Related
I have a Feature file and the background step is pretty simple. However, the setup done in that step needs to be working with two different types of values and it is applicable to all the scenarios within that FF. Is there a way we can make this background dynamic?
Example: I want to do as below:
Background:
Given hospital configuration is done using '<some config>'
|some config|
| abc |
|xyz |
There are three ways I can think of to run a feature file twice, one with one configuration and the other with another configuration.
Duplicate the feature file and change the background so that it specifically loads the particular configuration.
Before dismissing this solution look at some of the positives.
its very simple
its easy to document (just put comments in the preamble about the duplication)
it supports customization specific to a particular profile.
The last point is worth expanding on. If the behavior is identical with each profile then what is the point of the profile. Basically you are saying it has no effect at all. If it has not effect at all then why are you testing it. If the behavior varies between profiles then you really want to explore and express those differences.
Run the feature twice by using an external setting.
This basically comes down to having Cucumber pull the setting from the environment and running cucumber twice, once for the first setting, and then again for the second setting.
So something like
SETTING=abc cucumber ...
SETTING=xyz cucumber ...
Use an around hook to run the internals of a scenario twice.
Here you are putting a tag on the feature and making a custom hook to run the scenarios twice. This is equivalent to the second solution but you are embedding the mechanism inside a single run of the features.
In ruby this would look something like
# run_twice_hook.rb
Around(#run_twice) do |scenario, block|
load_first_setting
block.call
load_second_setting
block.call
end
I think this solution comes closest to what the OP wants.
I also think this is the worst solution, because its technical, tricky, hidden and embedded inside the feature run. Its expensive to implement and expensive to maintain, and it probably hides an underlying business problem (mentioned in the first solution)
So please use this solution with a great deal of caution. In general with cuking simple is best, and a bit of repetition is preferable to technical complexity to avoid repetition.
One of the problems of a team lead is that people on the team (sometimes even including myself) often create JUnit tests without any testing functionality.
It's easily done since the developers use their JUnit test as a harness to launch the part of the application they are coding, and then either deliberately or forgetfully just check it in without any assert tests or mock verifies.
Then later it gets forgotten that the tests are incomplete, yet they pass and produce great code coverage. Running up the application and feeding data through it will create high code coverage stats from Cobertura or Jacoco and yet nothing is tested except its ability to run without blowing up - and I've even seen that worked-around with big try-catch blocks in the test.
Is there a reporting tool out there which will test the tests, so that I don't need to review the test code so often?
I was temporarily excited to find Jester which tests the tests by changing the code under test (e.g. an if clause) and re-running it to see if it breaks the test.
However this isn't something you could set up to run on a CI server - it requires set-up on the command line, can't run without showing its GUI, only prints results onto the GUI and also takes ages to run.
PIT is the standard Java mutation tester. From their site:
Mutation testing is conceptually quite simple.
Faults (or mutations) are automatically seeded into your code, then your tests are run. If your tests fail then the mutation is killed, if your tests pass then the mutation lived.
...
Traditional test coverage (i.e line, statement, branch etc) measures only which code is executed by your tests. It does not check that your tests are actually able to detect faults in the executed code. It is therefore only able to identify code the is definitely not tested.
The most extreme example of the problem are tests with no assertions. Fortunately these are uncommon in most code bases. Much more common is code that is only partially tested by its suite. A suite that only partially tests code can still execute all its branches (examples).
As it is actually able to detect whether each statement is meaningfully tested, mutation testing is the gold standard against which all other types of coverage are measured.
The quality of your tests can be gauged from the percentage of mutations killed.
It has a corresponding Maven plugin to make it simple to integrate as part of a CI build. I believe the next version will also include proper integration with Maven site reports too.
Additionally, the creator/maintainer is pretty active here on StackOverflow, and is good about responding to tagged questions.
As far as possible, write each test before implementing the feature or fixing the bug the test is supposed to deal with. The sequence for a feature or bug fix becomes:
Write a test.
Run it. At this point it will fail if it is a good test. If it does
not fail, change, replace, or add to it.
When you have a failing test, implement the feature it is supposed
to test. Now it should pass.
You have various options:
You probably could use some code analysis tool like checkstyle to verify that each test has an assertion. Or alternatively use a JUnit Rule to verify this, but both is easily tricked and works only on a superficial level.
