Is there a way to align both these values from different languages? - java

Having issues with the sqrt function in two languages.
I have a JAVA API and C++ client, I'm trying to use the sqrt functions in both but they give me slightly different numbers.
The inputs are:
x = 25.0
y = 5625.0
Java:
double distance = Math.sqrt(x + y);
// outputs 75.16648189186454
C++:
const double distance = std::sqrt(x + y);
// outputs 75.166481891864535
I need the numbers to be the same as I'm using them as seeds in the API and client. Is there any way to do this? Ideally the java output 75.16648189186454, however, I will take either.
Many thanks

When I get look at the bits from both C++ and Java, they result in:
Java:
4634989787871853517
C++:
4634989787871853517
Which means they are both the same bits. Since they should be following IEEE-754, this means both languages have an identical value. You just see one output be slightly truncated in one language, but the value is not.

Floating point numbers are not exact and you cannot depend on different implementations (languages) getting the exact same value. Nor can you rely on the same language getting the same value on different hardware.
Serialising floating point numbers and transmitting them between different languages and/or hardware implentations is a hard (not N/P hard, but still really difficult) problem.
I'd recommend reading these links for in-depth details:
What Every Computer Scientist Should Know About Floating-Point Arithmetic
Is floating point math broken?
Sometimes Floating Point Math is Perfect

To expand on Shawn's comment: The C++ reply has 17 digits, the java reply has 16. If you round the 17 digits you will get the same result, as 35 rounds to 4. Double has in fact slightly less than 16 (approximately 52+1 bits times log 2) meaningful digits, so the C++ result is misleadingly precise. You can control the number of digits displayed both in C++ and in Java, but as Shawn said the actual number in the bowels of the computer is the same.

Related

How do I avoid rounding errors with doubles?

I'm using Math.sin to calculate trigonometry in Java with 3 decimal precision. However when I calculate values that should result in an Integer I get 1.0000000002 instead of 1.
I have tried using
System.out.printf(Locale.ROOT, "%.3f ", v);
which does solve the problem of 1.000000002 turning into 1.000.
However when I calculate numbers that should result in 0 and instead get -1.8369701987210297E-16 and use
System.out.printf(Locale.ROOT, "%.3f ", v);
prints out -0.000 when I need it to be 0.000.
Any ideas on how to get rid of that negative sign?
Lets start with this:
How do I avoid rounding errors with doubles?
Basically, you can't. They are inherent to numerical calculations using floating point types. Trust me ... or take the time to read this article:
What every Computer Scientist should know about floating-point arithmetic by David Goldberg.
In this case, the other thing that comes into play is that trigonometric functions are implemented by computing a finite number of steps of an infinite series with finite precision (i.e. floating point) arithmetic. The javadoc for the Math class leaves some "wiggle room" on the accuracy of the math functions. It is worth reading the javadocs to understand the expected error bounds.
Finally, if you are computing (for example) sin π/2 you need to consider how accurate your representation of π/2 is.
So what you should really be asking is how to deal with the rounding error that unavoidably happens.
In this case, you are asking is how to make it look like the user of your program as if there isn't any rounding error. There are two approaches to this:
Leave it alone! The rounding errors occur, so we should not lie to the users about it. It is better to educate them. (Honestly, this is high school maths, and even "the pointy haired boss" should understand that arithmetic is inexact.)
Routines like printf do a pretty good job. And the -0.000 displayed in this case is actually a truthful answer. It means that the computed answer rounds to zero to 3 decimal places but is actually negative. This is not actually hard for someone with high school maths to understand. If you explain it.
Lie. Fake it. Put in some special case code to explicitly convert numbers between -0.0005 and zero to exactly zero. The code suggested in a comment
System.out.printf(Locale.ROOT, "%.3f ", Math.round(v * 1000d) / 1000d);
is another way to do the job. But the risk of this is that the lie could be dangerous in some circumstances. On the other hand, you could say that real mistake problem is displaying the numbers to 3 decimal places.
Depends on accuracy you need, you can multiply by X and divide by X where X is X=10^y and y is required floating poing precision.

How accurate is "double-precision floating-point format"?

