How accurate is "double-precision floating-point format"? - java

Let's say, using java, I type
double number;
If I need to use very big or very small values, how accurate can they be?
I tried to read how doubles and floats work, but I don't really get it.
For my term project in intro to programming, I might need to use different numbers with big ranges of value (many orders of magnitude).
Let's say I create a while loop,
while (number[i-1] - number[i] > ERROR) {
//does stuff
}
Does the limitation of ERROR depend on the size of number[i]? If so, how can I determine how small can ERROR be in order to quit the loop?
I know my teacher explained it at some point, but I can't seem to find it in my notes.

Does the limitation of ERROR depend on the size of number[i]?
Yes.
If so, how can I determine how small can ERROR be in order to quit the loop?
You can get the "next largest" double using Math.nextUp (or the "next smallest" using Math.nextDown), e.g.
double nextLargest = Math.nextUp(number[i-1]);
double difference = nextLargest - number[i-1];
As Radiodef points out, you can also get the difference directly using Math.ulp:
double difference = Math.ulp(number[i-1]);
(but I don't think there's an equivalent method for "next smallest")

If you don't tell us what you want to use it for, then we cannot answer anything more than what is standard knowledge: a double in java has about 16 significant digits, (that's digits of the decimal numbering system,) and the smallest possible value is 4.9 x 10-324. That's in all likelihood far higher precision than you will need.
The epsilon value (what you call "ERROR") in your question varies depending on your calculations, so there is no standard answer for it, but if you are using doubles for simple stuff as opposed to highly demanding scientific stuff, just use something like 1 x 10-9 and you will be fine.

Both the float and double primitive types are limited in terms of the amount of data they can store. However, if you want to know the maximum values of the two types, then run the code below with your favourite IDE.
System.out.println(Float.MAX_VALUE);
System.out.println(Double.MAX_VALUE);
double data type is a double-precision 64-bit IEEE 754 floating point (digits of precision could be between 15 to 17 decimal digits).
float data type is a single-precision 32-bit IEEE 754 floating point (digits of precision could be between 6 to 9 decimal digits).
After running the code above, if you're not satisfied with their ranges than I would recommend using BigDecimal as this type doesn't have a limit (rather your RAM is the limit).

Related

Is it sufficient to convert a double to a BigDecimal just before addition to retain original precision?

