Execute different Completables in succession - java

I am currently trying to achieve a specific outcome with the reactive extensions in java, however I am not able to do so, maybe someone of you can help me out.
firstCompletable
.onErrorComplete(t -> specificErrorHandlingOne())
.andThen(secondCompletable())
.onErrorComplete(t -> specificErrorHandlingTwo())
.andThen(thirdCompletable())
.onErrorComplete(t -> specificErrorHandlingThree())
.andThen(fourthCompletable())
.onErrorComplete(t -> specificErrorHandlingFour())
.subscribe(viewCallback::showSuccess)
However, when there is an error in, e.g., the secondCompletable, the specific error handling is being executed but then the other Completables are still being scheduled. I want the whole chain of Completables to stop executing if one of the Completables fails. How would I do that?
I already tried using doOnError instead, but this just ended up on n a stack trace of the specific error thrown.

Completable.concat(
completable1.doOnError(e -> {...}),
completable2.doOnError(e -> {...}),
completable3.doOnError(e -> {...}),
completable4.doOnError(e -> {...})
).subscribe(action, errorConsumer);
Completables will be subscribed to in specified order
action will be invoked when all complete
You can specify error handlers for each one (this is optional)
Any error will break the pipeline and propagate to subscriber (errorConsumer)
Your original andThen chain shall also work but you need to replace onErrorComplete, which substitutes an error with completion, with doOnError, which just invokes specified action. Or just return false from your specificErrorHandlingXxx().

Try the below:
public static void main(String[] args) {
System.out.println("start");
Completable c1 = Completable.fromAction(() -> printAndWait(1, 1));
Completable c2 = Completable.fromAction(() -> printAndWait(2, 2));
Completable c3 = Completable.fromObservable(Observable.timer(3, TimeUnit.SECONDS).concatWith(Observable.error(new RuntimeException())));
Completable c4 = Completable.fromAction(() -> printAndWait(4, 2));
c1.concatWith(c2).concatWith(c3).concatWith(c4).subscribe(e -> e.printStackTrace(), () -> System.out.println("done"));
printAndWait(10, 10);//dont exit till program is completely executed
}
private static void printAndWait(int i, int j) {
System.out.println(i);
Observable.timer(j, TimeUnit.SECONDS).toBlocking().subscribe();//just add delay
}

Related

RxJava: Merging Observable with Completable does not work

I have an Observable that at some point has to write things to the cache - and we would like to wait that writes are done before finishing the whole operation on the observable (for reporting purposes).
For the purpose of test, the cache write Completable looks like this:
Completable.create(
emitter ->
new Thread(
() -> {
try {
Thread.sleep(2000);
doSomething();
emitter.onComplete();
} catch (InterruptedException e) {
e.printStackTrace();
}
})
.start());
Since I have several cache writes, I try to merge them in a container class:
public class CacheInsertionResultsTracker {
private Completable cacheInsertResultsCompletable;
public CacheInsertionResultsTracker() {
this.cacheInsertResultsCompletable = Completable.complete();
}
public synchronized void add(Completable cacheInsertResult) {
this.cacheInsertResultsCompletable = this.cacheInsertResultsCompletable.mergeWith(cacheInsertResult);
}
public Completable getCompletable() {
return this.cacheInsertResultsCompletable;
}
}
And I try to merge it with Observable in a following way:
CacheInsertionResultsTracker tracker = new ...;
observable
.doOnNext(next->tracker.add(next.writeToCache(...)))
.mergeWith(Completable.defer(()->tracker.getCompletable()))
.subscribe(
// on next
this::logNextElement
// on error
this::finishWithError
// on complete
this::finishWithSuccess
);
How could I make sure that by the time finishWithSuccess is called the doSomething is completed?
The problem is that the Completable reference is updated every time I add a new one, and it happens after the mergeWith runs...
The solution that seems to work for our use case is to use concatWith + defer:
observable
.doOnNext(next->tracker.add(next.writeToCache(...)))
.concatWith(Completable.defer(()->tracker.getCompletable()))
.subscribe(
// on next
this::logNextElement
// on error
this::finishWithError
// on complete
this::finishWithSuccess
);
Concat assures that the subscription to the Completable happens only after the Observable is done, and defer defers getting the final Completable till this subscription (so all the objects are already added to the tracker).
Based on the comments, you could replace the completable cache with ReplaySubject<Completable>, do some timeout to detect inactivity and have the observable sequence end.
ReplaySubject<Completable> cache = ReplaySubject.create();
cache.onNext(completable);
observable.mergeWith(
cache.flatMapCompletable(v -> v)
.timeout(10, TimeUnit.MILLISECONDS, Completable.complete())
)
Edit:
Your updated example implies you want to run Completables in response to items in the main observable, isolated to that sequence, and wait for all of them to complete. This is a typical use case for flatMap:
observable.flatMap(
next -> next.writeToCache(...).andThen(Observable.just(next))
)
.subscribe(
this::logNextElement
// on error
this::finishWithError
// on complete
this::finishWithSuccess
);

Limit for `onErrorContinue(...)` in Flux?