Mutation testing as Jester does is again a technical solution which would work, and it seems #Tom_G has a tool that might work. But these tools are (in my experience) extremely slow, because the work by changing the code, running tests, analyzing result over and over again. So even tiny code bases take lots of time and I wouldn't even think about using it in a real project.
Code Reviews: such bad tests are easily caught by code reviews, and they should be part of every development process anyway.
All this still only scratches on the surface. The big question you should ponder is: why do developers feel tempted to create code just to start a certain part of the application? Why don't they write tests for what they want to implement, so there is almost no need for starting parts of the application. Get some training for automated unit testing and especially TDD/BDD, i.e. a process where you write the tests first.
In my experience it is very likely that you will hear things like: We can't test this because .... You need to find the real reason why the developers, can't or don't want to write these tests, which might or might not be the reasons they state. Then fix those reasons and those abominations of tests will go away all on their own.
What you are looking for is indeed mutation testing.
Regarding tool support, you might also want to look at the Major
mutation framework (mutation-testing.org), which is quite efficient and configurable. Major
uses a compiler-integrated mutator and gives you great control over
what should be mutated and tested. As far as I know Major does not yet
produce graphical reports but rather data (csv) files that you can
process or visualize in any way you want.
Sounds like you need to consider a coverage tool like Jacoco, the gradle plugin provides report on coverage. I also use the EclEmma Eclipse plugin to obtain the same results, but with a fairly nice integration in the IDE.
In my experience, Jacoco has provided acceptable numbers even when there are no-op unit test. As it seems able to accurately determine the tested code paths. No-op test get low or 0% coverage scores and the score increase as the test become more complete.
Update
To address the down-voter. Perhaps a more appropriate tool to address this is PMD. Can be used in an IDE or build system. With proper configuration and rule development it could be used to find these incomplete unit tests. I have used it in the past to find methods missing certain security related annotation in the past.
Maybe my question is a newbie one, but I can not really understand the circumstances under which I would use junit?
Whether I write simple applications or larger ones I test them with the System.out statements and it seams quite easy to me.
Why create test-classes with JUnit, unnecessary folders in the project if we still have to call the same methods, check what they return and we then have an overhead of annotating everything?
Why not write a class and test it at once with System.out but not create Test-classes?
PS. I have never worked on large projects I am just learning.
So what is the purpose?
That's not testing, that's "looking manually at output" (known in the biz as LMAO). More formally it's known as "looking manually for abnormal output" (LMFAO). (See note below)
Any time you change code, you must run the app and LMFAO for all code affected by those changes. Even in small projects, this is problematic and error-prone.
Now scale up to 50k, 250k, 1m LOC or more, and LMFAO any time you make a code change. Not only is it unpleasant, it's impossible: you've scaled up the combinations of inputs, outputs, flags, conditions, and it's difficult to exercise all possible branches.
Worse, LMFAO might mean visiting pages upon pages of web app, running reports, poring over millions of log lines across dozens of files and machines, reading generated and delivered emails, checking text messages, checking the path of a robot, filling a bottle of soda, aggregating data from a hundred web services, checking the audit trail of a financial transaction... you get the idea. "Output" doesn't mean a few lines of text, "output" means aggregate system behavior.
Lastly, unit and behavior tests define system behavior. Tests can be run by a continuous integration server and checked for correctness. Sure, so can System.outs, but the CI server isn't going to know if one of them is wrong–and if it does, they're unit tests, and you might as well use a framework.
No matter how good we think we are, humans aren't good unit test frameworks or CI servers.
Note: LMAO is testing, but in a very limited sense. It isn't repeatable in any meaningful way across an entire project or as part of a process. It's akin to developing incrementally in a REPL, but never formalizing those incremental tests.
We write tests to verify the correctness of a program's behaviour.
Verifying the correctness of a program's behaviour by inspecting the content of output statements using your eyes is a manual, or more specifically, a visual process.
You could argue that
visual inspection works, I check that the code does what it's meant to
do, for these scenarios and once I can see it's correct we're good to
go.
Now first up, it's great to that you are interested in whether or not the code works correctly. That's a good thing. You're ahead of the curve! Sadly, there are problems with this as an approach.
The first problem with visual inspection is that you're a bad welding accident away from never being able to check your code's correctness again.
The second problem is that the pair of eyes used is tightly coupled with the brain of the owner of the eyes. If the author of the code also owns the eyes used in the visual inspection process, the process of verifying correctness has a dependency on the knowledge about the program internalised in the visual inspector's brain.