We are solving a numeric precision related bug. Our system collects some numbers and spits their sum.
The issue is that the system does not retain the numeric precision, e.g. 300.7 + 400.9 = 701.599..., while expected result would be 701.6. The precision is supposed to adapt to the input values so we cannot just round results to fixed precision.
The problem is obvious, we use double for the values and addition accumulates the error from the binary representation of the decimal value.
The path of the data is following:
XML file, type xsd:decimal
Parse into a java primitive double. Its 15 decimal places should be enough, we expect values no longer than 10 digits total, 5 fraction digits.
Store into DB MySql 5.5, type double
Load via Hibernate into a JPA entity, i.e. still primitive double
Sum bunch of these values
Print the sum into another XML file
Now, I assume the optimal solution would be converting everything to a decimal format. Unsurprisingly, there is a pressure to go with the cheapest solution. It turns out that converting doubles to BigDecimal just before adding a couple of numbers works in case B in following example:
import java.math.BigDecimal;
public class Arithmetic {
public static void main(String[] args) {
double a = 0.3;
double b = -0.2;
// A
System.out.println(a + b);//0.09999999999999998
// B
System.out.println(BigDecimal.valueOf(a).add(BigDecimal.valueOf(b)));//0.1
// C
System.out.println(new BigDecimal(a).add(new BigDecimal(b)));//0.099999999999999977795539507496869191527366638183593750
}
}
More about this:
Why do we need to convert the double into a string, before we can convert it into a BigDecimal?
Unpredictability of the BigDecimal(double) constructor
I am worried that such a workaround would be a ticking bomb.
First, I am not so sure that this arithmetic is bullet proof for all cases.
Second, there is still some risk that someone in the future might implement some changes and change B to C, because this pitfall is far from obvious and even a unit test may fail to reveal the bug.
I would be willing to live with the second point but the question is: Would this workaround provide correct results? Could there be a case where somehow
Double.valueOf("12345.12345").toString().equals("12345.12345")
is false? Given that Double.toString, according to javadoc, prints just the digits needed to uniquely represent underlying double value, so when parsed again, it gives the same double value? Isn't that sufficient for this use case where I only need to add the numbers and print the sum with this magical Double.toString(Double d) method? To be clear, I do prefer what I consider the clean solution, using BigDecimal everywhere, but I am kind of short of arguments to sell it, by which I mean ideally an example where conversion to BigDecimal before addition fails to do the job described above.
If you can't avoid parsing into primitive double or store as double, you should convert to BigDecimal as early as possible.
double can't exactly represent decimal fractions. The value in double x = 7.3; will never be exactly 7.3, but something very very close to it, with a difference visible from the 16th digit or so on to the right (giving 50 decimal places or so). Don't be mislead by the fact that printing might give exactly "7.3", as printing already does some kind of rounding and doesn't show the number exactly.
If you do lots of computations with double numbers, the tiny differences will eventually sum up until they exceed your tolerance. So using doubles in computations where decimal fractions are needed, is indeed a ticking bomb.
[...] we expect values no longer than 10 digits total, 5 fraction digits.
I read that assertion to mean that all numbers you deal with, are to be exact multiples of 0.00001, without any further digits. You can convert doubles to such BigDecimals with
new BigDecimal.valueOf(Math.round(doubleVal * 100000), 5)
This will give you an exact representation of a number with 5 decimal fraction digits, the 5-fraction-digits one that's closest to the input doubleVal. This way you correct for the tiny differences between the doubleVal and the decimal number that you originally meant.
If you'd simply use BigDecimal.valueOf(double val), you'd go through the string representation of the double you're using, which can't guarantee that it's what you want. It depends on a rounding process inside the Double class which tries to represent the double-approximation of 7.3 (being maybe 7.30000000000000123456789123456789125) with the most plausible number of decimal digits. It happens to result in "7.3" (and, kudos to the developers, quite often matches the "expected" string) and not "7.300000000000001" or "7.3000000000000012" which both seem equally plausible to me.
That's why I recommend not to rely on that rounding, but to do the rounding yourself by decimal shifting 5 places, then rounding to the nearest long, and constructing a BigDecimal scaled back by 5 decimal places. This guarantees that you get an exact value with (at most) 5 fractional decimal places.
Then do your computations with the BigDecimals (using the appropriate MathContext for rounding, if necessary).
When you finally have to store the number as a double, use BigDecimal.doubleValue(). The resulting double will be close enough to the decimal that the above-mentioned conversion will surely give you the same BigDecimal that you had before (unless you have really huge numbers like 10 digits before the decimal point - the you're lost with double anyway).
P.S. Be sure to use BigDecimal only if decimal fractions are relevant to you - there were times when the British Shilling currency consisted of twelve Pence. Representing fractional Pounds as BigDecimal would give a disaster much worse than using doubles.
It depends on the Database you are using. If you are using SQL Server you can use data type as numeric(12, 8) where 12 represent numeric value and 8 represents precision. similarly, for my SQL DECIMAL(5,2) you can use.
You won't lose any precision value if you use the above-mentioned datatype.
Java Hibernate Class :
You can define
private double latitude;
Database:

Wrong Output Dollar Amount To Coins [duplicate]