Let's say, using java, I type
double number;
If I need to use very big or very small values, how accurate can they be?
I tried to read how doubles and floats work, but I don't really get it.
For my term project in intro to programming, I might need to use different numbers with big ranges of value (many orders of magnitude).
Let's say I create a while loop,
while (number[i-1] - number[i] > ERROR) {
//does stuff
}
Does the limitation of ERROR depend on the size of number[i]? If so, how can I determine how small can ERROR be in order to quit the loop?
I know my teacher explained it at some point, but I can't seem to find it in my notes.
Does the limitation of ERROR depend on the size of number[i]?
Yes.
If so, how can I determine how small can ERROR be in order to quit the loop?
You can get the "next largest" double using Math.nextUp (or the "next smallest" using Math.nextDown), e.g.
double nextLargest = Math.nextUp(number[i-1]);
double difference = nextLargest - number[i-1];
As Radiodef points out, you can also get the difference directly using Math.ulp:
double difference = Math.ulp(number[i-1]);
(but I don't think there's an equivalent method for "next smallest")
If you don't tell us what you want to use it for, then we cannot answer anything more than what is standard knowledge: a double in java has about 16 significant digits, (that's digits of the decimal numbering system,) and the smallest possible value is 4.9 x 10-324. That's in all likelihood far higher precision than you will need.
The epsilon value (what you call "ERROR") in your question varies depending on your calculations, so there is no standard answer for it, but if you are using doubles for simple stuff as opposed to highly demanding scientific stuff, just use something like 1 x 10-9 and you will be fine.
Both the float and double primitive types are limited in terms of the amount of data they can store. However, if you want to know the maximum values of the two types, then run the code below with your favourite IDE.
System.out.println(Float.MAX_VALUE);
System.out.println(Double.MAX_VALUE);
double data type is a double-precision 64-bit IEEE 754 floating point (digits of precision could be between 15 to 17 decimal digits).
float data type is a single-precision 32-bit IEEE 754 floating point (digits of precision could be between 6 to 9 decimal digits).
After running the code above, if you're not satisfied with their ranges than I would recommend using BigDecimal as this type doesn't have a limit (rather your RAM is the limit).

Wrong Output Dollar Amount To Coins [duplicate]

double r = 11.631;
double theta = 21.4;
In the debugger, these are shown as 11.631000000000000 and 21.399999618530273.
How can I avoid this?
These accuracy problems are due to the internal representation of floating point numbers and there's not much you can do to avoid it.
By the way, printing these values at run-time often still leads to the correct results, at least using modern C++ compilers. For most operations, this isn't much of an issue.
I liked Joel's explanation, which deals with a similar binary floating point precision issue in Excel 2007:
See how there's a lot of 0110 0110 0110 there at the end? That's because 0.1 has no exact representation in binary... it's a repeating binary number. It's sort of like how 1/3 has no representation in decimal. 1/3 is 0.33333333 and you have to keep writing 3's forever. If you lose patience, you get something inexact.
So you can imagine how, in decimal, if you tried to do 3*1/3, and you didn't have time to write 3's forever, the result you would get would be 0.99999999, not 1, and people would get angry with you for being wrong.
If you have a value like:
double theta = 21.4;
And you want to do:
if (theta == 21.4)
{
}
You have to be a bit clever, you will need to check if the value of theta is really close to 21.4, but not necessarily that value.
if (fabs(theta - 21.4) <= 1e-6)
{
}
This is partly platform-specific - and we don't know what platform you're using.
It's also partly a case of knowing what you actually want to see. The debugger is showing you - to some extent, anyway - the precise value stored in your variable. In my article on binary floating point numbers in .NET, there's a C# class which lets you see the absolutely exact number stored in a double. The online version isn't working at the moment - I'll try to put one up on another site.
Given that the debugger sees the "actual" value, it's got to make a judgement call about what to display - it could show you the value rounded to a few decimal places, or a more precise value. Some debuggers do a better job than others at reading developers' minds, but it's a fundamental problem with binary floating point numbers.
Use the fixed-point decimal type if you want stability at the limits of precision. There are overheads, and you must explicitly cast if you wish to convert to floating point. If you do convert to floating point you will reintroduce the instabilities that seem to bother you.
Alternately you can get over it and learn to work with the limited precision of floating point arithmetic. For example you can use rounding to make values converge, or you can use epsilon comparisons to describe a tolerance. "Epsilon" is a constant you set up that defines a tolerance. For example, you may choose to regard two values as being equal if they are within 0.0001 of each other.
It occurs to me that you could use operator overloading to make epsilon comparisons transparent. That would be very cool.
For mantissa-exponent representations EPSILON must be computed to remain within the representable precision. For a number N, Epsilon = N / 10E+14
System.Double.Epsilon is the smallest representable positive value for the Double type. It is too small for our purpose. Read Microsoft's advice on equality testing
I've come across this before (on my blog) - I think the surprise tends to be that the 'irrational' numbers are different.
By 'irrational' here I'm just referring to the fact that they can't be accurately represented in this format. Real irrational numbers (like π - pi) can't be accurately represented at all.
Most people are familiar with 1/3 not working in decimal: 0.3333333333333...
The odd thing is that 1.1 doesn't work in floats. People expect decimal values to work in floating point numbers because of how they think of them:
1.1 is 11 x 10^-1
When actually they're in base-2
1.1 is 154811237190861 x 2^-47
You can't avoid it, you just have to get used to the fact that some floats are 'irrational', in the same way that 1/3 is.
One way you can avoid this is to use a library that uses an alternative method of representing decimal numbers, such as BCD
If you are using Java and you need accuracy, use the BigDecimal class for floating point calculations. It is slower but safer.
Seems to me that 21.399999618530273 is the single precision (float) representation of 21.4. Looks like the debugger is casting down from double to float somewhere.
You cant avoid this as you're using floating point numbers with fixed quantity of bytes. There's simply no isomorphism possible between real numbers and its limited notation.
But most of the time you can simply ignore it. 21.4==21.4 would still be true because it is still the same numbers with the same error. But 21.4f==21.4 may not be true because the error for float and double are different.
If you need fixed precision, perhaps you should try fixed point numbers. Or even integers. I for example often use int(1000*x) for passing to debug pager.
Dangers of computer arithmetic
If it bothers you, you can customize the way some values are displayed during debug. Use it with care :-)
Enhancing Debugging with the Debugger Display Attributes
Refer to General Decimal Arithmetic
Also take note when comparing floats, see this answer for more information.
According to the javadoc
"If at least one of the operands to a numerical operator is of type double, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator is a value of type double. If the other operand is not a double, it is
first widened (§5.1.5) to type double by numeric promotion (§5.6)."
Here is the Source

