Java Program Fibonacci Sequence - java

I am writing a "simple" program to determine the Nth number in the Fibonacci sequence. Ex: the 7th number in the sequence is: 13. I have finished writing the program, it works, but beginning at the 40th number it begins to delay, and takes longer, and longer. My program has to go to the 100th spot in the series.
How can I fix this so it doesn't take so long? This is very basic program, so I don't know all the fancy syntax codes.. my formula is:
if n =1 || n = 0
return n;
else
return F(n-1) + F(n-2);
This works great until it goes past the 40th term. What other statement do I have to add to make it go quicker for higher numbers??

The problem is that because you are using simple recursion, you re-evaluate F(n) multiple times, so your execution time is exponential.
There are two simple ways to fix this:
1) Cache values of F(n) when they are evaluated the first time. Check the cache first before evaluating F(n) to see if you have already calculated it for this n.
2) Use an iterative approach: Calculate F(1), F(2), F(3), etc... until you reach the number you need.

The issue is that your algorithm, while mathematically pure (and nice) isn't very good.
For every number it wants to calculate, it has to calculate two lower ones which in turn have to calculate two lower ones, etc. Your current algorithm has a Big O notation complexity of about O(1.6n), so for very large numbers (100 for example) it takes a long time.
This book, Structure and Interpretation of Computer programs has a nice diagram: showing what happens when you generate fib 5 with your algorithm
(source: mit.edu)
The simplest thing to do is to store F - 1 and F - 2, so that you don't have to calculate them from scratch every time. In other words, rather than using recursion, use a loop. Than means that the complexity of the algorithm goes from O(1.6n) to O(n).

There are a number of solutions. The most straightforward is to use memoization. There's also Binet's formula which will give you the nth fibonacci number in constant time.
For memoization, you store your results for F[a_i] in a map or list of some kind. In the naive recursion, you compute F[4] hundreds of thousands of times, for example. By storing all these results as you find them, the recursion ceases to proceed like a tree and looks like the straightforward iterative solution.
If this isn't homework, use Binet's formula. It's the fastest method available.

Try this example, it calculates the millionth Fibonacci number in a reasonable time frame without any loss of precision.
import java.math.BigInteger;
/*
250000th fib # is: 36356117010939561826426 .... 10243516470957309231046875
Time to compute: 3.5 seconds.
1000000th fib # is: 1953282128707757731632 .... 93411568996526838242546875
Time to compute: 58.1 seconds.
*/
public class Fib {
public static void main(String... args) {
int place = args.length > 0 ? Integer.parseInt(args[0]) : 1000 * 1000;
long start = System.nanoTime();
BigInteger fibNumber = fib(place);
long time = System.nanoTime() - start;
System.out.println(place + "th fib # is: " + fibNumber);
System.out.printf("Time to compute: %5.1f seconds.%n", time / 1.0e9);
}
private static BigInteger fib(int place) {
BigInteger a = new BigInteger("0");
BigInteger b = new BigInteger("1");
while (place-- > 1) {
BigInteger t = b;
b = a.add(b);
a = t;
}
return b;
}
}

Create an array with 100 values, then when you calculate a value for Fib(n), store it in the array and use that array to get the values of Fib(n-1) and Fib(n-2).
If you're calling Fib(100) without storing any of the previously calculated values, you're going to make your java runtime explode.
Pseudocode:
array[0] = 0;
array[1] = 1;
for 2:100
array[n] = array[n-1] + array[n-2];

The problem is not JAVA, but the way you are implementing your Fibonacci algorithm.
You are computing the same values many times, which is slowing your program.
Try something like this : Fibonacci with memoization

F(n)
/ \
F(n-1) F(n-2)
/ \ / \
F(n-2) F(n-3) F(n-3) F(n-4)
/ \
F(n-3) F(n-4)
Notice that many computations are repeated!
Important point to note is this algorithm is exponential because it does not store the result of previous calculated numbers. eg F(n-3) is called 3 times.
Better solution is iterative code written below
function fib2(n) {
if n = 0
return 0
create an array f[0.... n]
f[0] = 0, f[1] = 1
for i = 2...n:
f[i] = f[i - 1] + f[i - 2]
return f[n]
}
For more details refer algorithm by dasgupta chapter 0.2

