Is there a java hash structure with keys only and no values? - java

I'm looking for a structure which hashes keys without requiring a value. When queried, it should return true if the key is found and false otherwise. I'm looking for something similar to
Hashtable<MyClass, Boolean>
except insertion requires only a key and queries only ever return true or false, never null.

You need Java's HashSet (Java 8).
The description from the official documentation is:
This class implements the Set interface, backed by a hash table
(actually a HashMap instance). It makes no guarantees as to the
iteration order of the set; in particular, it does not guarantee that
the order will remain constant over time. This class permits the null
element.
This class offers constant time performance for the basic operations
(add, remove, contains and size), assuming the hash function disperses
the elements properly among the buckets. Iterating over this set
requires time proportional to the sum of the HashSet instance's size
(the number of elements) plus the "capacity" of the backing HashMap
instance (the number of buckets). Thus, it's very important not to set
the initial capacity too high (or the load factor too low) if
iteration performance is important.
Note that this implementation is not synchronized. If multiple threads
access a hash set concurrently, and at least one of the threads
modifies the set, it must be synchronized externally. This is
typically accomplished by synchronizing on some object that naturally
encapsulates the set. If no such object exists, the set should be
"wrapped" using the Collections.synchronizedSet method. This is best
done at creation time, to prevent accidental unsynchronized access to
the set:
Set s = Collections.synchronizedSet(new HashSet(...));
The iterators returned by this class's iterator method are fail-fast:
if the set is modified at any time after the iterator is created, in
any way except through the iterator's own remove method, the Iterator
throws a ConcurrentModificationException. Thus, in the face of
concurrent modification, the iterator fails quickly and cleanly,
rather than risking arbitrary, non-deterministic behavior at an
undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed
as it is, generally speaking, impossible to make any hard guarantees
in the presence of unsynchronized concurrent modification. Fail-fast
iterators throw ConcurrentModificationException on a best-effort
basis. Therefore, it would be wrong to write a program that depended
on this exception for its correctness: the fail-fast behavior of
iterators should be used only to detect bugs.
This class is a member of the Java Collections Framework.

java.util.HashSet? Using contains() for your lookup.

See also the static methods Collections#newSetFromMap that creates a set based on the given map implementation. This is eg handy to create a weak hash set.

Java Set is designed to remove duplicates and hopefully the HashMap must be using Java Set internally for managing key as keys can never have duplicates, So you should be considering set for your requirement.

Related

how to solve the runtime problem without getting a result while solving the vehicle routing problem using java [duplicate]