Why does for loop using a double fail to terminate

I'm looking through old exam questions (currently first year of uni.) and I'm wondering if someone could explain a bit more thoroughly why the following for loop does not end when it is supposed to. Why does this happen? I understand that it skips 100.0 because of a rounding-error or something, but why?
for(double i = 0.0; i != 100; i = i +0.1){
System.out.println(i);
}
The number 0.1 cannot be exactly represented in binary, much like 1/3 cannot be exactly represented in decimal, as such you cannot guarantee that:
0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1==1
This is because in binary:
0.1=(binary)0.00011001100110011001100110011001....... forever
However a double cannot contain an infinite precision and so, just as we approximate 1/3 to 0.3333333 so must the binary representation approximate 0.1.
Expanded decimal analogy
In decimal you may find that
1/3+1/3+1/3
=0.333+0.333+0.333
=0.999
This is exactly the same problem. It should not be seen as a weakness of floating point numbers as our own decimal system has the same difficulties (but for different numbers, someone with a base-3 system would find it strange that we struggled to represent 1/3). It is however an issue to be aware of.
Demo
A live demo provided by Andrea Ligios shows these errors building up.
Computers (at least current ones) works with binary data. Moreover, there is a length limitation for computers to process in their arithmetic logic units (i.e. 32bits, 64bits etc).
Representing integers in binary form is simple on the contrary we cant say the same thing for floating points.
As shown above there is a special way of representing floating points according to IEEE-754 which is also accepted as defacto by processor producers and software guys that's why it is important for everyone to know about it.
If we look at the maximum value of a double in java (Double.MAX_VALUE) is 1.7976931348623157E308 (>10^307). only with 64 bits, huge numbers could be represented however problem is the precision.
As '==' and '!=' operators compare numbers bitwise, in your case 0.1+0.1+0.1 is not equal to 0.3 in terms of bits they are represented.
As a conclusion, to fit huge floating point numbers in a few bits clever engineers decided to sacrifice precision. If you are working on floating points you shouldn't use '==' or '!=' unless you are sure what you are doing.
As a general rule, never use double to iterate with due to rounding errors (0.1 may look nice when written in base 10, but try writing it in base 2—which is what double uses). What you should do is use a plain int variable to iterate and calculate the double from it.
for (int i = 0; i < 1000; i++)
System.out.println(i/10.0);
First of all, I'm going to explain some things about doubles. This will actually take place in base ten for ease of understanding.
Take the value one-third and try to express it in base ten. You get 0.3333333333333.... Let's say we need to round it to 4 places. We get 0.3333. Now, let's add another 1/3. We get 0.6666333333333.... which rounds to 0.6666. Let's add another 1/3. We get 0.9999, not 1.
The same thing happens with base two and one-tenth. Since you're going by 0.110 and 0.110 is a repeating binary value(like 0.1666666... in base ten), you'll have just enough error to miss one hundred when you do get there.
1/2 can be represented in base ten just fine, and 1/5 can as well. This is because the prime factors of the denominator are a subset of the factors of the base. This is not the case for one third in base ten or one tenth in base two.
It should be for(double a = 0.0; a < 100.0; a = a + 0.01)
Try and see if this works instead

Rounding Errors?