My solution using Java 8 Stream:
public class Main {
public static void main(String[] args) {
int n = 10;
Fibonacci fibonacci = new Fibonacci();
LongStream.generate(fibonacci::next)
.skip(n)
.findFirst()
.ifPresent(System.out::println);
}
}
public class Fibonacci {
private long next = 1;
private long current = 1;
public long next() {
long result = current;
long previous = current;
current = next;
next = current + previous;
return result;
}
}

If you use the naive approach, you'll end up with an exploding number of same calculations, i.e. to calc fib(n) you have to calc fib(n-1) and fib(n-2). Then to calc fib(n-1) you have to calc fib(n-2) and fib(n-3), etc. A better approach is to do the inverse. You calc starting with fib(0), fib(1), fib(2) and store the values in a table. Then to calc the subsequent values you use the values stored in a table (array). This is also caled memoization. Try this and you should be able to calc large fib numbers.

This is the code in Python, which can easily be converted to C/Java. First one is recursive and second is the iterative solution.
def fibo(n, i=1, s=1, s_1=0):
if n <= i: return s
else: return fibo(n, i+1, s+s_1, s)
def fibo_iter_code(n):
s, s_1 = 1, 0
for i in range(n-1):
temp = s
s, s_1 = s+s_1, temp
print(s)

Too slow...
Better:
(JavaScript example)
function fibonacci(n) {
var a = 0, b = 1;
for (var i = 0; i < n; i++) {
a += b;
b = a - b;
}
return a;
}

import java.util.*;
public class FibonacciNumber
{
public static void main(String[] args)
{
int high = 1, low = 1;
int num;
Scanner in = new Scanner(System.in);
try
{
System.out.print("Enter Number : " );
num = in.nextInt();
System.out.println( low);
while(high < num && num < 2000000000)
{
System.out.println(high);
high = low + high;
low = high - low;
}
} catch (InputMismatchException e) {
System.out.print("Limit Exceeded");
}
}
}
/* Ouput :
Enter Number : 1999999999
1
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
1346269
2178309
3524578
5702887
9227465
14930352
24157817
39088169
63245986
102334155
165580141
267914296
433494437
701408733
1134903170
1836311903
-1323752223
512559680
-811192543
-298632863
-1109825406
-1408458269
1776683621
368225352 */

Naive implementation is natural and elegant but during execution recursive calls are creating binary tree. Beside already mentioned memoization, cashing of previous F(n) results and avoiding of unnecessary tree traversal, you can go for tail call optimization, already mentioned iterative or matrix multiplication. For example, Java 8 memoization:
private static final Map<Long, Long> memo = new HashMap<>();
static {
memo.put(0L, 0L);
memo.put(1L, 1L);
}
public static void main(String[] args) {
System.out.println(fibonacci(0));
System.out.println(fibonacci(43));
System.out.println(fibonacci(92));
}
public static long fibonacci(long n) {
return memo.computeIfAbsent(n, m -> fibonacci(m - 1) + fibonacci(m - 2));
}
Or maybe tail call optimized version:
interface FewArgs<T, U, V, R> {
public R apply(T t, U u, V v);
}
static FewArgs<Long, Long, Long, Long> tailRecursive;
static {
tailRecursive = (a, b, n) -> {
if (n > 0)
return tailRecursive.apply(b, a + b, n - 1);
return a;
};
}
You call it with a = 0, b = 1, n is required nth Fibonacci number but must be smaller than 93.
More efficient ways to calculate Fibonacci numbers are matrix squaring, you will find example on my blog, and Binet formula

You can use the caching technic. Since f(n)= f(n-1)+f(n-2) , you'll calculate f(n-2) one more time when you calculate f(n-1). So simply treat them as two incremental numbers like below:
public int fib(int ithNumber) {
int prev = 0;
int current = 1;
int newValue;
for (int i=1; i<ithNumber; i++) {
newValue = current + prev;
prev = current;
current = newValue;
}
return current;
}

