I love the way I can profile a Java/.Net app to find performance bottlenecks or memory problems. For example, it's very easy to find a performance bottleneck looking at the call tree with execution times and invocation counts per method. In SQL Server, I have stored procedures that call other stored procedures that depend on views, which is similar to Java/.Net methods calling other methods. So it seems the same kind of profiler would be very helpful here. However, I looked far and wide and could not find one. Is anyone aware of such tools, either for SQL Server or any other DBMS?
Update: Thanks fro your replies around SQL Server Profiler, but this tool is very limited. Take a look at the screenshot.
Check out SQL Nexus Tool. This has some good reports on identifying bottlenecks.
SQL Nexus is a tool that helps you identify the root cause of SQL Server performance issues. It loads and analyzes performance data collected by SQLDiag and PSSDiag. It can dramatically reduce the amount of time you spend manually analyzing data.
In one of the Inside SQL 2005 books (maybe T-SQL Querying), there was a cool technique in which the author dumps the SQL profiler output to a table or excel file and applies a pivot to get the output in a similar format as your screenshot.
I have not seen any built-in SQL tools which gives you that kind of analysis.
Another useful post.
In addition to SQL Server Profiler, as mentioned in a comment from #Galwegian, also check out your execution plan when you run a query.
http://www.sql-server-performance.com/tips/query_execution_plan_analysis_p1.aspx
http://en.wikipedia.org/wiki/Query_plan
Another whole thread about the SQL Server profiler:
Identifying SQL Server Performance Problems
I understand what you are talking about, but typically, database optimization takes place at a finer grained level. If the database activity is driven from a client, you should be able to use the existing client profiler to get the total time on each step and then address the low hanging fruit (whether in the database or not).
When you need to profile a particular database step in detail, you can use profiler and a trace.
Typically, the database access has a certain granularity which is addressed on an individual basis and database activity is not linear with all kinds of user access going on, whereas a program profiler is typically profiling a linear path of code.
As mentioned, SQL Server Profiler, which is great for checking what parameters you're program is passing to SQL etc. It won't show you an execution tree though if that's what you need. For that, all I can think of is to use Show Plan to see what exactly is executed at run-time. E.g. if you're calling an sp that calls a view, Profiler will only show you that the sp was executed and what params were passed in.
Also, the Windows Performance Monitor has extensive run-time performance metrics specific to SQL Server. You can run it on the server, or connect remotely.
To find performance bottlenecks, you can use the Database Engine Tuning Advisor (found in Tools menu of SQL Server Management Studio. It provides suggestions for optimizing your queries and offers to optimize them for you automatically (e.x. create the appropriate indexes, etc.).
You could use Sql Profiler - which covers the profiling aspect, but I tend to think of it more as a logging tool.
For diagnosing performance, you should probably just be looking at the query plan.
There's the sql server profiler, but despite it's name, it doesn't do what you want, by the sound of your question. It'll show you a detailed view of all the calls going on in the database. It's Better for troubleshooting the app as a whole, not just one sproc at a time
Sounds like you need to view the execution plan of your queries/spocs in query analyzer and that will give you something akin to the data you are looking for.
As mentioned by several replies the SQL Profiler will show what you're asking for. What you'll have to be sure to do is to turn on the events SP:StmtCompleted, which is in the Stored Procedures group, and if you want the query plans as well turn on Showplan XML Statistics Profile, which is in the Performance group. The XML plan last one gives you a graphical description and shows the actual rows processed by each step in the plan.
If the profiler is slowing your app down, filter it as much as possible and consider going to a server side trace.
HTH
Andy
Related
For reasons that are beside the point, a company has bought an Exadata Eighth Rack. Some of the managers thought that this would improve performance of current applications. The problem is that hardly any application makes intensive database work (yes, this is a good moment for looking at facepalm animated gifs). So, at the moment, migrations have proven just little benefit.
The question is obvious. Most of the applications are written in Java, and some of them make intensive use of Solr and Cassandra. For what I know, Exadata is intended for storing data, while Exalogic can hold applications too. Anyway, I'm wondering if there is some way of taking advantage of mentioned infrastructure.
Replace Solr with Oracle Text.
Before I get down-voted: normally I would not recommend replacing existing code built with a popular, open-source program with a seldom-used, proprietary product. But if you want to use a lot of space and CPU on your database servers then Oracle Text can definitely help.
