate between them. The output would be the UV and X coordinates which can be used to update each of the vertices of your two meshes.
You can use the vertex shader to efficiently update the UV coordinates, using a constant offset uniform parameter that you update each frame. That way you don't have to move UV data to the GPU every frame.
For the vertex positions, use your Mesh's underlying float[] and call setVertices() each frame to update it. Info here.
Actually, it might look better if you leave the UV's and the X positions alone, and just scroll the Y positions up. Keep a couple quads of padding off top and bottom of screen, and just move the top quad to the bottom after it scrolls off screen.
How about creating a set of curved forms that can be put together variably. Like the gap in the middle will at the top and bottom of each image be in the middle (with the same curvature at end and beginning points)...
And inbetween the start and end points you can go crazy on the shape.
And finally, you can randomly put those images together and get an endless world.
If you don't want to stop in the middle each time, you could also have like three entry and exit points (left, middle, right)... and after an image that ends left, you of course need to add an image that starts left, but might end somewhere else...