I have a (possibly infinite) Flux source that is supposed to first store each message (e.g. into a database) and then asynchronously forward the messages (e.g. using Spring WebClient).
The forward(s) in case of failure are supposed to log an error, without completing the source Flux.
I however realized that forward(s) wihtin the flow (flatMap(...)) block execution of the source Flux after exactly 256 messages that cause exceptions (e.g. reactor.retry.RetryExhaustedException).
Representative example that fails in the assert since only 256 messages are processed:
#Test
#SneakyThrows
public void sourceBlockAfter256Exceptions() {
int numberOfRequests = 500;
Set<Integer> sink = new HashSet<>();
Flux
.fromStream(IntStream.range(0, numberOfRequests).boxed())
.map(sink::add)
.flatMap(i -> Mono
// normally the forwards are contained here e.g. by means of Mono.when(...).thenReturn(...).retryWhen(...):
.error(new Exception("any"))
)
.onErrorContinue((throwable, o) -> log.error("Error", throwable))
.subscribe();
Thread.sleep(3000);
Assertions.assertEquals(numberOfRequests, sink.size());
}
Doing the forward within the subscribe(...) doesn't block the source Flux but that's certainly no solution, since I don't possibly want to lose messages.
Questions:
What has happened here? (probably related to some state stored in just one bit)
How can I do this correctly?
EDIT:
According to the discussion below I've constructed an example that uses FluxMessageChannel (which up to my understanding is made for infinite streams and definitly not expected to block after 256 Errors) and has exactly the same behaviour:
#Test
#SneakyThrows
public void maxConnectionWithChannelTest() {
int numberOfRequests = 500;
Set<Integer> sink = new HashSet<>();
FluxMessageChannel fluxMessageChannel = MessageChannels.flux().get();
fluxMessageChannel.subscribeTo(
Flux
.fromStream(IntStream
.range(0, numberOfRequests).boxed()
.map(i -> MessageBuilder.withPayload(i).build())
)
.map(Message::getPayload)
.map(sink::add)
.flatMap(i -> Mono.error(new Exception("whatever")))
);
Flux
.from(fluxMessageChannel)
.subscribe();
Thread.sleep(3000);
Assert.assertEquals(numberOfRequests, sink.size());
}
EDIT:
I just raised an issue in the reactor core project: https://github.com/reactor/reactor-core/issues/2011

RxJava Combining Multiple Observer after filter

Following is my Current Code
private final List<Disposable> subscriptions = new ArrayList<>();
for (Instrument instrument : instruments) {
// Waiting for OrderBook to generate Reliable results.
GenericBook Book =
service
.getBook(instrument.getData())
.filter(gob -> onBookUpdate(gob))
.blockingFirst();
subscriptions.add(
service
.getBook(instrument.getData())
.subscribe(
gob -> {
try {
onBookUpdate(gob);
} catch (Exception e) {
logger.error("Error on subscription:", e);
}
},
e -> logger.error("Error on subscription:", e)));
}
So what it does is for each instrument it first Block wait till the output of onBookUpdate(gob) Becomes true. onBookUpdate(gob) returns boolean.
Once we have first onBookUpdate as true then i Will push that subscriber into subscriptions variable.
This slow down as I have to wait foreach instrument and then move on the next instrument.
My Goal is to run all these in parallel then wait all to finish and push them to subscriptions variable.
I tried zip but didn't work
List<Observable<GenericOrderBook>> obsList = null;
for (Instrument instrument : instruments) {
// This throws nullException.
obsList.add(service
.getBook(instrument.getData())
.filter(gob -> onBookUpdate(gob))
.take(1));
}
}
// Some how wait over here until all get first onBookUpdate as true.
String o = Observable.zip(obsList, (i) -> i[0]).blockingLast();
When using observables etc, one should embrace them wholeheartedly. One of the premises for embracing is to separate the configuration and construction of your pipeline from its execution.
In other words, configure your pipeline upfront and then, when the data is available, send the data through it.
Furthermore, embracing observables implies avoiding for-loops.
I'm not 100% what your use case is but what I'd suggest is to create a pipeline that takes an instrument as input and returns a subscription...
So something like
service.getBook(instrument.getData())
.flatMap(gob -> {
onBookUpdate(gob);
return gob;
});
That will return an Observable that you can subscribe to and add the result to the subscriptions.
Then create a seed observable that pumps the instrument objects into it.
Not sure of some of the details of your API, so come back to me if this is not clear or I've made a wrong assumption.
I am assuming instruments to be a List. If yes, then you can do something like this,
Observable
.fromIterable(instruments)
// Returns item from instrument list one by one and passes it to getBook()
.flatmap(
instrument -> getBook(instrument.getData())
)
.filter(
gob -> onBookUpdate(gob)
)
// onComplete will be called if no items from filter
.switchIfEmpty(Observable.empty())
.subscribe(
onBookUpdateResponse -> // Do what you want,
error -> new Throwable(error)
);
Hope this helps.