It looks better with multiple statements of ternary operator.
static int fib(int n) {
return n > 5 ? fib(n-2) + fib(n-1)
: n < 2 || n == 5 ? n
: n - 1;
}

Related

How to calculate the probability of getting the sum X using N six-sided dice

The Challenge:
For example, what is the probability of getting the sum of 15 when using 3 six-sided dice. This can be for example by getting 5-5-5 or 6-6-3 or 3-6-6 or many more options.
A brute force solution for 2 dice - with complexity of 6^2:
Assuming we had only 2 six-sided dice, we can write a very basic code like that:
public static void main(String[] args) {
System.out.println(whatAreTheOdds(7));
}
public static double whatAreTheOdds(int wantedSum){
if (wantedSum < 2 || wantedSum > 12){
return 0;
}
int wantedFound = 0;
int totalOptions = 36;
for (int i = 1; i <= 6; i++) {
for (int j = 1; j <= 6; j++) {
int sum = i+j;
if (sum == wantedSum){
System.out.println("match: " + i + " " + j );
wantedFound +=1;
}
}
}
System.out.println("combinations count:" + wantedFound);
return (double)wantedFound / totalOptions;
}
And the output for 7 will be:
match: 1 6
match: 2 5
match: 3 4
match: 4 3
match: 5 2
match: 6 1
combination count:6
0.16666666666666666
The question is how to generalize the algorithm to support N dice:
public static double whatAreTheOdds(int wantedSum, int numberOfDices)
Because we can't dynamically create nested for loops, we must come with a different approach.
I thought of something like that:
public static double whatAreTheOdds(int sum, int numberOfDices){
int sum;
for (int i = 0; i < numberOfDices; i++) {
for (int j = 1; j <= 6; j++) {
}
}
}
but failed to come up with the right algorithm.
Another challenge here is - is there a way to do it efficiently, and not in a complexity of 6^N?
Here is a recursive solution with memoization to count the combinations.
import java.util.Arrays;
import java.lang.Math;
class Dices {
public static final int DICE_FACES = 6;
public static void main(String[] args) {
System.out.println(whatAreTheOdds(40, 10));
}
public static double whatAreTheOdds(int sum, int dices) {
if (dices < 1 || sum < dices || sum > DICE_FACES * dices) return 0;
long[][] mem = new long[dices][sum];
for (long[] mi : mem) {
Arrays.fill(mi, 0L);
}
long n = whatAreTheOddsRec(sum, dices, mem);
return n / Math.pow(DICE_FACES, dices);
}
private static long whatAreTheOddsRec(int sum, int dices, long[][] mem) {
if (dices <= 1) {
return 1;
}
long n = 0;
int dicesRem = dices - 1;
int minFace = Math.max(sum - DICE_FACES * dicesRem, 1);
int maxFace = Math.min(sum - dicesRem, DICE_FACES);
for (int i = minFace; i <= maxFace; i++) {
int sumRem = sum - i;
long ni = mem[dicesRem][sumRem];
if (ni <= 0) {
ni = whatAreTheOddsRec(sumRem, dicesRem, mem);
mem[dicesRem][sumRem] = ni;
}
n += ni;
}
return n;
}
}
Output:
0.048464367913724195
EDIT: For the record, the complexity of this algorithm is still O(6^n), this answer just aims to give a possible implementation for the general case that is better than the simplest implementation, using memoization and search space prunning (exploring only feasible solutions).
As Alex's answer notes, there is a combinatorial formula for this:
In this formula, p is the sum of the numbers rolled (X in your question), n is the number of dice, and s is the number of sides each dice has (6 in your question). Whether the binomial coefficients are evaluated using loops, or precomputed using Pascal's triangle, either way the time complexity is O(n2) if we take s = 6 to be a constant and X - n to be O(n).
Here is an alternative algorithm, which computes all of the probabilities at once. The idea is to use discrete convolution to compute the distribution of the sum of two random variables given their distributions. By using a divide and conquer approach as in the exponentiation by squaring algorithm, we only have to do O(log n) convolutions.
The pseudocode is below; sum_distribution(v, n) returns an array where the value at index X - n is the number of combinations where the sum of n dice rolls is X.
// for exact results using integers, let v = [1, 1, 1, 1, 1, 1]
// and divide the result through by 6^n afterwards
let v = [1/6.0, 1/6.0, 1/6.0, 1/6.0, 1/6.0, 1/6.0]
sum_distribution(distribution, n)
if n == 0
return [1]
else if n == 1
return v
else
let r = convolve(distribution, distribution)
// the division here rounds down
let d = sum_distribution(r, n / 2)
if n is even
return d
else
return convolve(d, v)
Convolution cannot be done in linear time, so the running time is dominated by the last convolution on two arrays of length 3n, since the other convolutions are on sufficiently shorter arrays.
This means if you use a simple convolution algorithm, it should take O(n2) time to compute all of the probabilities, and if you use a fast Fourier transform then it should take O(n log n) time.
You might want to take a look at Wolfram article for a completely different approach, which calculates the desired probability with a single loop.
The idea is to have an array storing the current "state" of each dice, starting will every dice at one, and count upwards. For example, with three dice you would generate the combinations:
111
112
...
116
121
122
...
126
...
665
666
Once you have a state, you can easily find if the sum is the one you are looking for.
I leave the details to you, as it seems a useful learning exercise :)