double r = 11.631;
double theta = 21.4;
In the debugger, these are shown as 11.631000000000000 and 21.399999618530273.
How can I avoid this?
These accuracy problems are due to the internal representation of floating point numbers and there's not much you can do to avoid it.
By the way, printing these values at run-time often still leads to the correct results, at least using modern C++ compilers. For most operations, this isn't much of an issue.
I liked Joel's explanation, which deals with a similar binary floating point precision issue in Excel 2007:
See how there's a lot of 0110 0110 0110 there at the end? That's because 0.1 has no exact representation in binary... it's a repeating binary number. It's sort of like how 1/3 has no representation in decimal. 1/3 is 0.33333333 and you have to keep writing 3's forever. If you lose patience, you get something inexact.
So you can imagine how, in decimal, if you tried to do 3*1/3, and you didn't have time to write 3's forever, the result you would get would be 0.99999999, not 1, and people would get angry with you for being wrong.
If you have a value like:
double theta = 21.4;
And you want to do:
if (theta == 21.4)
{
}
You have to be a bit clever, you will need to check if the value of theta is really close to 21.4, but not necessarily that value.
if (fabs(theta - 21.4) <= 1e-6)
{
}
This is partly platform-specific - and we don't know what platform you're using.
It's also partly a case of knowing what you actually want to see. The debugger is showing you - to some extent, anyway - the precise value stored in your variable. In my article on binary floating point numbers in .NET, there's a C# class which lets you see the absolutely exact number stored in a double. The online version isn't working at the moment - I'll try to put one up on another site.
Given that the debugger sees the "actual" value, it's got to make a judgement call about what to display - it could show you the value rounded to a few decimal places, or a more precise value. Some debuggers do a better job than others at reading developers' minds, but it's a fundamental problem with binary floating point numbers.
Use the fixed-point decimal type if you want stability at the limits of precision. There are overheads, and you must explicitly cast if you wish to convert to floating point. If you do convert to floating point you will reintroduce the instabilities that seem to bother you.
Alternately you can get over it and learn to work with the limited precision of floating point arithmetic. For example you can use rounding to make values converge, or you can use epsilon comparisons to describe a tolerance. "Epsilon" is a constant you set up that defines a tolerance. For example, you may choose to regard two values as being equal if they are within 0.0001 of each other.
It occurs to me that you could use operator overloading to make epsilon comparisons transparent. That would be very cool.
For mantissa-exponent representations EPSILON must be computed to remain within the representable precision. For a number N, Epsilon = N / 10E+14
System.Double.Epsilon is the smallest representable positive value for the Double type. It is too small for our purpose. Read Microsoft's advice on equality testing
I've come across this before (on my blog) - I think the surprise tends to be that the 'irrational' numbers are different.
By 'irrational' here I'm just referring to the fact that they can't be accurately represented in this format. Real irrational numbers (like π - pi) can't be accurately represented at all.
Most people are familiar with 1/3 not working in decimal: 0.3333333333333...
The odd thing is that 1.1 doesn't work in floats. People expect decimal values to work in floating point numbers because of how they think of them:
1.1 is 11 x 10^-1
When actually they're in base-2
1.1 is 154811237190861 x 2^-47
You can't avoid it, you just have to get used to the fact that some floats are 'irrational', in the same way that 1/3 is.
One way you can avoid this is to use a library that uses an alternative method of representing decimal numbers, such as BCD
If you are using Java and you need accuracy, use the BigDecimal class for floating point calculations. It is slower but safer.
Seems to me that 21.399999618530273 is the single precision (float) representation of 21.4. Looks like the debugger is casting down from double to float somewhere.
You cant avoid this as you're using floating point numbers with fixed quantity of bytes. There's simply no isomorphism possible between real numbers and its limited notation.
But most of the time you can simply ignore it. 21.4==21.4 would still be true because it is still the same numbers with the same error. But 21.4f==21.4 may not be true because the error for float and double are different.
If you need fixed precision, perhaps you should try fixed point numbers. Or even integers. I for example often use int(1000*x) for passing to debug pager.
Dangers of computer arithmetic
If it bothers you, you can customize the way some values are displayed during debug. Use it with care :-)
Enhancing Debugging with the Debugger Display Attributes
Refer to General Decimal Arithmetic
Also take note when comparing floats, see this answer for more information.
According to the javadoc
"If at least one of the operands to a numerical operator is of type double, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator is a value of type double. If the other operand is not a double, it is
first widened (§5.1.5) to type double by numeric promotion (§5.6)."
Here is the Source

