Is it possible tell the JVM to hint the OS that a certain object should preferably not get pushed out to swap space?
The short answer is no.
Java doesn't allow you any control over what is swapped in and what is 'pinned' into RAM.
Worrying about this sort of thing is usually a sign that there is something else wrong in your project. The OS will on the whole do a much better job of working out what should be swapped and what shouldn't. Your job is to write your software such that it doesn't try to second guess what underlying VM/OS is going to do, just concentrate on delivering your features and a good design.
This problem has also been very noticeable in Eclipse and the KeepResident dirty hack plugin (http://suif.stanford.edu/pub/keepresident/) avoids it.
It might be a good place to start? I have not seen it in widespread use so perhaps this has been integrated in the standard Eclipse distribution?
Hey! You are programming in a managed language. Why are you thinking about these? If you can't get these stuff out of your mind, you can always choose to program in C.
The short answer is (as given above): Dont' do it :-).
It would however be possible in principle. Most OS do allow to "lock" certain memory areas from being swapped (e.g. mlock(2) under Linux, VirtualLock under Windows).
The VM could expose this functionality to Java applications via a suitable API. However, no VM I know of does that, so to do it, you would first have to modify your VM...
If you access it regularly, that whatever page it happens to be in at the time (the JVM moves stuff around during garbage collection) will not be paged out unless something else is requesting memory even more aggressively. But there is no way of telling the JVM to not move it to another page, and the OS only knows about pages.
Not an answer, but lacking points to comment, I reserve this option :)
There are reasons to not store information in swap. Be it passwords or other confidential information that should not spend eternity on disk. Also, coming back after a weekend to my pc, I'd like some things to be in memory immediately available.
(Non Java) Natively there is probably some way to do this for each/most operating systems. With windows this is definitely possible. But not straight out of java (think JNI).
Depending on how desperate this option is, you could always look at using video memory, or some other hardware device that does not swap out. This allows you to still use a standardish java api, like jogl to store information. But somehow I doubt that is in context with the implementation/results you are looking for.
Basically you want to keep the whole JVM in main memory the whole time.
Related
I'm a front end developer that's looking to get into some other languages such as Java or C++. I have an idea for a program and was just looking for an answer to something. What I would like to do is build a program and boot directly to that program. For example I have an old computer and I wipe the hard drive clean. So they is nothing currently on it. Not even an OS. I want to build a program that I can install to the hard drive that will boot straight into the program once started. Would this be considered an OS?
No you don't. Unless you want to spend many years, writing drivers for your graphics card, harddisk controller, usb controller, dma controller and all the other hardware your computer have.
What you want is a minimal operation system, which include just the kernel, and a runtime library and which start your program and nothing else on startup. A minimal Linux such as linux from scratch or bsd would be a good starting point.
First of all you need to decide your your program needs what. I mean should operate in Protected mode or the routine you have is tiny, so it is enough to run before entering protected mode (i.e. in real mode).
Here you can do three things
Modify bootloader to jump the execution to your code . Then Your code can resume normal os initialization.
Modify your os kernel early initialization code So that it executes your code before entering protected mode
I think your code will not be harmed if a bit of os portion is running. So you can write your routine before full kernel initialization.
Now note that for the later two point you need to modify your kernel, which is not easy (not even always possible)
Now the problem in first approach: Nothing will be ready for you, not even a regular c library or divice drivers , so you have to write every raw bit of code by hand which is crude.
This is off course not possible in java. Because the jvm will not be ready for you.
Now practically: there are lot of tiny os available, use one of them and modify as per your need. use this link to get a complete list of what is available for you.
First, Java is right out. You cannot possibly do this in Java without enormous amounts of tool-building. Java is not suited for this task at all.
You can do it in C++ or C. The search terms you are looking for is operating system development. This would probably not technically be considered developing an Operating System since it wouldn't run other programs, but the information about how to get through the boot-up procedure and establish a minimal environment are going to be most easily found in the category of operating system development. Some reasonable starting resources for that can be found at the OS Dev Wiki.
Alternately, you could take an existing small open-source OS and modify what it does after the boot-up sequence completes. If your program is intending to do anything more than just use the keyboard and the screen in text mode, there need to be device drivers. Thus, depending on the project, changing an existing OS may be the easiest route because you won't need to write your own device drivers for any devices you want to use.
Java can't run without Environment. If you want to run you program on you machine without OS, Java is a wrong choice.
C++ program can run without OS, but it's difficult to write a bootable program in C++.
If you want to write your own bootable program, you should use assembly for boot and load function, with some knowledge to use hardware in low level.
You have to have an operating system, so your program would be the operating system (or you would have to use another one and write it for that). It's certainly possible in C++, but it's not really possible to write an operating system in java.