As more generic advice, the primary role of a database is not to store data. A file system can do that. Databases are built to join data. If an application is reading a large amount of data and doing ad hoc joins, those are the jobs you want to move to the database.
Exadata -> Oracle Database extreme performance.
Exalogic -> Fusion Middleware extreme performance. (Java goes here)
Your best move will be refactoring the application to put as much workload as possible on the DB (PL/SQL).
Another thing I could think of, but this would be a radical approach I have never really tried it myself (Yes I work with Exadatas too) maybe you can give it a shot and let us know here...
What about using all those GBs on the Exadata's RAM and start tuning your Java application's latency? I mean with that gruesome amount of Memory you can try and set a real nice amount of heap and avoid Garbage Collection induced latency. Please do let me know here what comes out if you actually try this.
Which protocol do the Java applications use to connect to Oracle?
If it's not IPC (inter process communication, aka BEQUEATH, aka shared memory), but maybe TCP and you have many fast & tiny roundtrips, than this would be your low-hanging fruit - eliminate the network stack.
edit: just realized that exadata cannot run java applications by default (only ODA does) - so it wouldn't be possible to make use of IPC. However, perhaps you're able to test the impact of IPC in one of your applications using the former infrastructure?
Exadata cannot host any customer application. You cannot install anything there. You only can host Oracle database on Exadata.
It means you can use database features like DBFS (file system over Oracle database), Java option (storing and executing java code in database). But you need to check what options you have license for. And internal JVM is used, which cannot be customized or upgraded.
Exadata is database appliance designed to work with large amount of differently accessed data in very effective and manageable way.
How can we increase the performance of an application. My application is written using Java, Hibernate, Servlets, Wsdl i have used for web services. I have executed some of the tests on linux machine, so that i can get proper TPS of the execution.
but still , i am not satisfied by the performance.
So for this, what all steps i should try to increase the performance.
adding to above, i have executed code coverage and used find bugs in the code prominently for each and every test and every service i have written.
Individual suggestions are invited.
Thanks.
Profile your application, and remove all of your bottlenecks.
In addition, or better before, take a day or two and read as much from the Java Performance Tuning newsletters as you understand.
You should monitor your application with a tool like VisualVM, JProfiler etc. to determine the performance bottleneck(s). It is pointless to tune the application without knowing where the actual performance problems are located.
In a professional environment, I suggest dynaTrace that can show you performance bottlenecks along the execution path. The tool can show you exactly where the application spends its time.
Is the performance related to disk I/O or network I/O? In a high throughput system (from DB point of view) Hibernate might not be the best way to go. If you have a lot of writes I would recommend you use a different mechanism to write to database -- perhaps simply switching to simple JDBC might speed it up?
Secondly, is it the case that your webservices are taking too long to get back with results? SOAP is not the fastest protocols really -- have you looked at something like REST maybe coupled with JSON ?
I'm doing a school software project with my class mates in Java.
We store the info on a remote db.
When we start the application we pull all the information from the database and transform it into objects to use in our application (using java sql statemens).
In the application we edit some of these objects and then when we exit the application
we save or update information in the database using Hibernate.
As you see we dont use Hibernate for pulling in information, we use it just for saving and updating.
We have 2, but very similar problems.
The loading of object(when we start the app) and the saving of objects(with Hibernate) in the db(when closing the app) is taking too much time.
And our project its not a huge enterprise application, its a quite small app, we just manage some students, teachers, homeworks and tests. So our db is also very very small.
How could we increase performance ?
later edit: if we use a local database it runs very quick, it just runs slow on remote databases
Are you saying you are loading the entire database into memory and then manipulating it? If that is the case, why don't you instead simply use the database as a storage device, and do lookups and manipulation as necessary (using Hibernate if you like, or something else if you don't)? The key there is to make sure that you are using connection pooling, as that will reduce the connection time.
If this is what you are doing, then you could be running into memory issues as well - first, by not caching the entire database in memory, you will reduce memory and will spread out the network load from the beginning/end to the times when it needs to happen.
These 2 sentences are red flags for me :
When we start the application we pull
all the information from the database
and transform it into objects to use
in our application (using java sql
statemens). In the application we edit
some of these objects and then when we
exit the application we save or update
information in the database using
Hibernate.