Why does for loop using a double fail to terminate

I'm looking through old exam questions (currently first year of uni.) and I'm wondering if someone could explain a bit more thoroughly why the following for loop does not end when it is supposed to. Why does this happen? I understand that it skips 100.0 because of a rounding-error or something, but why?
for(double i = 0.0; i != 100; i = i +0.1){
System.out.println(i);
}
The number 0.1 cannot be exactly represented in binary, much like 1/3 cannot be exactly represented in decimal, as such you cannot guarantee that:
0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1==1
This is because in binary:
0.1=(binary)0.00011001100110011001100110011001....... forever
However a double cannot contain an infinite precision and so, just as we approximate 1/3 to 0.3333333 so must the binary representation approximate 0.1.
Expanded decimal analogy
In decimal you may find that
1/3+1/3+1/3
=0.333+0.333+0.333
=0.999
This is exactly the same problem. It should not be seen as a weakness of floating point numbers as our own decimal system has the same difficulties (but for different numbers, someone with a base-3 system would find it strange that we struggled to represent 1/3). It is however an issue to be aware of.
Demo
A live demo provided by Andrea Ligios shows these errors building up.
Computers (at least current ones) works with binary data. Moreover, there is a length limitation for computers to process in their arithmetic logic units (i.e. 32bits, 64bits etc).
Representing integers in binary form is simple on the contrary we cant say the same thing for floating points.
As shown above there is a special way of representing floating points according to IEEE-754 which is also accepted as defacto by processor producers and software guys that's why it is important for everyone to know about it.
If we look at the maximum value of a double in java (Double.MAX_VALUE) is 1.7976931348623157E308 (>10^307). only with 64 bits, huge numbers could be represented however problem is the precision.
As '==' and '!=' operators compare numbers bitwise, in your case 0.1+0.1+0.1 is not equal to 0.3 in terms of bits they are represented.
As a conclusion, to fit huge floating point numbers in a few bits clever engineers decided to sacrifice precision. If you are working on floating points you shouldn't use '==' or '!=' unless you are sure what you are doing.
As a general rule, never use double to iterate with due to rounding errors (0.1 may look nice when written in base 10, but try writing it in base 2—which is what double uses). What you should do is use a plain int variable to iterate and calculate the double from it.
for (int i = 0; i < 1000; i++)
System.out.println(i/10.0);
First of all, I'm going to explain some things about doubles. This will actually take place in base ten for ease of understanding.
Take the value one-third and try to express it in base ten. You get 0.3333333333333.... Let's say we need to round it to 4 places. We get 0.3333. Now, let's add another 1/3. We get 0.6666333333333.... which rounds to 0.6666. Let's add another 1/3. We get 0.9999, not 1.
The same thing happens with base two and one-tenth. Since you're going by 0.110 and 0.110 is a repeating binary value(like 0.1666666... in base ten), you'll have just enough error to miss one hundred when you do get there.
1/2 can be represented in base ten just fine, and 1/5 can as well. This is because the prime factors of the denominator are a subset of the factors of the base. This is not the case for one third in base ten or one tenth in base two.
It should be for(double a = 0.0; a < 100.0; a = a + 0.01)
Try and see if this works instead

Why do floats seem to add incorrectly in Java? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicates:
Is JavaScript's Math broken?
Java floating point arithmetic
I have the current code
for(double j = .01; j <= .17; j+=.01){
System.out.println(j);
}
the output is:
0.01
0.02
0.03
0.04
0.05
0.060000000000000005
0.07
0.08
0.09
0.09999999999999999
0.10999999999999999
0.11999999999999998
0.12999999999999998
0.13999999999999999
0.15
0.16
0.17
Can someone explain why this is happening? How do you fix this? Besides writing a rounding function?
Floats are an approximation of the actual number in Java, due to the way they're stored. If you need exact values, use a BigDecimal instead.
They are working correctly. Some decimal values are not representable exactly in binary floating point and get rounded to the closest value. See my answer to this question for more detail. The question was asked about Perl, but the answer applies equally to Java since it's a limitation of ALL floating point representations that do not have infinite precision (i.e. all of them).
As suggested by #Kaleb Brasee go and use BigDecimal's when accuracy is a must. Here is a link to a nice explanation of tiny details related to using floating point operations in Java http://firstclassthoughts.co.uk/java/traps/java_double_traps.html
There is also a link to issues involved with using BigDecimal's. Highly recommended to read them both. It really helped me.
Enjoy, Boro.
We humans are used to think in 'base 10' when we deal with floating point numbers 'by hand' (that is, literally when writing them on paper or when entering them into a computer). Because of this, it is possible for us to write down an exact representation of, say, 17%. We just write 0.17 (or 1.7E-1 etc). Trying to represent such a trivial thing as a third can not be done exactly with that system, because we have to write 0.3333333... with an infinite number of 3s, which is impossible.
Computers dealing with floating point not only have a limited number of bits to represent the mantissa (or significand) of the number, they are also restricted to express the mantissa in the base of two. That means that most percentages (which we humans with our base 10 floating point convention always can write exactly, like for example '0.17') are impossible for the computer to store exactly. Fractions like 0%, 25%, 50%, 75% and 100% can be expressed exactly as a floating point number in a computer, because it consists of either halves (2E-1) or quarters (2E-4) which fits nicely with a digital representation of a number. Percentage values like 17% or even trivial ones (for us humans!!) like 10% or 1% are as impossible for computers to store exactly simply because those numbers are, for the binary floating point system what the 'one third' is for the human (base 10) floating point system.
But if you carefully pick your floating point values, so they always are made of a whole number of 1/2^n where n might be 10 (meaning an integer number of 1/1024), then they can always be stored exactly without errors as a floating point number. So if you try to store 17/1024 in a computer, it will go smoothly. You can actually store it without error even using the 'human base 10' decimal system (but you would go nuts by the number of actual digits you have to deal with).
This is some reason I believe why some games express angles in a unit where a whole 360 degree turn is 256 angle units. Can be expressed without loss as a floating point number between 0 and 1 (where 1 means you go a full revolution).
It's normal in double representation on the computer. You lose some bits then you will have such results. Better solution is to do this:
for(int j = 1; j <= 17; j++){
System.out.println(j/100.0);
}
This is because floating point values are inherently not the same as reals in the mathematical sense.
In a computer, there is only a fixed number of bits that can be used to represent value. This means there are a finite number of values that it can hold. But there are an infinite amount of real numbers, thus not all of them can be represented exactly. But usually the value is something close. You can find a more detailed explanation here.
That is because of the limitations of IEEE754 the binary format to get the most out of 32 bit.
As others have pointed out, only numbers that are combinations of powers of two are exactly representable in (bianary) floating point format
If you need to store arbitrary numbers with arbitrary precision, then use BigDecimal.
If the problem is just a display issue, then you can get round this in how you display the number. For example:
String.format("%.2f", n)
will format the number to 2 decimal places.