I am using a Collection (a HashMap used indirectly by the JPA, it so happens), but apparently randomly the code throws a ConcurrentModificationException. What is causing it and how do I fix this problem? By using some synchronization, perhaps?
Here is the full stack-trace:
Exception in thread "pool-1-thread-1" java.util.ConcurrentModificationException
at java.util.HashMap$HashIterator.nextEntry(Unknown Source)
at java.util.HashMap$ValueIterator.next(Unknown Source)
at org.hibernate.collection.AbstractPersistentCollection$IteratorProxy.next(AbstractPersistentCollection.java:555)
at org.hibernate.engine.Cascade.cascadeCollectionElements(Cascade.java:296)
at org.hibernate.engine.Cascade.cascadeCollection(Cascade.java:242)
at org.hibernate.engine.Cascade.cascadeAssociation(Cascade.java:219)
at org.hibernate.engine.Cascade.cascadeProperty(Cascade.java:169)
at org.hibernate.engine.Cascade.cascade(Cascade.java:130)
This is not a synchronization problem. This will occur if the underlying collection that is being iterated over is modified by anything other than the Iterator itself.
Iterator it = map.entrySet().iterator();
while (it.hasNext()) {
Entry item = it.next();
map.remove(item.getKey());
}
This will throw a ConcurrentModificationException when the it.hasNext() is called the second time.
The correct approach would be
Iterator it = map.entrySet().iterator();
while (it.hasNext()) {
Entry item = it.next();
it.remove();
}
Assuming this iterator supports the remove() operation.
Try using a ConcurrentHashMap instead of a plain HashMap
Modification of a Collection while iterating through that Collection using an Iterator is not permitted by most of the Collection classes. The Java library calls an attempt to modify a Collection while iterating through it a "concurrent modification". That unfortunately suggests the only possible cause is simultaneous modification by multiple threads, but that is not so. Using only one thread it is possible to create an iterator for the Collection (using Collection.iterator(), or an enhanced for loop), start iterating (using Iterator.next(), or equivalently entering the body of the enhanced for loop), modify the Collection, then continue iterating.
To help programmers, some implementations of those Collection classes attempt to detect erroneous concurrent modification, and throw a ConcurrentModificationException if they detect it. However, it is in general not possible and practical to guarantee detection of all concurrent modifications. So erroneous use of the Collection does not always result in a thrown ConcurrentModificationException.
The documentation of ConcurrentModificationException says:
This exception may be thrown by methods that have detected concurrent modification of an object when such modification is not permissible...
Note that this exception does not always indicate that an object has been concurrently modified by a different thread. If a single thread issues a sequence of method invocations that violates the contract of an object, the object may throw this exception...
Note that fail-fast behavior cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast operations throw ConcurrentModificationException on a best-effort basis.
Note that
the exception may be throw, not must be thrown
different threads are not required
throwing the exception cannot be guaranteed
throwing the exception is on a best-effort basis
throwing the exception happens when the concurrent modification is detected, not when it is caused
The documentation of the HashSet, HashMap, TreeSet and ArrayList classes says this:
The iterators returned [directly or indirectly from this class] are fail-fast: if the [collection] is modified at any time after the iterator is created, in any way except through the iterator's own remove method, the Iterator throws a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.
Note again that the behaviour "cannot be guaranteed" and is only "on a best-effort basis".
The documentation of several methods of the Map interface say this:
Non-concurrent implementations should override this method and, on a best-effort basis, throw a ConcurrentModificationException if it is detected that the mapping function modifies this map during computation. Concurrent implementations should override this method and, on a best-effort basis, throw an IllegalStateException if it is detected that the mapping function modifies this map during computation and as a result computation would never complete.
Note again that only a "best-effort basis" is required for detection, and a ConcurrentModificationException is explicitly suggested only for the non concurrent (non thread-safe) classes.
Debugging ConcurrentModificationException
So, when you see a stack-trace due to a ConcurrentModificationException, you can not immediately assume that the cause is unsafe multi-threaded access to a Collection. You must examine the stack-trace to determine which class of Collection threw the exception (a method of the class will have directly or indirectly thrown it), and for which Collection object. Then you must examine from where that object can be modified.
The most common cause is modification of the Collection within an enhanced for loop over the Collection. Just because you do not see an Iterator object in your source code does not mean there is no Iterator there! Fortunately, one of the statements of the faulty for loop will usually be in the stack-trace, so tracking down the error is usually easy.
A trickier case is when your code passes around references to the Collection object. Note that unmodifiable views of collections (such as produced by Collections.unmodifiableList()) retain a reference to the modifiable collection, so iteration over an "unmodifiable" collection can throw the exception (the modification has been done elsewhere). Other views of your Collection, such as sub lists, Map entry sets and Map key sets also retain references to the original (modifiable) Collection. This can be a problem even for a thread-safe Collection, such as CopyOnWriteList; do not assume that thread-safe (concurrent) collections can never throw the exception.
Which operations can modify a Collection can be unexpected in some cases. For example, LinkedHashMap.get() modifies its collection.
The hardest cases are when the exception is due to concurrent modification by multiple threads.
Programming to prevent concurrent modification errors
When possible, confine all references to a Collection object, so its is easier to prevent concurrent modifications. Make the Collection a private object or a local variable, and do not return references to the Collection or its iterators from methods. It is then much easier to examine all the places where the Collection can be modified. If the Collection is to be used by multiple threads, it is then practical to ensure that the threads access the Collection only with appropriate synchonization and locking.
In Java 8, you can use lambda expression:
map.keySet().removeIf(key -> key condition);
removeIf is a convenient default method in Collection which uses Iterator internally to iterate over the elements of the calling collection.
The extraction of the removal condition is expressed by allowing the caller to provide a Predicate<? super E>.
"I'll perform the iteration for you and test your Predicate on each one of the elements in the collection. If an element causes the test method of the Predicate to return true, I'll remove it."
It sounds less like a Java synchronization issue and more like a database locking problem.
I don't know if adding a version to all your persistent classes will sort it out, but that's one way that Hibernate can provide exclusive access to rows in a table.
Could be that isolation level needs to be higher. If you allow "dirty reads", maybe you need to bump up to serializable.
Note that the selected answer cannot be applied to your context directly before some modification, if you are trying to remove some entries from the map while iterating the map just like me.
I just give my working example here for newbies to save their time:
HashMap<Character,Integer> map=new HashMap();
//adding some entries to the map
...
int threshold;
//initialize the threshold
...
Iterator it=map.entrySet().iterator();
while(it.hasNext()){
Map.Entry<Character,Integer> item=(Map.Entry<Character,Integer>)it.next();
//it.remove() will delete the item from the map
if((Integer)item.getValue()<threshold){
it.remove();
}
Try either CopyOnWriteArrayList or CopyOnWriteArraySet depending on what you are trying to do.
I ran into this exception when try to remove x last items from list.
myList.subList(lastIndex, myList.size()).clear(); was the only solution that worked for me.