Is there a requirements reason that you are loading all the information from the database into memory at startup, or why you're waiting until shutdown to save changes back in the database?
If not, I'd suggest a design change. If you've already got Hibernate mappings for the tables in the DB, I'd use Hibernate for both all of your CRUD (create, read, update, delete) operations. And, I'd only load the data that each page in your app needs, as it needs it.
If you can't make that kind of design change at this point, I think you've got to look closely at how you're managing the database connections. Are you using connection pools? Are you opening up multiple connections? Forgetting to release them?
Something else to look at. How are you using Hibernate to save the entities to the db? Are you doing a getHibernateTemplate().get on each one and then doing an entity.save or entity.update on each one? If so, that means you are also causing Hibernate to run a select query for each database object before it does a save or update. So, essentially, you'd be loading each database object twice (once at the beginning of the program, once before saving). To see if that's what's happening, you can turn on the show_sql property or use P6Spy to see exactly what queries Hibernate is running.
For what you are doing, you may very well be better off serializing your objects and writing them out to a flat file.
But, much more likely, you should just read / update objects directly from your database as needed instead of all at once, for all the reasons aperkins gives.
Also, consider what happens if your application crashes? If all of your updates are saved only in memory until the application is closed, everything would be lost if the app closes unexpectedly.
The difference in loading everything from a remote DB server versus loading everything from a local DB server is the network latency / pipe size. The network is a much smaller pipe than anything else. Two questions: first, how much data are we really talking about? Second, what is your network speed? 10/100/1000? Figure between 10 and 20% of your pipe size is going to be overhead due to everything from networking protocols to the actual queries themselves.
As others have stated, the way you've architected is usually high on the list of "don't do". When starting, pull only enough data to initialize the app. As the user works through it, pull what you need for that task.
The ONLY time you pull everything is when they are working in a disconnected state. In that case, you still don't load everything as objects in the application, you just work from a local data store which gets sync'ed with the remote server every so often.
The project its pretty much complete. we cant do large refactoring on it now.
I tried to use a second level cache for Hibernate when saving. EhCacheProvider.
in hibernate.xml:
net.sf.ehcache.hibernate.EhCacheProvider
i have done a config for the cache, ehcache.xml:
i have put the cache.jar in the project build path
and i have set the hibernate property for every class and set in the mapping.
But this cache doesn't seem to have an effect. I dont know if it works(if it is used).
Try minimising number of SQL queries, since every query has its own overhead.
You can enable database compression, which should speed things up when there is a lot of data.
Maybe you are connecting to the database many times?
Check the ping time of remote database server - it might be the problem.
As your application is just slow when running on a remote database server, I'd assume that the performance loss is due to:
Connecting to the server: try to reuse connections (pass the instance around) or use connection pooling
Query round-trip time: use as few queries as possible, see here in case of a hand-written DAL:
Preferred way of retrieving row with multiple relating rows
For hibernate you may use its batch functionality and adjust hibernate.batch_size.
In all cases, especially when you can't refactor larger parts of the codebase, use a profiler (method time or sql queries) to find the bottleneck. I bet you'll find thousands of queries, each taking 10ms RTT) which could be merged into one.
Some other things you can look into:
You can allocate more memory to the JVM
Use the jconsole tool to investigate what the bottlenecks are.
Why dont you have two separate threads?
Thread 1 will load your objects one by one.
Thread 2 will process objects as they are loaded.
Your app will seem more interactive at startup.
It never hurts to review the basics:
Improving speed means reducing time (obviously), and to do that, you find activities that take significant time but can be eliminated or replaced with something that uses less time. What I mean by activity is almost always a function call, method call, or property call, performed on a specific line of code for a specific purpose. If may invoke I/O or it may invoke computation, or both. If its purpose is not essential, then it can be optimized.
Many people use profilers to try to find these time-wasting lines of code, but most profilers miss the target because they look at functions, not lines, they go to sleep during I/O, and they worry about "self time".
Many more people try to guess what could be the problem, or they ask others to guess, such as by asking on SO. Such guesses, in the nature of guesses, are sometimes right - more often not, but people still invest time and resources in them.
There's a very simple way to find out for sure, without guessing, what could fruitfully be optimized, and here is one way to do it in Java.