Unless you want write something in (for example) Open Firmware and Forth or say a ROM BASIC. You'll probably qualify as a boot loader. Your application may qualify as an operating system. In my opinion, and a modern context, it entirely depends on how much functionality it provides to hosted applications. I'm not sure that something like FreeDOS would be considered an operating system (no pre-emptive task scheduling or GUI for example) given modern computers (I don't care to argue the point either way).
I'm currently using VisualVM, but the problem I'm having is that I can't save the graphs it generates. I need to report some data about its memory usage and running time, though running time is easy to get with System.nanoTime(). I've also tried the NetBeans profiler but it isn't what I want, since I'm not looking for specific parts that would be slowing it down or anything, so that would be overkill. The biggest problem with it is that it eats up too much processing time. Also doesn't let me capture/transfer the data easily, like VisualVM, at least as far as I can tell.
Ideally the best way to go about it would be some method call because then I'd be able to get the information a lot more easily, but anything like VisualVM that actually lets me save the graph is fine. Performance with VisualVM is pretty good too, compared to the NetBeans profiler, though I suppose that's because I wasn't using its profiler.
I'm currently using Ubuntu, but Windows 7 is fine. I'd rather have a program that specializes in doing this though, since the information gotten by programs who don't is likely to include the JVM and other things that would be better left out.
Well, apparently, you can save snapshots of the current session and maximize the window in VisualVM, so you could make the charts bigger, take a snapshot and cut them... But that's kind of a hack. Better suggestions welcome.
Runtime.getRuntime().freeMemory();
Runtime.getRuntime().totalMemory();
Look at the Runtime class. It has freeMemory, maxMemory, and totalMemory. That's probably close enough for your purposes.
You may prefer graceful method to measure memory, rather than hack image.
JConsole is known to Monitor Applications by JMX,it provides program API. I guess it is what you need.
See: Using JConsole to Monitor Applications
Try JProfiler. Although its not free you can try evaluation version first.
The HPjmeter console is free. Run your Java process with -Xloggc:<file> and open the <file> with it. Not only can you save your sessions, but you can compare runs. Other options to consider including in your command line are:
-XX:+PrintGCTimeStamps
-XX:+PrintGCDetails
I am currently trying to determine the cause of high memory usage in a Java application running on an exotic platform where I know of no instrumented JVM.
I have the source to the application, and can make changes to the source for the purposes of testing.
How can I debug memory usage under these conditions?
If more info is needed, I'll be happy to provide. I'm just a little lost trying to use such an old jvm without much tooling to speak of.
If I were in your shoes I would approach it with:
Find the functional areas you know
need attention.
Make backup copy of code
Start inserting print statements
with start and end times
See what takes a lot of time and
narrow it down.
For Java 5 and later this can be done using Java agents. For earlier versions - including 1.1.8 - you must load native agents to do this. If you cannot instrument your code, you must do the work needed yourself.
One approach to get most of the way is to use a Java 1.1 compatible version of log4j which allows you to essentially write out strings prepended with a timestamp. This can then be massaged afterwards into extracting answers to whatever you want to know.
If you need memory profiling - and I'd recommend against this - you could start serializing objects out to disk, then measuring disk size as a rough estimate of memory size.
If you really want to dig into where you're usually not supposed to be, try the sun.misc package, although I don't know how much of that was around in 1.1.x.
I am trying to reproduce java.lang.OutOfMemoryException in Jboss4, which one of our client got, presumably by running the J2EE applications over days/weeks.
I am trying to find a way for the webapp to spitout java.lang.OutOfMemoryException in a matter of minutes (instead of days/weeks).
One thing come into mind is to write a selenium script and has the script bombards the webapps.
One other thing that we can do is to reduce JVM heap size, but we would prefer not to do this, as we want to see the limit of our system.
Any suggestions?
ps: I don't have access to the source code, as we just provide a hosting service (of course I could decompile the class files...)
If you don't have access to the source code of the J2EE app in question, the options that come to mind are:
Reduce the amount of RAM available to the JVM. You've already identified this one and said you don't want to do it.
Create a J2EE app (it could probably just be a JSP) and configure it to run within the same JVM as the target app, and have that app allocate a ridiculous amount of memory. That will reduce the amount of memory available to the target app, hopefully such that it fails in the way you're trying to force.
Try to use some profiling tools to investigate memory leakage. Also good to investigate memory damps that was taken after OOM happens and logs. IMHO: reducing memory is not the rightest way to investigate cose you can get issues not connected with real production one.
Do both, but in a controlled fashion :
Reduce the available memory to the absolute minimum (using -Xms1M -Xmx2M, as an example, but I fear your app won't even load with such limitations)
Do controlled "nuclear irradiation" : do Selenium scripts or each of the known working urls before to attack the presumed guilty one.
Finally, unleash the power that shall not be raised : start VisualVM and any other monitoring software you can think of (DB execution is a usual suspect).