ArithmeticException thrown during BigDecimal.divide

I thought java.math.BigDecimal is supposed to be The Answer™ to the need of performing infinite precision arithmetic with decimal numbers.
Consider the following snippet:
import java.math.BigDecimal;
//...
final BigDecimal one = BigDecimal.ONE;
final BigDecimal three = BigDecimal.valueOf(3);
final BigDecimal third = one.divide(three);
assert third.multiply(three).equals(one); // this should pass, right?
I expect the assert to pass, but in fact the execution doesn't even get there: one.divide(three) causes ArithmeticException to be thrown!
Exception in thread "main" java.lang.ArithmeticException:
Non-terminating decimal expansion; no exact representable decimal result.
at java.math.BigDecimal.divide
It turns out that this behavior is explicitly documented in the API:
In the case of divide, the exact quotient could have an infinitely long decimal expansion; for example, 1 divided by 3. If the quotient has a non-terminating decimal expansion and the operation is specified to return an exact result, an ArithmeticException is thrown. Otherwise, the exact result of the division is returned, as done for other operations.
Browsing around the API further, one finds that in fact there are various overloads of divide that performs inexact division, i.e.:
final BigDecimal third = one.divide(three, 33, RoundingMode.DOWN);
System.out.println(three.multiply(third));
// prints "0.999999999999999999999999999999999"
Of course, the obvious question now is "What's the point???". I thought BigDecimal is the solution when we need exact arithmetic, e.g. for financial calculations. If we can't even divide exactly, then how useful can this be? Does it actually serve a general purpose, or is it only useful in a very niche application where you fortunately just don't need to divide at all?
If this is not the right answer, what CAN we use for exact division in financial calculation? (I mean, I don't have a finance major, but they still use division, right???).
If this is not the right answer, what CAN we use for exact division in financial calculation? (I mean, I don't have a finance major, but they still use division, right???).
Then I was in primary school1, they taught me that when you divide by 1 by 3 you get a 0.33333... i.e. a recurring decimal. Division of numbers represented in decimal form is NOT exact. In fact for any fixed base there will be fractions (the result of dividing one integer by another) that cannot be represented exactly as a finite precision floating point number in that base. (The number will have a recurring part ...)
When you do financial calculations involving division, you have to consider the what to do with a recurring fraction. You can round it up, or down, or to the nearest whole number, or something else, but basically you cannot just forget about the issue.
The BigDecimal javadoc says this:
The BigDecimal class gives its user complete control over rounding behavior. If no rounding mode is specified and the exact result cannot be represented, an exception is thrown; otherwise, calculations can be carried out to a chosen precision and rounding mode by supplying an appropriate MathContext object to the operation.
In other words, it is your responsibility to tell BigDecimal what to do about rounding.
EDIT - in response to these followups from the OP.
How does BigDecimal detect infinite recurring decimal?
It does not explicitly detect the recurring decimal. It simply detects that the result of some operation cannot be represented exactly using the specified precision; e.g. too many digits are required after the decimal point for an exact representation.
It must keep track of and detect a cycle in the dividend. It COULD HAVE chosen to handle this another way, by marking where the recurring portion is, etc.
I suppose that BigDecimal could have been specified to represent a recurring decimal exactly; i.e. as a BigRational class. However, this would make the implementation more complicated and more expensive to use2. And since most people expect numbers to be displayed in decimal, and the problem of recurring decimal recurs at that point.
The bottom line is that this extra complexity and runtime cost would be inappropriate for typical use-cases for BigDecimal. This includes financial calculations, where accounting conventions do not allow you to use recurring decimals.
1 - It was an excellent primary school. You may have been taught this in high school.