Thanks for your answers. Their were more than helpful.
We completely solved this problem like so:
Refactored the LOAD code. Now it uses Hibernate with Lazy Fetching.
Refactored the SAVE code. Now it saves, just the data that was modified and right after the time it was modified. This way we dont have a HUGE save an the end.
Im amazed of how good it all went. The amount of new code we had to write was very very small.
I am on a LAMP stack for a website I am managing. There is a need to roll up usage statistics (a variety of things related to our desktop product).
I initially tackled the problem with PHP (being that I had a bunch of classes to work with the data already). All worked well on my dev box which was using 5.3.
Long story short, 5.1 memory management seems to suck a lot worse, and I've had to do a lot of fooling to get the long-term roll up scripts to run in a fixed memory space. Our server guys are unwilling to upgrade PHP at this time. I've since moved my dev server back to 5.1 so I don't run into this problem again.
For mining of MySQL databases to roll up statistics for different periods and resolutions, potentially running a process that does this all the time in the future (as opposed to on a cron schedule), what language choice do you recommend? I was looking at Python (I know it more or less), Java (don't know it that well), or sticking it out with PHP (know it quite well).
Edit: design clarification for commenter
Resolutions: The way the rollup script works currently, is I have some classes for defining resolutions and buckets. I have year, month, week, day -- given a "bucket number" each class gives a start and end timestamp that defines the time range for that bucket -- this is based on arbitrary epoch date. The system maintains "complete" records, ie it will complete its rolled up dataset for each resolution since the last time it was run, currently.
SQL Strat: The base stats are located in many dissimilar schemas and tables. I do individual queries for each rolled up stat for the most part, then fill one record for insert. Your are suggesting nested subqueries such as:
INSERT into rolled_up_stats (someval, someval, someval, ... ) VALUES (SELECT SUM(somestat) from someschema, SELECT AVG(somestat2) from someschema2)
Those subqueries will generate temporary tables, right? My experience is that had been slow as molasses in the past. Is it a better approach?
Edit 2: Adding some inline responses to the question
Language was a bottleneck in the case of 5.1 php -- I was essentially told I made the wrong language choice (though the scripts worked fine on 5.3). You mention python, which I am checking out for this task. To be clear, what I am doing is providing a management tool for usage statistics of a desktop product (the logs are actually written by an EJB server to mysql tables). I do apache log file analysis, as well as more custom web reporting on the web side, but this project is separate. The approach I've taken so far is aggregate tables. I'm not sure what these message queue products could do for me, I'll take a look.
To go a bit further -- the data is being used to chart activity over time at the service and the customer level, to allow management to understand how the product is being used. You might select a time period (April 1 to April 10) and retrieve a graph of total minutes of usage of a certain feature at different granularities (hours, days, months etc) depending on the time period selected. Its essentially an after-the-fact analysis of usage. The need seems to be tending towards real-time, however (look at the last hour of usage)
There are a lot of different approaches to this problem, some of which are mentioned here, but what you're doing with the data post-rollup is unclear...?
If you want to utilize this data to provide digg-like 'X diggs' buttons on your site, or summary graphs or something like that which needs to be available on some kind of ongoing basis, you can actually utilize memcache for this, and have your code keep the cache key for the particular statistic up to date by incrementing it at the appropriate times.
You could also keep aggregation tables in the database, which can work well for more complex reporting. In this case, depending on how much data you have and what your needs are, you might be able to get away with having an hourly table, and then just creating views based on that base table to represent days, weeks, etc.
If you have tons and tons of data, and you need aggregate tables, you should look into offloading statistics collection (and perhaps the database queries themselves) to a queue like RabbitMQ or ActiveMQ. On the other side of the queue put a consumer daemon that just sits and runs all the time, updating things in the database (and perhaps the cache) as needed.
One thing you might also consider is your web server's logs. I've seen instances where I was able to get a somewhat large portion of the required statistics from the web server logs themselves after just minor tweaks to the log format rules in the config. You can roll the logs every , and then start processing them offline, recording the results in a reporting database.
I've done all of these things with Python (I released loghetti for dealing with Apache combined format logs, specifically), though I don't think language is a limiting factor or bottleneck here. Ruby, Perl, Java, Scala, or even awk (in some instances) would work.