Making Fibonacci faster [duplicate]

This question already has answers here:
nth fibonacci number in sublinear time
(16 answers)
Closed 7 years ago.
I was required to write a simple implementation of Fibonacci's algorithm and then to make it faster.
Here is my initial implementation
public class Fibonacci {
public static long getFibonacciOf(long n) {
if (n== 0) {
return 0;
} else if (n == 1) {
return 1;
} else {
return getFibonacciOf(n-2) + getFibonacciOf(n-1);
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
while (true) {
System.out.println("Enter n :");
long n = scanner.nextLong();
if (n >= 0) {
long beginTime = System.currentTimeMillis();
long fibo = getFibonacciOf(n);
long endTime = System.currentTimeMillis();
long delta = endTime - beginTime;
System.out.println("F(" + n + ") = " + fibo + " ... computed in " + delta + " milliseconds");
} else {
break;
}
}
}
}
As you can see I am using System.currentTimeMillis() to get a simple measure of the time elapsed while computed Fibonacci.
This implementation get rapidly kind of exponentially slow as you can see on the following picture
So I've got a simple optimisation idea. To put previous values in a HashMap and instead of re-computing them each time, to simply take them back from the HashMap if they exist. If they don't exist, we then put them in the HashMap.
Here is the new version of the code
public class FasterFibonacci {
private static Map<Long, Long> previousValuesHolder;
static {
previousValuesHolder = new HashMap<Long, Long>();
previousValuesHolder.put(Long.valueOf(0), Long.valueOf(0));
previousValuesHolder.put(Long.valueOf(1), Long.valueOf(1));
}
public static long getFibonacciOf(long n) {
if (n== 0) {
return 0;
} else if (n == 1) {
return 1;
} else {
if (previousValuesHolder.containsKey(Long.valueOf(n))) {
return previousValuesHolder.get(n);
} {
long newValue = getFibonacciOf(n-2) + getFibonacciOf(n-1);
previousValuesHolder.put(Long.valueOf(n), Long.valueOf(newValue));
return newValue;
}
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner (System.in);
while (true) {
System.out.println("Enter n :");
long n = scanner.nextLong();
if (n >= 0) {
long beginTime = System.currentTimeMillis();
long fibo = getFibonacciOf(n);
long endTime = System.currentTimeMillis();
long delta = endTime - beginTime;
System.out.println("F(" + n + ") = " + fibo + " ... computed in " + delta + " milliseconds");
} else {
break;
}
}
}
This change makes the computing extremely fast. I computes all the values from 2 to 103 in no time at all and I get a long overflow at F(104) (Gives me F(104) = -7076989329685730859, which is wrong). I find it so fast that **I wonder if there is any mistakes in my code (Thank your checking and let me know please) **. Please take a look at the second picture:
Is my faster fibonacci's algorithm's implementation correct (It seems it is to me because it gets the same values as the first version, but since the first version was too slow I could not compute bigger values with it such as F(75))? What other way can I use to make it faster? Or is there a better way to make it faster? Also how can I compute Fibonacci for greater values (such as 150, 200) without getting a **long overflow**? Though it seems fast I would like to push it to the limits. I remember Mr Abrash saying 'The best optimiser is between your two ears', so I believe it can still be improved. Thank you for helping
[Edition Note:] Though this question adresses one of the main point in my question, you can see from above that I have additionnal issues.
Dynamic programming
Idea:Instead of recomputing the same value multiple times you just store the value calculated and use them as you go along.
f(n)=f(n-1)+f(n-2) with f(0)=0,f(1)=1.
So at the point when you have calculated f(n-1) you can easily calculate f(n) if you store the values of f(n) and f(n-1).