Is values() of ConcurrentHashMap thread safe?

I'm new to Java8 and working on a problem where multiple threads (~10) are writing values to a Concurrent Hash Map. I have another dedicated thread which reads all the values present in Concurrent Hash Map and returns them (every 30 seconds). Is iterating over result of values() method the recommended way of fetching results without getting Concurrent Modification Exception?
Note: I am perfectly fine with getting stale data
I went over the official docs which says:
Retrieval operations generally do not block, so may overlap with update operations . Retrievals reflect the results of the most recently completed update operations holding upon their onset. For aggregate operations such as putAll and clear, concurrent retrievals may reflect insertion or removal of only some entries. Similarly, Iterators, Spliterators and Enumerations return elements reflecting the state of the hash table at some point at or since the creation of the iterator/enumeration. They do not throw ConcurrentModificationException.
However doc of values() method says:
Returns a Collection view of the values contained in this map
Is the below code thread safe?
for (String name: myMap.values()) {
System.out.println("name": + name);
}
Is iterating over result of values() method the recommended way of fetching results without getting a ConcurrentModificationException?
Yes. It is the recommended way, and you won't get a ConcurrentModificationException.
As the package level javadoc states:
Most concurrent Collection implementations (including most Queues) also differ from the usual java.util conventions in that their Iterators and Spliterators provide weakly consistent rather than fast-fail traversal:
they may proceed concurrently with other operations
they will never throw ConcurrentModificationException
they are guaranteed to traverse elements as they existed upon construction exactly once, and may (but are not guaranteed to) reflect any modifications subsequent to construction.
Is the below code thread safe?
for (String name: myMap.values()) {
System.out.println("name": + name);
}
Yes ... with some qualifications.
Thread safety really means that the code works according to its specified behavior in a multi-threaded application. The problem is that you haven't said clearly what you expect the code to actually do.
What we can say is the following:
The iteration will see values as per the previously stated guarantees.
The memory model guarantees mean that there shouldn't be any nasty behavior with stale values ... unless you mutate value objects after putting them into the map. (If you do that, then the object's methods need to be implemented to cope with that; e.g. they may need to be synchronized. This is moot for String values, since they are immutable.)