I have worked on a project to do a similar thing in the past, so I have actual experience with performance. You would be hard pressed to beat the performance of "INSERT ... SELECT" (not "INSERT...VALUES (SELECT ...)". Please see http://dev.mysql.com/doc/refman/5.1/en/insert-select.html
The advantage is that if you do that, especially if you keep the roll-up code in MySQL procedures, is that all you need from the outside is just a cron-job to poke the DB into performing the right roll-ups at the right times -- as simple as a shell-script with 'mysql <correct DB arguments etc.> "CALL RollupProcedure"'
This way, you are guaranteeing yourself zero memory allocation bugs, as well as having decent performance when the MySQL DB is on a separate machine (no moving of data across machine boundary...)
EDIT: Hourly resolution is fine -- just run an hourly cron-job...
If you are running mostly SQL commands, why not just use MySQL etc on the command line? You could create a simple table that lists aggregate data then run a command like mysql -u[user] -p[pass] < commands.sql to pass SQL in from a file.
Or, split the work into smaller chunks and run them sequentially (as PHP files if that's easiest).
If you really need it to be a continual long-running process then a programming language like python or java would be better, since you can create a loop and keep it running indefinitely. PHP is not suited for that kind of thing. It would be pretty easy to convert any PHP classes to Java.
I'm using Java 1.6, JTDS 1.2.2 (also just tried 1.2.4 to no avail) and SQL Server 2005 to create a CallableStatement to run a stored procedure (with no parameters). I am seeing the Java wrapper running the same stored procedure 30% slower than using SQL Server Management Studio. I've run the MS SQL profiler and there is little difference in I/O between the two processes, so I don't think it's related to query plan caching.
The stored proc takes no arguments and returns no data. It uses a server-side cursor to calculate the values that are needed to populate a table.
I can't see how the calling a stored proc from Java should add a 30% overhead, surely it's just a pipe to the database that SQL is sent down and then the database executes it....Could the database be giving the Java app a different query plan??
I've posted to both the MSDN forums, and the sourceforge JTDS forums (topic: "stored proc slower in JTDS than direct in DB") I was wondering if anyone has any suggestions as to why this might be happening?
Thanks in advance,
-James
(N.B. Fear not, I will collate any answers I get in other forums together here once I find the solution)
Java code snippet:
sLogger.info("Preparing call...");
stmt = mCon.prepareCall("SP_WB200_POPULATE_TABLE_limited_rows");
sLogger.info("Call prepared. Executing procedure...");
stmt.executeQuery();
sLogger.info("Procedure complete.");
I have run sql profiler, and found the following:
Java app :
CPU: 466,514 Reads: 142,478,387 Writes: 284,078 Duration: 983,796
SSMS :
CPU: 466,973 Reads: 142,440,401 Writes: 280,244 Duration: 769,851
(Both with DBCC DROPCLEANBUFFERS run prior to profiling, and both produce the correct number of rows)
So my conclusion is that they both execute the same reads and writes, it's just that the way they are doing it is different, what do you guys think?
It turns out that the query plans are significantly different for the different clients (the Java client is updating an index during an insert that isn't in the faster SQL client, also, the way it is executing joins is different (nested loops Vs. gather streams, nested loops Vs index scans, argh!)). Quite why this is, I don't know yet (I'll re-post when I do get to the bottom of it)
Epilogue
I couldn't get this to work properly. I tried homogenising the connection properties (arithabort, ansi_nulls etc) between the Java and Mgmt studio clients. It ended up the two different clients had very similar query/execution plans (but still with different actual plan_ids). I posted a summary of what I found to the MSDN SQL Server forums as I found differing performance not just between a JDBC client and management studio, but also between Microsoft's own command line client, SQLCMD, I also checked some more radical things like network traffic too, or wrapping the stored proc inside another stored proc, just for grins.
I have a feeling the problem lies somewhere in the way the cursor was being executed, and it was somehow giving rise to the Java process being suspended, but why a different client should give rise to this different locking/waiting behaviour when nothing else is running and the same execution plan is in operation is a little beyond my skills (I'm no DBA!).