In my course, I am told:
Continuous values are represented approximately in memory, and therefore computing with floats involves rounding errors. These are tiny discrepancies in bit patterns; thus the test e==f is unsafe if e and f are floats.
Referring to Java.
Is this true? I've used comparison statements with doubles and floats and have never had rounding issues. Never have I read in a textbook something similar. Surely the virtual machine accounts for this?
It is true.
It is an inherent limitation of how floating point values are represented in memory in a finite number of bits.
This program, for instance, prints "false":
public class Main {
public static void main(String[] args) {
double a = 0.7;
double b = 0.9;
double x = a + 0.1;
double y = b - 0.1;
System.out.println(x == y);
}
}
Instead of exact comparison with '==' you usually decide on some level of precision and ask if the numbers are "close enough":
System.out.println(Math.abs(x - y) < 0.0001);
This applies to Java just as much as to any other language using floating point. It's inherent in the design of the representation of floating point values in hardware.
More info on floating point values:
What Every Computer Scientist Should Know About Floating-Point Arithmetic
Yes, representing 0.1 exactly in base-2 is the same as trying to represent 1/3 exactly in base 10.
This is always true. There are some numbers which cannot be represented accurately using float point representation. Consider, for example, pi. How would you represent a number which has infinite digits, within a finite storage? Therefore, when comparing numbers you should check if the difference between them is smaller then some epsilon. Also, there are several classes which exist that can help you achieve greater accuracy such as BigDecimal and BigInteger.
It is right. Note that Java has nothing to do with it, the problem is inherent in floating point math in ANY language.
You can often get away with it with classroom-level problems but it's not going to work in the real world. Sometimes it won't work in the classroom.
An incident from long ago back in school. The teacher of an intro class assigned a final exam problem that was proving a real doozy for many of the better students--it wasn't working and they didn't know why. (I saw this as a lab assistant, I wasn't in the class.) Finally some started asking me for help and some probing revealed the problem: They had never been taught about the inherent inaccuracy of floating point math.
Now, there were two basic approaches to this problem, a brute force one (which by chance worked in this case as it made the same errors every time) and a more elegant one (which would make different errors and not work.) Anyone who tried the elegant approach would hit a brick wall without having any idea why. I helped a bunch of them and stuck in a comment explaining why and to contact me if he had questions.
Of course next semester I hear from him about this and I basically floored the entire department with a simple little program:
10 X = 3000000
20 X = X + 1
30 If X < X + 1 goto 20
40 Print "X = X + 1"
Despite what every teacher in the department thought, this WILL terminate. The 3 million seed is simply to make it terminate faster. (If you don't know basic: There are no gimmicks here, just exhausting the precision of floating point numbers.)
Yes, as other answers have said. I want to add that I recommend you this article about floating point accuracy: Visualizing floats
Of course it is true. Think about it. Any number must be represented in binary.
Picture: "1000" as 0.5or 1/2, that is, 2 ** -1. Then "0100" is 0.25 or 1/4. You can see where I'm going.
How many numbers can you represent in this manner? 2**4. Adding more bits duplicates the available space, but it is never infinite. 1/3 or 1/10, for the matter 1/n, any number not multiple of 2 cannot be really represented.
1/3 could be "0101" (0.3125) or "0110" (0.375). Either value if you multiply it by 3, will not be 1. Of course you could add special rules. Say you "when you add 3 times '0101', make it 1"... this approach won't work in the long run. You can catch some but then how about 1/6 times 2?
It's not a problem of binary representation, any finite representation has numbers that you cannot represent, they are infinite after all.
Most CPUs (and computer languages) use IEEE 754 floating point arithmetic. Using this notation, there are decimal numbers that have no exact representation in this notation, e.g. 0.1. So if you divide 1 by 10 you won't get an exact result. When performing several calculations in a row, the errors sum up. Try the following example in python:
>>> 0.1
0.10000000000000001
>>> 0.1 / 7 * 10 * 7 == 1
False
That's not really what you'd expect mathematically.
By the way:
A common misunderstanding concerning floating point numbers is, that the results are not precise and cannot be comapared safely. This is only true if you really use fractions of numbers. If all your math is in the integer domain, doubles and floats do exactly the same as ints and also can be compared safely. They can be safely used as loop counters, for example.
yes, Java also uses floating point arithmetic.

Categories

Resources