Let's take an array of Bignums first. A[1..200].
Initialize them to -1.
Pseudocode
fact(n)
{
if(A[n]!=-1) return A[n];
A[0]=0;
A[1]=1;
for i=2 to n
A[i]= addition of A[i],A[i-1];
return A[n]
}
This runs in O(n) time. Check it out yourself.
This technique is also called memoization.
The IDEA
Dynamic programming (usually referred to as DP ) is a very powerful technique to solve a particular class of problems. It demands very elegant formulation of the approach and simple thinking and the coding part is very easy. The idea is very simple, If you have solved a problem with the given input, then save the result for future reference, so as to avoid solving the same problem again.. shortly 'Remember your Past'.
If the given problem can be broken up in to smaller sub-problems and these smaller subproblems are in turn divided in to still-smaller ones, and in this process, if you observe some over-lappping subproblems, then its a big hint for DP. Also, the optimal solutions to the subproblems contribute to the optimal solution of the given problem ( referred to as the Optimal Substructure Property ).
There are two ways of doing this.
1.) Top-Down : Start solving the given problem by breaking it down. If you see that the problem has been solved already, then just return the saved answer. If it has not been solved, solve it and save the answer. This is usually easy to think of and very intuitive. This is referred to as Memoization. (I have used this idea).
2.) Bottom-Up : Analyze the problem and see the order in which the sub-problems are solved and start solving from the trivial subproblem, up towards the given problem. In this process, it is guaranteed that the subproblems are solved before solving the problem. This is referred to as Dynamic Programming. (MinecraftShamrock used this idea)
There's more!
(Other ways to do this)
Look our quest to get a better solution doesn't end here. You will see a different approach-
If you know how to solve recurrence relation then you will find a solution to this relation
f(n)=f(n-1)+f(n-2) given f(0)=0,f(1)=1
You will arrive at the formula after solving it-
f(n)= (1/sqrt(5))((1+sqrt(5))/2)^n - (1/sqrt(5))((1-sqrt(5))/2)^n
which can be written in more compact form
f(n)=floor((((1+sqrt(5))/2)^n) /sqrt(5) + 1/2)
Complexity
You can get the power a number in O(logn) operations.
You have to learn the Exponentiation by squaring.
EDIT: It is good to point out that this doesn't necessarily mean that the fibonacci number can be found in O(logn). Actually the number of digits we need to calculate frows linearly. Probably because of the position where I stated that it seems to claim the wrong idea that factorial of a number can be calculated in O(logn) time.
[Bakurui,MinecraftShamrock commented on this]
If you need to compute n th fibonacci numbers very frequently I suggest using amalsom's answer.
But if you want to compute a very big fibonacci number, you will run out of memory because you are storing all smaller fibonacci numbers. The following pseudocode only keeps the last two fibonacci numbers in memory, i.e. it requires much less memory:
fibonacci(n) {
if n = 0: return 0;
if n = 1: return 1;
a = 0;
b = 1;
for i from 2 to n: {
sum = a + b;
a = b;
b = sum;
}
return b;
}
Analysis
This can compute very high fibonacci numbers with quite low memory consumption: We have O(n) time as the loop repeats n-1 times. The space complexity is interesting as well: The nth fibonacci number has a length of O(n), which can easily be shown:
Fn <= 2 * Fn-1
Which means that the nth fibonacci number is at most twice as big as its predecessor. Doubling a number in binary is equivalent with a single left-shift, which increases the number of necessary bits by one. So representing the nth fibonacci number takes at most O(n) space. We have at most three successive fibonacci numbers in memory which makes O(n) + O(n-1) + O(n-2) = O(n) total space consumption. In contrast to this the memoization algorithm always keeps the first n fibonacci numbers in memory, which makes O(n) + O(n-1) + O(n-2) + ... + O(1) = O(n^2) space consumption.