If you are using Sun Java 6, you may want to consider attaching to the application with jvisualvm in the JDK. This will allow you to do in-place profiling without needing to alter anything in your scenario, and may possibly immediately reveal the culprit.
If you don't have the source use decompile it, at least if you think the terms of usage allows this and you live in a free country. You can use:
Java Decompiler or JAD.
In addition to all the others I must say that even if you can reproduce an OutOfMemory error, and find out where it occurred, you probably haven't found out anything worth knowing.
The trouble is that an OOM occurs when an allocation can not take place. The real problem however is not that allocation, but the fact that other allocations, in other parts of the code, have not been de-allocated (de-referenced and garbage collected). The failed allocation here might have nothing to do with the source of the trouble (no pun intended).
This problem is larger in your case as it might take weeks before trouble starts, suggesting either a sparsely used application, or an abnormal code path, or a relatively HUGE amount of memory in relation to what would be necessary if the code was OK.
It might be a good idea to ask around why this amount of memory is configured for JBoss and not something different. If it's recommended by the supplier than maybe they already know about the leak and require this to mitigate the effects of the bug.
For these kind of errors it really pays to have some idea in which code path the problem occurs so you can do targeted tests. And test with a profiler so you can see during run-time which objects (Lists, Maps and such) are growing without shrinking.
That would give you a chance to decompile the correct classes and see what's wrong with them. (Closing or cleaning in a try block and not a finally block perhaps).
In any case, good luck. I think I'd prefer to find a needle in a haystack. When you find the needle you at least know you have found it:)
The root of the problem is most likely a memory leak in the webapp that the client is running. In order to track it down, you need to run the app with a representative workload with memory profiling enabled. Take some snapshots, and then use the profiler to compare the snapshots to see where objects are leaking. While source-code would be ideal, you should be able to at least figure out where the leaking objects are being allocated. Then you need to track down the cause.
However, if your customer won't release binaries so that you can run an identical system to what he is running, you are kind of stuck, and you'll need to get the customer to do the profiling and leak detection himself.
BTW - there is not a lot of point causing the webapp to throw an OutOfMemoryError. It won't tell you why it is happening, and without understanding "why" you cannot do much about it.
EDIT
There is not point "measuring the limits", if the root cause of the memory leak is in the client's code. Assuming that you are providing a servlet hosting service, the best thing to do is to provide the client with instructions on how to debug memory leaks ... and step out of the way. And if they have a support contract that requires you to (in effect) debug their code, they ought to provide you with the source code to do your job.
Is it possible to dump an image of a running JVM and later restore the previous state by loading the image into the JVM? I'm fairly certain the answer is negative, but would love to be wrong.
With all the dynamic languages available for the JVM comes an increase in interactivity, being able to save a coding session would help save time manually restoring the VM to a previous session.
There was a JSR 323 proposed for this a while back but it was rejected. You can find some links in those articles about the research behind this and what it would take. It was mostly rejected as an idea that was too immature.
I have heard of at least one startup (unfortunately don't recall the name) that was working on a virtualization technology over a hypervisor (probably Xen) that was getting pretty close to being able to move JVMs, including even things like file system refs and socket endpoints. Because they were at the hypervisor level, they had access to all of that stuff. By hooking that and the JVM, they had most of the pieces. I think they might have gone under though.
The closest thing you can get today is Terracotta, which allows you to cluster a portion of your JVM heap, storing it in a server array, which can be made persistent. On JVM startup, you connect to the cluster and can continue using whatever portions of your heap are specified as clustered. The actual objects are faulted in on an as-needed basis.
Not possible at present. In general, pausing and restarting a memory image of a process in a different context is incredibly hard to achieve: what are you going to do with open OS resources? Transfers to machines with different instruction sets? database connections?
Also images of the running JVM are probably quite large - maybe much larger than the subset of the state you are actually interested in. So it's not a good idea from a performance perspective.
A much better strategy is to have code that persists and recreates the application state: this is relatively feasible with most JVM dynamic languages. I do so similar stuff in Clojure, where you have an interactive environment (REPL) and it is quite possible to create and run a sequence of operations that rebuild the application state that you want in another JVM.
This is currently not possible in any of the JVMs I know. It would not be very difficult to implement something like this in the JVM if programs run disconnected from their environments. However, many programs have hooks into their environment (think file handles, database connections) which would make implementing something like this very hairy.
As of early 2023, there's some progress in this space and it seems a lot of things can at least be tried, even if without claims for their production readiness.
One such feature is called CRaC. You can check their docs or even get an OpenJDK build that includes the feature. The project has its own repo under OpenJDK and looks quite promising.
Another vendors/products to check:
Azul ReadyNow!
OpenJ9 InstantOn
What's also really exciting, is AWS Lambda SnapStart. It doesn't give you full snapshoting capabilities, and is intrinsically vendor-specific, but it's what a ton of Java engineering who use AWS Lambda were waiting for so long.