2 - Either you try to remove common factors of the divisor and dividend (computationally expensive), or allow them to grow without bounds (expensive in space usage and computationally expensive for subsequent operations).
The class is BigDecimal not BigFractional. From some of your comments it sounds like you just want to complain that someone didn't build in all possible number handling algorithms into this class. Financial apps do not need infinite decimal precision; just perfectly accurate values to the precision required (typically 0, 2, 4, or 5 decimal digits).
Actually I have dealt with many financial applications that use double. I don't like it but that was the way they are written (not in Java either). When there are exchange rates and unit conversions then there are both the potential of rounding and bruising problems. BigDecimal eliminates the later but there is still the former for division.
If you want to work with decimals, not rational numbers, and you need exact arithmetics before the final rounding (rounding to cents or something), here's a little trick.
You can always manipulate your formulas so that there's only one final division. That way you won't lose precision during calculations and you'll always get the correctly rounded result. For instance
a/b + c
equals
(a + bc) / b.
By the way, I'd really appreciate
insight from people who've worked with
financial software. I often heard
BigDecimal being advocated over double
In financial reports we use alwasy BigDecimal with scale = 2 and ROUND_HALF_UP, since all printed values in a report must be lead to a reproducable result. If someone checks this using a simple calculator.
In switzerland they round to 0.05 since they no longer have 1 or 2 Rappen coins.
You should prefer BigDecimal for finance calculations. Rounding should be specified by the business. E.g. an amount (100,00$) has to be split equally across three accounts. There has to be a business rule which account takes the extra cent.
Double, floats are not approriate for use in financial applications because they can not represent fractions of 1 precisely that are not exponentials of 2. E.g. consider 0.6 = 6/10 = 1*1/2 + 0*1/4 + 0*1/8 + 1*1/16 + ... = 0.1001...b
For mathematic calculations you can use a symbolic number, e.g. storing denominator and numerator or even a whole expression (e.g. this number is sqrt(5)+3/4). As this is not the main use case of the java api you won' find it there.
Is there a need for
a=1/3;
b=a*3;
resulting in
b==1;
in financial systems? I guess not. In financial systems it is defined, which roundmode and scale has to be used, when doing calculations. In some situations, the roundmode and scale is defined in the law. All components can rely on such a defined behaviour. Returning b==1 would be a failure, because it would not fulfill the specified behaviour. This is very important when calculating prices etc.
It is like the IEEE 754 specifications for representing floats in binary digits. A component must not optimize a "better" representation without loss of information, because this will break the contract.
To divide save, you have to set the MATHcontext,
BigDecimal bd = new BigDecimal(12.12, MathContext.DECIMAL32).divide(new BigDecimal(2)).setScale(2, RoundingMode.HALF_UP);
I accept that Java doesn't have great support for representing fractions, but you have to realise that it is impossible to keep things entirely precise when working with computers. At least in this case, the exception is telling you that precision is being lost.
As far as I know, "infinite precision arithmetic with decimal numbers" just isn't going to happen. If you have to work with decimals, what you're doing is probably fine, just catch the exceptions. Otherwise, a quick google search finds some interesting resources for working with fractions in Java:
http://commons.apache.org/math/userguide/fraction.html
http://www.merriampark.com/fractions.htm
Best way to represent a fraction in Java?
Notice we are using a computer... A computer has a lot of ram and precision takes ram. So when you want an infinite precision you need
(infinite * infinite) ^ (infinite * Integer.MAX_VALUE) terrabyte ram...
I know 1 / 3 is 0.333333... and it should be possible to store it in ram like "one divided by three" and then you can multiply it back and you should have 1. But I don't think Java has something like that...
Maybe you have to win the Nobel Price for writing something doing that. ;-)

Categories

Resources