It is difficult for a new pair of eyes to come in and verify the correctness of the code simply because they are not partnered up with brain of the original coder. The owner of the second pair of eyes will have to converse with original author of the code in order to fully understand the code in question. Conversation as a means of sharing knowledge is notoriously unreliable. A point which is moot if the Original Coder is unavailable to the new pair eyes. In that instance the new pair of eyes has to read the original code.
Reading other people's code that is not covered by unit tests is more difficult than reading code that has associated unit tests. At best reading other peoples code is tricky work, at its worst this is the most turgid task in software engineering. There's a reason that employers, when advertising job vacancies, stress that a project is a greenfield (or brand new) one. Writing code from scratch is easier than modifying existing code and thereby makes the advertised job appear more attractive to potential employees.
With unit testing we divide code up into its component parts. For each component we then set out our stall stating how the program should behave. Each unit test tells a story of how that part of the program should act in a specific scenario. Each unit test is like a clause in a contract that describes what should happen from the client code's point of view.
This then means that a new pair of eyes has two strands of live and accurate documentation on the code in question.
First they have the code itself, the implementation, how the code was done; second they have all of the knowledge that the original coder described in a set of formal statements that tell the story of how this code is supposed to behave.
Unit tests capture and formally describe the knowledge that the original author possessed when they implemented the class. They provide a description of how that class behaves when used by a client.
You are correct to question the usefulness of doing this because it is possible to write unit tests that are useless, do not cover all of the code in question, become stale or out of date and so on. How do we ensure that unit tests not only mimics but improves upon the process of a knowledgeable, conscientious author visually inspecting their code's output statements at runtime? Write the unit test first then write the code to make that test pass. When you are finished, let the computers run the tests, they're fast they are great at doing repetitive tasks they are ideally suited to the job.
Ensure test quality by reviewing them each time you touch off the code they test and run the tests for each build. If a test fails, fix it immediately.
We automate the process of running tests so that they are run each time we do a build of the project. We also automate the generation of code coverage reports that details what percentage of code that is covered and exercised by tests. We strive for high percentages. Some companies will prevent code changes from being checked in to source code control if they do not have sufficient unit tests written to describe any changes in behaviour to the code. Typically a second pair of eyes will review code changes in conjunction with the author of the changes. The reviewer will go through the changes ensure that the changes understandable and sufficiently covered by tests. So the review process is manual, but when the tests (unit and integration tests and possibly user acceptance tests) pass this manual review process the become part of the automatic build process. These are run each time a change is checked in. A continuous-integration server carries out this task as part of the build process.
Tests that are automatically run, maintain the integrity of the code's behaviour and help to prevent future changes to the code base from breaking the code.
Finally, providing tests allows you to aggressively re-factor code because you can make big code improvements safe in the knowledge that your changes do not break existing tests.
There is a caveat to Test Driven Development and that is that you have to write code with an eye to making it testable. This involves coding to interfaces and using techniques such as Dependency Injection to instantiate collaborating objects. Check out the work of Kent Beck who describes TDD very well. Look up coding to interfaces and study design-patterns
When you test using something like System.out, you're only testing a small subset of possible use-cases. This is not very thorough when you're dealing with systems that could accept a near infinite amount of different inputs.
Unit tests are designed to allow you to quickly run tests on your application using a very large and diverse set of different data inputs. Additionally, the best unit tests also account for boundary cases, such as the data inputs that lie right on the edge of what is considered valid.
For a human being to test all of these different inputs could take weeks whereas it could take minutes for a machine.
Think of it like this: You're also not "testing" something that will be static. Your application is most likely going through constant changes. Therefore, these unit tests are designed to run at different points in the compile or deployment cycle. Perhaps the biggest advantage is this:
If you break something in your code, you'll know about it right now, not after you deployed, not when a QA tester catches a bug, not when your clients have cancelled. You'll also have a better chance of fixing the glitch immediately, since it's clear that the thing that broke the part of the code in question most likely happened since your last compile. Thus, the amount of investigative work required to fix the problem is greatly reduced.
I added some other System.out can NOT do:
Make each test cases independent (It's important)
JUnit can do it: each time new test case instance will be created and #Before is called.
Separate testing code from source
JUnit can do it.
Integration with CI
JUnit can do it with Ant and Maven.