So which way should one use?
The only reason to keep all lower fibonacci numbers in memory is if you need fibonacci numbers very frequently. It is a question of balancing time with memory consumption.
Get away from the Fibonacci recursion and use the identities
(F(2n), F(2n-1)) = (F(n)^2 + 2 F(n) F(n-1), F(n)^2+F(n-1)^2)
(F(2n+1), F(2n)) = (F(n+1)^2+F(n)^2, 2 F(n+1) F(n) - F(n)^2)
This allows you to compute (F(m+1), F(m)) in terms of (F(k+1), F(k)) for k half the size of m. Written iteratively with some bit shifting for division by 2, this should give you the theoretical O(log n) speed of exponentiation by squaring while staying entirely within integer arithmetic. (Well, O(log n) arithmetic operations. Since you will be working with numbers with roughly n bits, it won't be O(log n) time once you are forced to switch to a large integer library. After F(50), you will overflow the integer data type, which only goes up to 2^(31).)
(Apologies for not remembering Java well enough to implement this in Java; anyone who wants to is free to edit it in.)
Fibonacci(0) = 0
Fibonacci(1) = 1
Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2), when n >= 2
Usually there are 2 ways to calculate Fibonacci number:
Recursion:
public long getFibonacci(long n) {
if(n <= 1) {
return n;
} else {
return getFibonacci(n - 1) + getFibonacci(n - 2);
}
}
This way is intuitive and easy to understand, while because it does not reuse calculated Fibonacci number, the time complexity is about O(2^n), but it does not store calculated result, so it saves space a lot, actually the space complexity is O(1).
Dynamic Programming:
public long getFibonacci(long n) {
long[] f = new long[(int)(n + 1)];
f[0] = 0;
f[1] = 1;
for(int i=2;i<=n;i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f[(int)n];
}
This Memoization way calculated Fibonacci numbers and reuse them when calculate next one. The time complexity is pretty good, which is O(n), while space complexity is O(n). Let's investigate whether the space complexity can be optimized... Since f(i) only requires f(i - 1) and f(i - 2), there is not necessary to store all calculated Fibonacci numbers.
The more efficient implementation is:
public long getFibonacci(long n) {
if(n <= 1) {
return n;
}
long x = 0, y = 1;
long ans;
for(int i=2;i<=n;i++) {
ans = x + y;
x = y;
y = ans;
}
return ans;
}
With time complexity O(n), and space complexity O(1).
Added: Since Fibonacci number increase amazing fast, long can only handle less than 100 Fibonacci numbers. In Java, we can use BigInteger to store more Fibonacci numbers.
Precompute a large number of fib(n) results, and store them as a lookup table inside your algorithm. Bam, free "speed"
Now if you need to compute fib(101) and you already have fibs 0 to 100 stored, this is just like trying to compute fib(1).
Chances are this isn't what this homework is looking for, but it's a completely legit strategy and basically the idea of caching extracted further away from running the algorithm. If you know you're likely to be computing the first 100 fibs often and you need to do it really really fast, there's nothing faster than O(1). So compute those values entirely out of band and store them so they can be looked up later.
Of course, cache values as you compute them too :) Duplicated computation is waste.
Here is a snippet of code with an iterative approach instead of recursion.
Output example:
Enter n: 5
F(5) = 5 ... computed in 1 milliseconds
Enter n: 50
F(50) = 12586269025 ... computed in 0 milliseconds
Enter n: 500
F(500) = ...4125 ... computed in 2 milliseconds
Enter n: 500