Is concurrentMap.keySet().toArray() thread safe?

I have a ConcurrentHashMap<String, Object> concurrentMap;
I need to return String[] with keys of the map.
Is the following code:
public String[] listKeys() {
return (String[]) concurrentMap.keySet().toArray();
}
thread safe?
While the ConcurrentHashMap is a thread-safe class, the Iterator that is used on the keys is NOT CERTAIN to be in sync with any subsequent HashMap changes, once created...
From the spec:
public Set<K> keySet()
Returns a Set view of the keys contained in this map......
...........................
The view's iterator is a "weakly consistent" iterator that will
never throw ConcurrentModificationException, and guarantees to
traverse elements as they existed upon construction of the iterator,
and may (but is not guaranteed to) reflect any modifications
subsequent to construction.
Yes and No. Threas-safe is only fuzzily defined as soon as you extend to scope.
Generally, concurrent collections implement all their methods in ways that allow concurrent access by multiple threads, or if they can't, provide mechanisms to serialize such accesses (e.g. synchronization) transparently. Thus, they are safe in the sense they ensure they preserve a valid internal structure and method calls give valid results.
The fuzziness starts if you look at the details, e.g. toArray() will return you some kind of snapshot of the collections contents. There is no guarantee that by the time the method returns the contents will not have already been changed. So while the call is thread safe, the result will not fulfill the usual invariants (e.g. the array contents may not be the same as the collections).
If you need consistency over the scope of mupltiple calls to a concurrent collection, you need to provide mechanisms within the code calling the methods to ensure the required consistency.

ConcurrentSkipListSet and re-sorting (java)

I am using a ConcurrentSkipListSet, that is obviously accessed through multiple threads. Now, the values that are used by the compareTo-method of the underlying objects change overtime. Because of this, I want to 'update' the ordering of the list (by resorting it, or something similar).
However, java.util.Collections.sort(list) doesn't work, and just rebuilding the list is probably too slow (and would mess up the whole concurrency-proofness). Is there any other solution I should look at?
It does not have to lead to an optimal sort (which is near-impossible with concurrency and changing values anyway). Near optimal would suffice, as long as any remove/add-calls remain thread-proof (this would be a real issue when rebuilding the list when sorting).
Every time you edit an item such that it's sort order may potentially change, you have to remove it from the list then change the key and then re-insert it.
Dr Cliff Click at Azul Systems has a very nice presentation of how they do lock-free hash-tables using tombstones and such. If you go towards writing your own skip-list/tree to make the reordering of an item into a single - and hopefully faster - op, then you might also go this lock-free route too. And be sure to share your results :)
These types of collections in the Java API do not support mutable elements (i.e. elements where the compareTo method changes). As such, the only way to do it is re-assemble a new list in an atomic way, or as Will suggests you can perform a remove, mutate and re-insert of the element.
HashSet has the same problem - the hash bucket is calculated on insertion of an object, then you won't be able to do set.contains( ... ) if you mutate the object's hash code.
To be exact, collections like ConcurrentSkipListSet and HashSet perform their comparisons/hashing on insertion and removal. The only collections that 'support' mutable elements do not perform special insertion logic based on the state of the elements (e.g. an ArrayList).
The documentation for the Set interface states:
Note: Great care must be exercised if mutable objects are used as set elements. The behavior of a set is not specified if the value of an object is changed in a manner that affects equals comparisons while the object is an element in the set. A special case of this prohibition is that it is not permissible for a set to contain itself as an element.
and the documentation for the SortedSet interface states:
Note that the ordering maintained by a sorted set (whether or not an explicit comparator is provided) must be consistent with equals if the sorted set is to correctly implement the Set interface. (See the Comparable interface or Comparator interface for a precise definition of consistent with equals.) This is so because the Set interface is defined in terms of the equals operation, but a sorted set performs all element comparisons using its compareTo (or compare) method, so two elements that are deemed equal by this method are, from the standpoint of the sorted set, equal. The behavior of a sorted set is well-defined even if its ordering is inconsistent with equals; it just fails to obey the general contract of the Set interface.