Arrange and combine test cases easily
JUnit can do #Ignore and test suite.
Easy to check result
JUnit offers many Assert methods (assertEquals, assertSame...)
Mock and stub make you focus on the test module.
JUnit can do: Using mock and stub make you setup correct fixture, and focus on the test module logic.
Unit tests ensure that code works as intended. They are also very helpful to ensure that the code still works as intended in case you have to change it later to build new functionalities to fix a bug. Having a high test coverage of your code allows you to continue developing features without having to perform lots of manual tests.
Your manual approach by System.out is good but not the best one.This is one time testing that you perform. In real world, requirements keep on changing and most of the time you make a lot of modificaiotns to existing functions and classes. So… not every time you test the already written piece of code.
there are also some more advanced features are in JUnit like like
Assert statements
JUnit provides methods to test for certain conditions, these methods typically start with asserts and allow you to specify the error message, the expected and the actual result
Some of these methods are
fail([message]) - Lets the test fail. Might be used to check that a certain part of the code is not reached. Or to have failing test before the test code is implemented.
assertTrue(true) / assertTrue(false) - Will always be true / false. Can be used to predefine a test result, if the test is not yet implemented.
assertTrue([message,] condition) - Checks that the boolean condition is true.
assertEquals([message,] expected, actual) - Tests whether two values are equal (according to the equals method if implemented, otherwise using == reference comparison). Note: For arrays, it is the reference that is checked, and not the contents, use assertArrayEquals([message,] expected, actual) for that.
assertEquals([message,] expected, actual, delta) - Tests whether two float or double values are in a certain distance from each other, controlled by the delta value.
assertNull([message,] object) - Checks that the object is null
and so on. See the full Javadoc for all examples here.
Suites
With Test suites, you can in a sense combine multiple test classes into a single unit so you can execute them all at once. A simple example, combining the test classes MyClassTest and MySecondClassTest into one Suite called AllTests:
import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;
#RunWith(Suite.class)
#SuiteClasses({ MyClassTest.class, MySecondClassTest.class })
public class AllTests { }
The main advantage of JUnit is that it is automated rather than you manually having to check with your print outs. Each test you write stays with your system. This means that if you make a change that has an unexpected side effect your test will catch it and fail rather than you having to remember to manually test everything after each change.
JUnit is a unit testing framework for the Java Programming Language. It is important in the test driven development, and is one of a family of unit testing frameworks collectively known as xUnit.
JUnit promotes the idea of "first testing then coding", which emphasis on setting up the test data for a piece of code which can be tested first and then can be implemented . This approach is like "test a little, code a little, test a little, code a little..." which increases programmer productivity and stability of program code that reduces programmer stress and the time spent on debugging.
Features
JUnit is an open source framework which is used for writing & running tests.
Provides Annotation to identify the test methods.
Provides Assertions for testing expected results.
Provides Test runners for running tests.
JUnit tests allow you to write code faster which increasing quality
JUnit is elegantly simple. It is less complex & takes less time.
JUnit tests can be run automatically and they check their own results and provide immediate feedback. There's no need to manually comb through a report of test results.
JUnit tests can be organized into test suites containing test cases and even other test suites.
Junit shows test progress in a bar that is green if test is going fine and it turns red when a test fails.
I have slightly different perspective of why JUnit is needed.
You can actually write all test cases yourself but it's cumbersome. Here are the problems:
Instead of System.out we can add if(value1.equals(value2)) and return 0 or -1 or error message. In this case, we need a "main" test class which runs all these methods and checks results and maintains which test cases failed and which are passed.
If you want to add some more tests you need to add them to this "main" test class as well. Changes to existing code. If you want to auto detect test cases from test classes, then you need to use reflection.
All your tests and your main class to run tests are not detected by eclipse and you need to write custom debug/run configurations to run these tests. You still don't see those pretty green/red colored outputs though.
Here is what JUnit is doing:
It has assertXXX() methods which are useful for printing helpful error messages from the conditions and communicating results to "main" class.
"main" class is called runner which is provided by JUnit, so we don't have to write any. And it detects the test methods automatically by reflection. If you add new tests with #Test annotation then they are automatically detected.
JUnit has eclipse integration and maven/gradle integration as well, so it is easy to run tests and you will not have to write custom run configurations.
I'm not an expert in JUnit, so that's what I understood as of now, will add more in future.