RxJava polling + manual refresh

I have a list a want to refresh every minute.
For example the user list here : https://github.com/android10/Android-CleanArchitecture/blob/master/domain/src/main/java/com/fernandocejas/android10/sample/domain/interactor/GetUserList.java
I add a periodical refresh using repeatWhen :
public Observable<List<User>> buildUseCaseObservable(Void unused) {
return this.userRepository
.users()
.repeatWhen(new Function<Observable<Object>, ObservableSource<?>>() {
#Override
public ObservableSource<?> apply(Observable<Object> objectObservable) throws Exception {
return objectObservable.delay(1, TimeUnit.MINUTES);
}
});
}
It works fine this way, calling onNext every minute.
But if I want to refresh immediately this list (because of user's action or because of a notification), I don't know how to perform that.
Should I cancel/dispose the observable and restart a new one ?
Thanks
From your code I understand that the users list is generated and emitted upon subscription.
Here are some solutions I can think of, instead of unsubscribing and resubscribing upon the event to which you want to react immediately:
Instead of using the repeatWhen operator, use the interval creation operator combined with the flatMap to invoke the subscription to a new Observable every minute and use the merge operator to add reaction to the other event in which you are interested. Something like this:
#Test
public void intervalObservableAndImmediateReaction() throws InterruptedException {
Observable<String> obs = Observable.interval(1, TimeUnit.SECONDS)
.cast(Object.class)
.mergeWith(
Observable.just("mockedUserClick")
.delay(500, TimeUnit.MILLISECONDS))
.flatMap(
timeOrClick -> Observable.just("Generated upon subscription")
);
obs.subscribe(System.out::println);
Thread.currentThread().sleep(3000); //to see the prints before ending the test
}
or adjusted to your needs (but the principal is the same):
Observable.interval(1, TimeUnit.MINUTES)
.mergeWith(RxView.clicks(buttonView))
.flatMap(timeOrClick -> this.userRepository.users());
You can use the flatMap operator as before, even while keeping you working current implementation and without merging to an interval - just keep your working code and in another area of the programme chain it to the RxBinding of your choosing:
RxView.touches(yourViewVariable)
.flatMatp(motionEvent -> this.userRepository.users())
.subscribe(theObserver);
Note that in this solution the subscription is done independently to the two observables. You'll probably be better off if you use different observers, or manage a subject or something on that line. A small test I ran showed one subscriber handled subscribing to 2 different observables with no problem (in Rxjava1 - didn't check in Rxjava2 yet), but it feels iffy to me.
If you aren't concerned with adjusting the refresh time after one of the other observables emits data you can do something like the following:
// Specific example of a user manually requesting
val request = Observable.create<String> { emitter ->
refresh.setOnClickListener {
emitter.onNext("Click Request")
}
}
.observeOn(Schedulers.io())
.flatMap {
userRepository.users()
}
// Refresh based off of your original work, could use something like interval as well
val interval = userRepository.users()
.subscribeOn(Schedulers.io())
.repeatWhen { objectObservable ->
objectObservable.delay(1, TimeUnit.MINUTES)
}
// Combine them so that both emissions are received you can even add on another source
Observable.merge(request,interval)
.observeOn(AndroidSchedulers.mainThread())
.subscribe({
contents.text = it.toString()
}, {
contents.text = it.toString()
},{
println(contents.text)
})
Then you don't have to dispose and resubscribe every time