Why does it.next() throw java.util.ConcurrentModificationException?

final Multimap<Term, BooleanClause> terms = getTerms(bq);
for (Term t : terms.keySet()) {
Collection<BooleanClause> C = new HashSet(terms.get(t));
if (!C.isEmpty()) {
for (Iterator<BooleanClause> it = C.iterator(); it.hasNext();) {
BooleanClause c = it.next();
if(c.isSomething()) C.remove(c);
}
}
}
Not a SSCCE, but can you pick up the smell?
The Iterator for the HashSet class is a fail-fast iterator. From the documentation of the HashSet class:
The iterators returned by this class's iterator method are fail-fast:
if the set is modified at any time after the iterator is created, in
any way except through the iterator's own remove method, the Iterator
throws a ConcurrentModificationException. Thus, in the face of
concurrent modification, the iterator fails quickly and cleanly,
rather than risking arbitrary, non-deterministic behavior at an
undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed
as it is, generally speaking, impossible to make any hard guarantees
in the presence of unsynchronized concurrent modification. Fail-fast
iterators throw ConcurrentModificationException on a best-effort
basis. Therefore, it would be wrong to write a program that depended
on this exception for its correctness: the fail-fast behavior of
iterators should be used only to detect bugs.
Note the last sentence - the fact that you are catching a ConcurrentModificationException implies that another thread is modifying the collection. The same Javadoc API page also states:
If multiple threads access a hash set concurrently, and at least one
of the threads modifies the set, it must be synchronized externally.
This is typically accomplished by synchronizing on some object that
naturally encapsulates the set. If no such object exists, the set
should be "wrapped" using the Collections.synchronizedSet method. This
is best done at creation time, to prevent accidental unsynchronized
access to the set:
Set s = Collections.synchronizedSet(new HashSet(...));
I believe the references to the Javadoc are self explanatory in what ought to be done next.
Additionally, in your case, I do not see why you are not using the ImmutableSet, instead of creating a HashSet on the terms object (which could possibly be modified in the interim; I cannot see the implementation of the getTerms method, but I have a hunch that the underlying keyset is being modified). Creating a immutable set will allow the current thread to have it's own defensive copy of the original key-set.
Note, that although a ConcurrentModificationException can be prevented by using a synchronized Set (as noted in the Java API documentation), it is a prerequisite that all threads access the synchronized collection and not the backing collection directly (which might be untrue in your case as the HashSet is probably created in one thread, while the underlying collection for the MultiMap is modified by other threads). The synchronized collection classes actually maintain an internal mutex for threads to acquire access to; since you cannot access the mutex directly from other threads (and it would be quite ridiculous to do so here), you ought to look at using a defensive copy of either the keyset or of the MultiMap itself using the unmodifiableMultimap method of the MultiMaps class (you'll need to return an unmodifiable MultiMap from the getTerms method). You could also investigate the necessity of returning a synchronized MultiMap, but then again, you'll need to ensure that the mutex must be acquired by any thread to protect the underlying collection from concurrent modifications.
Note, I have deliberately omitted mentioning the use of a thread-safe HashSet for the sole reason that I'm unsure of whether concurrent access to the actual collection will be ensured; it most likely will not be the case.
Edit: ConcurrentModificationExceptions thrown on Iterator.next in a single-threaded scenario
This is with respect to the statement: if(c.isSomething()) C.remove(c); that was introduced in the edited question.
Invoking Collection.remove changes the nature of the question, for it now becomes possible to have ConcurrentModificationExceptions thrown even in a single-threaded scenario.
The possibility arises out of the use of the method itself, in conjunction with the use of the Collection's iterator, in this case the variable it that was initialized using the statement : Iterator<BooleanClause> it = C.iterator();.