You cannot write any test case without using testing framework or else you will have to write your testing framewok to give justice to your test cases.
Here are some info about JUnit Framework apart from that you can use TestNG framework .
What is Junit?
Junit is widely used testing framework along with Java Programming Language. You can use this automation framework for both unit testing and UI testing.It helps us define the flow of execution of our code with different Annotations. Junit is built on idea of "first testing and then coding" which helps us to increase productivity of test cases and stability of the code.
Important Features of Junit Testing -
It is open source testing framework allowing users to write and run test cases effectively.
Provides various types of annotations to identify test methods.
Provides different Types of Assertions to verify the results of test case execution.
It also gives test runners for running tests effectively.
It is very simple and hence saves time.
It provides ways to organize your test cases in form of test suits.
It gives test case results in simple and elegant way.
You can integrate jUnit with Eclipse, Android Studio, Maven & Ant, Gradle and Jenkins
JUNIT is the method that is usually accepted by java developer.
Where they can provide similar expected input to the function and decide accordingly that written code is perfectly written or if test case fails then different approach may also need to implement.
JUNIT will make development fast and will ensure the 0 defects in the function.
JUNIT : OBSERVE AND ADJUST
Here is my perspective of JUNIT.
JUNIT can be used to,
1)Observe a system behaviour when a new unit is added in that system.
2)Make adjustment in the system to welcome the "new" unit in the system.
What? Exactly.
Real life eg.
When your relative visits your college hostel room,
1) You will pretend to be more responsible.
2) You will keep all things where they should be, like shoes in shoe rack not on chair, clothes in cupboard not on chair.
3) You will get rid of all the contraband.
4) you will start cleanUp in every device you posses.
In programming terms
System: Your code
UNIT: new functionality.
As JUNIT framework is used for JAVA language so JUNIT = JAVA UNIT (May be).
Suppose a you already have a well bulletproof code, but a new requirement came and you have to add the new requirement in your code. This new requirement may break your code for some input(testcase).
Easy way to adapt this change is using unit testing (JUNIT).
For that you should write multiple testcases for your code when you are building your codebase. And whenever a new requirement comes you just run all the test cases to see if any test case fails.
If No then you are a BadA** artist and you are ready to deploy the new code.
If any of the testcases fail then you change your code and again run testcases until you get the green status.
I'm currently building a CI build script for a legacy application. There are sporadic JUnit tests available and I will be integrating a JUnit execution of all tests into the CI build. However, I'm wondering what to do with the 100'ish failures I'm encountering in the non-maintained JUnit tests. Do I:
1) Comment them out as they appear to have reasonable, if unmaintained, business logic in them in the hopes that someone eventually uncomments them and fixes them
2) Delete them as its unlikely that anyone will fix them and the commented out code will only be ignored or be clutter for evermore
3) Track down those who have left this mess in my hands and whack them over the heads with the printouts of the code (which due to long-method smell will be sufficently suited to the task) while preaching the benefits of a well maintained and unit tested code base
If you use Junit 4 you can annotate that tests with #Ignore annotation.
If you use JUnit 3 you can just rename tests so they don't start with test.
Also, try to fix tests for functionality you are modifying in order to not make code mess larger.
Follow the no broken window principle and take some action towards a solution of the problem. If you can't fix the tests, at least:
Ignore them from the unit tests (there are different ways to do this).
Enter as many issue as necessary and assign people to fix the tests.
Then to prevent such situation from happening in the future, install a plug in similar to Hudson Game Plugin. People gets assigned points during continuous integration, e.g.
-10 break the build <-- the worse
-1 break a test
+1 fix a test
etc.
Really cool tool to create a sense of responsibility about unit tests within a team.
The failing JUnit tests indicate that either
The source code under test has been worked on without the tests being maintained. In this case option 3 is definitely worth considering, or
You have a genuine failure.
Either way you need to fix/review the tests/source. Since it sounds like your job is to create the CI system and not to fix the tests, in your position i would leave a time-bomb in the tests. You can get very fancy with annotated methods with JUnit 4 (something like #IgnoreUntil(date="2010/09/16")) and a custom runner, so or you can simply add an an if statement to the first line of each test:
if (isBeforeTimeBomb()) {
return;
}
Where isBeforeTimeBomb() can simply check the current date against a future date of your choosing. Then you follow the advice given by others here and notify your development team that the build is green now, but is likely to explode in X days unless the timebombed tests are fixed.