As a result, I have decided that 4 days is enough of anyone's time to waste on something like this, so I will grudgingly code around it (if I'm honest, the stored procedure needed re-coding to be more incremental instead of re-calculating all data each week anyway), and chalk this one down to experience. I'll leave the question open, big thanks to everyone who put their hat in the ring, it was all useful, and if anyone comes up with anything further, I'd love to hear some more options...and if anyone finds this post as a result of seeing this behaviour in their own environments, then hopefully there's some pointers here that you can try yourself, and hope fully see further than we did.
I'm ready for my weekend now!
-James
You can attach the Profiler and monitor for the events SQL:BatchCompleted and SP:Completed, with a filter on duration > 1000. Run the procedure from your Java client and from SSMS. Compare the Reads and the Writes of the two events (Java vs. SSMS). Are they significantly different? This would indicate considerably different execution paths or plans, with significant difference in I/O.
Also try to capture the Showplan XML event of the two and compare the plans (save the event as a .sqlplan file, open it in SSMS to easy analysis). Do they have similar plans? Are there wild differences in Estimate vs. Actual (rows, rewinds, rebinds)? Do they have same degree of parallelism? The plans can aso be retrieved from sys.dm_exec_requests view.
Are there any warning events raised, like Missing Column Statistics, Sort Warnings, Hash Warning, Execution Warnings, Blocked Process?
the point is that you have at your disposal a whole arsenal of investigation tools. Once you find the root cause of the difference, you can trace it down to what is different between your Java environment settings and the SSMS environment (ADO.Net SqlClient). Things like default transaction isolation level, ANSI settings etc etc.
Checking: Is your problem that two applications (SSMS, Java) are making the exact same identical call to SQL Server, and SQL Server is acting differently for each? If so, I hit things like this every year or two, and they hurt my brain for days.
Once, I ultimately isolated each process call and logging everything for the entire process in Profiler. I eventually noticed that the Login event (under TextData) showed a host of information, like so:
-- network protocol: TCP/IP
set quoted_identifier on
set arithabort off
set numeric_roundabort off
set ansi_warnings on
set ansi_padding on
set ansi_nulls on
set concat_null_yields_null on
set cursor_close_on_commit off
set implicit_transactions off
set language us_english
set dateformat mdy
set datefirst 7
set transaction isolation level read committed
The "Existing Connection" event will show this information as well--but, sometimes immediately subsequent calls (batches, RPCs, I disremember just now) are sent [ISQL or OSQL did this, I think] to immediately reset some of these -- Arithabort and Quoted_Identifier seem to be favorites, and other SET options also get modified depending on the settings or requirements of whatever connectivity protocols your application's database interface is using.
Another one: some settings are kept as attributes of a procedure at "create" time, and others are factored in at compile time. On the one hand, your connection's SET values may be being overwritten by the configuration saved at the time the procedure was created; on the other hand, your two connections may differ so much that two execution plans are generated for one procedure. (All of this information is, after sufficient research, available in the sys. tables and DMVs.)
In short, it seems to me that SQL obscurities are messing you up. To this day, I loathe all these goombah settings. Things below my notice keep messing around with them [I mean, really, what fool would set implicit_transaction for a connection pool on? But once they did...] and it's hard to build structures when the ground (rules) keep changing out from underneath you. After all, remember what the guy said about building castles in a swamp...
I recall having a similar issue a while ago, because JTDS was silently converting a string parameter to Unicode or something similar. As a result of that conversion, SQL Server was unable to use the index which is was using when we ran the stored proc from SSMS.
HIH
Does the Java case include transmission of the results to the Java server (network overhead) plus some Java processing? A 12 minute query might produce quite a large amount of data.
If you are looking at the profiler and there is no difference between the executions then the difference must be with the client systems.
4 mins does seem like to long just to prepare a statement to send so the 12 min wait must cause some other effect -- no idea what it is.
I am not sure if this post is still relevant. We faced a similar problem in our application.
One key difference between running a stored procedure in SQL Management studio and one running from JDBC is that of transaction context. If you are using an ORM in Java, by default the stored procedure runs in a transaction context. When you run a stored procedure directly in SQL management studio the transaction is off. There is a substantial performance difference.
Sorry, I've not found a correct answer to this, so I don't want to allocate any of these as correct, so I am going to mark this answer as correct, and wish anyone luck who comes across anything similar!
Did you know that Microsoft ship JDBC drivers for their databases?
These may be more performant.
Obviously.. you may have resolved the problem by now.