Generate infinite sequence of Natural numbers using RxJava

I am trying to write a simple program using RxJava to generate an infinite sequence of natural numbers. So, far I have found two ways to generate sequence of numbers using Observable.timer() and Observable.interval(). I am not sure if these functions are the right way to approach this problem. I was expecting a simple function like one we have in Java 8 to generate infinite natural numbers.
IntStream.iterate(1, value -> value +1).forEach(System.out::println);
I tried using IntStream with Observable but that does not work correctly. It sends infinite stream of numbers only to first subscriber. How can I correctly generate infinite natural number sequence?
import rx.Observable;
import rx.functions.Action1;
import java.util.stream.IntStream;
public class NaturalNumbers {
public static void main(String[] args) {
Observable<Integer> naturalNumbers = Observable.<Integer>create(subscriber -> {
IntStream stream = IntStream.iterate(1, val -> val + 1);
stream.forEach(naturalNumber -> subscriber.onNext(naturalNumber));
});
Action1<Integer> first = naturalNumber -> System.out.println("First got " + naturalNumber);
Action1<Integer> second = naturalNumber -> System.out.println("Second got " + naturalNumber);
Action1<Integer> third = naturalNumber -> System.out.println("Third got " + naturalNumber);
naturalNumbers.subscribe(first);
naturalNumbers.subscribe(second);
naturalNumbers.subscribe(third);
}
}
The problem is that the on naturalNumbers.subscribe(first);, the OnSubscribe you implemented is being called and you are doing a forEach over an infinite stream, hence why your program never terminates.
One way you could deal with it is to asynchronously subscribe them on a different thread. To easily see the results I had to introduce a sleep into the Stream processing:
Observable<Integer> naturalNumbers = Observable.<Integer>create(subscriber -> {
IntStream stream = IntStream.iterate(1, i -> i + 1);
stream.peek(i -> {
try {
// Added to visibly see printing
Thread.sleep(50);
} catch (InterruptedException e) {
}
}).forEach(subscriber::onNext);
});
final Subscription subscribe1 = naturalNumbers
.subscribeOn(Schedulers.newThread())
.subscribe(first);
final Subscription subscribe2 = naturalNumbers
.subscribeOn(Schedulers.newThread())
.subscribe(second);
final Subscription subscribe3 = naturalNumbers
.subscribeOn(Schedulers.newThread())
.subscribe(third);
Thread.sleep(1000);
System.out.println("Unsubscribing");
subscribe1.unsubscribe();
subscribe2.unsubscribe();
subscribe3.unsubscribe();
Thread.sleep(1000);
System.out.println("Stopping");
Observable.Generate is exactly the operator to solve this class of problem reactively. I also assume this is a pedagogical example, since using an iterable for this is probably better anyway.
Your code produces the whole stream on the subscriber's thread. Since it is an infinite stream the subscribe call will never complete. Aside from that obvious problem, unsubscribing is also going to be problematic since you aren't checking for it in your loop.
You want to use a scheduler to solve this problem - certainly do not use subscribeOn since that would burden all observers. Schedule the delivery of each number to onNext - and as a last step in each scheduled action, schedule the next one.
Essentially this is what Observable.generate gives you - each iteration is scheduled on the provided scheduler (which defaults to one that introduces concurrency if you don't specify it). Scheduler operations can be cancelled and avoid thread starvation.
Rx.NET solves it like this (actually there is an async/await model that's better, but not available in Java afaik):
static IObservable<int> Range(int start, int count, IScheduler scheduler)
{
return Observable.Create<int>(observer =>
{
return scheduler.Schedule(0, (i, self) =>
{
if (i < count)
{
Console.WriteLine("Iteration {0}", i);
observer.OnNext(start + i);
self(i + 1);
}
else
{
observer.OnCompleted();
}
});
});
}
Two things to note here:
The call to Schedule returns a subscription handle that is passed back to the observer
The Schedule is recursive - the self parameter is a reference to the scheduler used to call the next iteration. This allows for unsubscription to cancel the operation.
Not sure how this looks in RxJava, but the idea should be the same. Again, Observable.generate will probably be simpler for you as it was designed to take care of this scenario.
When creating infinite sequencies care should be taken to:
subscribe and observe on different threads; otherwise you will only serve single subscriber
stop generating values as soon as subscription terminates; otherwise runaway loops will eat your CPU
The first issue is solved by using subscribeOn(), observeOn() and various schedulers.
The second issue is best solved by using library provided methods Observable.generate() or Observable.fromIterable(). They do proper checking.
Check this:
Observable<Integer> naturalNumbers =
Observable.<Integer, Integer>generate(() -> 1, (s, g) -> {
logger.info("generating {}", s);
g.onNext(s);
return s + 1;
}).subscribeOn(Schedulers.newThread());
Disposable sub1 = naturalNumbers
.subscribe(v -> logger.info("1 got {}", v));
Disposable sub2 = naturalNumbers
.subscribe(v -> logger.info("2 got {}", v));
Disposable sub3 = naturalNumbers
.subscribe(v -> logger.info("3 got {}", v));
Thread.sleep(100);
logger.info("unsubscribing...");
sub1.dispose();
sub2.dispose();
sub3.dispose();
Thread.sleep(1000);
logger.info("done");

Categories

Resources