The Iterator it that iterates over Collection C stores state pertinent to the current state of the Collection. In this particular case (assuming a Sun/Oracle JRE), a KeyIterator (an internal inner class of the HashMap class that is used by the HashSet) is used to iterate through the Collection. A particular characteristic of this Iterator is that it tracks the number of structural modifications performed on the Collection (the HashMap in this case) via it's Iterator.remove method.
When you invoke remove on the Collection directly, and then follow it up with an invocation of Iterator.next, the iterator throws a ConcurrentModificationException, as Iterator.next verifies whether any structural modifications of the Collection have occurred that the Iterator is unaware of. In this case, Collection.remove causes a structural modification, that is tracked by the Collection, but not by the Iterator.
To overcome this part of the problem, you must invoke Iterator.remove and not Collection.remove, for this ensures that the Iterator is now aware of the modification to the Collection. The Iterator in this case, will track the structural modification occurring through the remove method. Your code should therefore look like the following:
final Multimap<Term, BooleanClause> terms = getTerms(bq);
for (Term t : terms.keySet()) {
Collection<BooleanClause> C = new HashSet(terms.get(t));
if (!C.isEmpty()) {
for (Iterator<BooleanClause> it = C.iterator(); it.hasNext();) {
BooleanClause c = it.next();
if(c.isSomething()) it.remove(); // <-- invoke remove on the Iterator. Removes the element returned by it.next.
}
}
}
The reason is that you are trying to modify the collection outside iterator.
How it works :
When you create an iterator the collection maintains a modificationNum-variable for both the collection and the iterator independently.
1. The variable for collection is being incremented for each change made to the collection and and iterator.
2. The variable for iterator is being incremented for each change made to the iterator.
So when you call it.remove() through iterator that increases the value of both the modification-number-variable by 1.
But again when you call collection.remove() on collection directly, that increments only the value of the modification-numbervariable for the collection, but not the variable for the iterator.
And rule is : whenever the modification-number value for the iterator does not match with the original collection modification-number value, it gives ConcurrentModificationException.
Vineet Reynolds has explained in great details the reasons why collections throw a ConcurrentModificationException (thread-safety, concurrency). Swagatika has explained in great details the implementation details of this mechanism (how collection and iterator keep count of the number of modifications).
Their answers were interesting, and I upvoted them. But, in your case, the problem does not come from concurrency (you have only one thread), and implementation details, while interesting, should not be considered here.
You should only consider this part of the HashSet javadoc:
The iterators returned by this class's iterator method are fail-fast:
if the set is modified at any time after the iterator is created, in
any way except through the iterator's own remove method, the Iterator
throws a ConcurrentModificationException. Thus, in the face of
concurrent modification, the iterator fails quickly and cleanly,
rather than risking arbitrary, non-deterministic behavior at an
undetermined time in the future.
In your code, you iterate over your HashSet using its iterator, but you use the HashSet's own remove method to remove elements ( C.remove(c) ), which causes the ConcurrentModificationException. Instead, as explained in the javadoc, you should use the Iterator's own remove() method, which removes the element being currently iterated from the underlying collection.
Replace
if(c.isSomething()) C.remove(c);
with
if(c.isSomething()) it.remove();
If you want to use a more functional approach, you could create a Predicate and use Guava's Iterables.removeIf() method on the HashSet:
Predicate<BooleanClause> ignoredBooleanClausePredicate = ...;
Multimap<Term, BooleanClause> terms = getTerms(bq);
for (Term term : terms.keySet()) {
Collection<BooleanClause> booleanClauses = Sets.newHashSet(terms.get(term));
Iterables.removeIf(booleanClauses, ignoredBooleanClausePredicate);
}
PS: note that in both cases, this will only remove elements from the temporary HashSet. The Multimap won't be modified.

Categories

Resources