Comment them out so that they can be fixed later.
Generate test coverage reports (with Cobertura for example). The methods that were supposed to be covered by the tests that you commented out will then be indicated as not covered by tests.
If they compile but fail: leave them in. That will get you a good history of test improvements over time when using CI. If the tests do not compile but break the build, comment them out and poke the developers to fix them.
This obviously does not preclude using option 3 (hitting them over the head), you should do that anyway, regardless of what you do with the tests.
You should definitely disable them in some way for now. Whether that's done by commenting, deleting (assuming you can get them back from source control) or some other means is up to you. You do not want these failing tests to be an obstacle for people trying to submit new changes.
If there are few enough that you feel you can fix them yourself, great -- do it. If there are too many of them, then I'd be inclined to use a "crowdsourcing" approach. File a bug for each failing test. Try to assign these bugs to the actual owners/authors of the tests/tested code if possible, but if that's too hard to determine then randomly selecting is fine as long as you tell people to reassign the bugs that were mis-assigned to them. Then encourage people to fix these bugs either by giving them a deadline or by periodically notifying everyone of the progress and encouraging them to fix all of the bugs.
A CI system that is steady red is pretty worthless. The main benefit is to maintain a quality bar, and that's made much more difficult if there's no transition to mark a quality drop.
So the immediate effort should be to disable the failing tests, and create a tracking ticket/work item for each. Each of those is resolved however you do triage - if nobody cares about the test, get rid of it. If the failure represents a problem that needs to be addressed before ship, then leave the test disabled.
Once you are in this state, you can now rely on the CI system to tell you that urgent action is required - roll back the last change, or immediately put a team on fixing the problem, or whatever.
I don't know your position in the company, but if it's possible leave them in and file the problems as errors in your ticket system. Leave it up to the developers to either fix them or remove the tests.
If that doesn't work remove them (you have version control, right?) and close the ticket with a comment like 'removed failing junit tests which apparently won't be fixed' or something a bit more polite.
The point is, junit tests are application code and as such should work. That's what developers get paid for. If a test isn't appropriate anymore (something that doesn't exist anymore got tested) developers should signal that and remove the test.
I'm learning JUnit. Since my app includes graphical output, I want the ability to eyeball the output and manually pass or fail the test based on what I see. It should wait for me for a while, then fail if it times out.
Is there a way to do this within JUnit (or its extensions), or should I just throw up a dialog box and assertTrue on the output? It seems like it might be a common problem with an existing solution.
Edit: If I shouldn't be using JUnit for this, what should I be using? I want to manually verify the build every so often, and unit test automatically, and it'd be great if the two testing frameworks got along.
Manually accepting/rejecting a test defeats the purpose of using an automated test framework. JUnit is not made for this kind of stuff. Unless you find a way to create and inject a mockup of the object representing your output device, you should consider alternatives (don't really know any there sorry).
I once wrote automated tests for a video decoding component. I dumped the decoded data to a file using some other decoder as a reference, and then compared the output of my decoder to that using the PSNR of each pair of images. This is not 100% self contained (needs external files as resources), but was automated at least, and worked fine for me.
Although you could probably code that, that is not what JUnit is about. It is about automated tests, not guided manual tests. Generally that "does it look right" test is regarded as an integration test, as it is something that is very hard to automate correctly in a way that doesn't break for trivial changes all the time.
Take a look at Abbot to give you a more robust way to test your GUI.
Unit tests shouldn't require human intervention. If you need a user to take an action then I think you're doing it wrong.
If you need a human to verify things, then don't do this as part of your unit tests. Just make it a required step for your test department to carry out when QA'ing builds. (this still works of your QA department is just you.)
I recommend using your unit tests for the Models if using MVC, or any utility method (i.e. with Swing it's common to have color mapping methods). If you have a good set of unit tests on things like model behavior, if you have a UI bug it'll help narrow your search.
Visual based unit tests are very difficult, at a company I worked at they had tried these visual tests but slight differences in video cards could produce failed tests. In the end this is where a good Q/A team is required.
Take a look at FEST-Swing. It provides an easy way to automatically test your GUIs.
The other thing you'll want to do is separate your the code which does the bulk of the work from your gui code as much as possible. You can then write unit tests on this work code without having to deal with the user interface. You'll also find that you'll run these tests much more frequently, as they can run quickly.