F(500) = ...4125 ... computed in 0 milliseconds
Enter n: 500000
F(500000) = 2955561408 ... computed in 4,476 ms
Enter n: 500000
F(500000) = 2955561408 ... computed in 0 ms
Enter n: 1000000
F(1000000) = 1953282128 ... computed in 15,853 ms
Enter n: 1000000
F(1000000) = 1953282128 ... computed in 0 ms
Some pieces of results are omitted with ... for a better view.
Code snippet:
public class CachedFibonacci {
private static Map<BigDecimal, BigDecimal> previousValuesHolder;
static {
previousValuesHolder = new HashMap<>();
previousValuesHolder.put(BigDecimal.ZERO, BigDecimal.ZERO);
previousValuesHolder.put(BigDecimal.ONE, BigDecimal.ONE);
}
public static BigDecimal getFibonacciOf(long number) {
if (0 == number) {
return BigDecimal.ZERO;
} else if (1 == number) {
return BigDecimal.ONE;
} else {
if (previousValuesHolder.containsKey(BigDecimal.valueOf(number))) {
return previousValuesHolder.get(BigDecimal.valueOf(number));
} else {
BigDecimal olderValue = BigDecimal.ONE,
oldValue = BigDecimal.ONE,
newValue = BigDecimal.ONE;
for (int i = 3; i <= number; i++) {
newValue = oldValue.add(olderValue);
olderValue = oldValue;
oldValue = newValue;
}
previousValuesHolder.put(BigDecimal.valueOf(number), newValue);
return newValue;
}
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (true) {
System.out.print("Enter n: ");
long inputNumber = scanner.nextLong();
if (inputNumber >= 0) {
long beginTime = System.currentTimeMillis();
BigDecimal fibo = getFibonacciOf(inputNumber);
long endTime = System.currentTimeMillis();
long delta = endTime - beginTime;
System.out.printf("F(%d) = %.0f ... computed in %,d milliseconds\n", inputNumber, fibo, delta);
} else {
System.err.println("You must enter number > 0");
System.out.println("try, enter number again, please:");
break;
}
}
}
}
This approach runs much faster than the recursive version.
In such a situation, the iterative solution tends to be a bit faster, because each
recursive method call takes a certain amount of processor time. In principle, it is
possible for a smart compiler to avoid recursive method calls if they follow simple
patterns, but most compilers don’t do that. From that point of view, an iterative
solution is preferable.
UPDATE:
After Java 8 releases and Stream API is available one more way is available for calculating Fibonacci.
Checked with JDK 17.0.2.
Code:
public static BigInteger streamFibonacci(long n) {
return Stream.iterate(new BigInteger[]{BigInteger.ONE, BigInteger.ONE},
p -> new BigInteger[]{p[1], p[0].add(p[1])})
.limit(n)
.reduce((a, b) -> b)
.get()[0];
}
Test output:
Enter n (q for quit): 5
F(5) = 5 ... computed in 2 ms
Enter n (q for quit): 50
F(50) = 1258626902 ... computed in 0 ms
Enter n (q for quit): 500
F(500) = 1394232245 ... computed in 3 ms
Enter n (q for quit): 500000
F(500000) = 2955561408 ... computed in 4,343 ms
Enter n (q for quit): 1000000
F(1000000) = 1953282128 ... computed in 19,280 ms
The results are pretty good.
Keep in mind that ... just cuts all following digits of the real numbers.
Having followed a similar approach some time ago, I've just realized there's another optimization you can make.
If you know two large consecutive answers, you can use this as a starting point. For example, if you know F(100) and F(101), then calculating F(104) is approximately as difficult (*) as calculating F(4) based on F(0) and F(1).
Calculating iteratively up is as efficient calculation-wise as doing the same using cached-recursion, but uses less memory.
Having done some sums, I have also realized that, for any given z < n:
F(n)=F(z) * F(n-z) + F(z-1) * F(n-z-1)
If n is odd, and you choose z=(n+1)/2, then this is reduced to
F(n)=F(z)^2+F(z-1)^2
It seems to me that you should be able to use this by a method I have yet to find, that you should be able use the above info to find F(n) in the number of operations equal to:
the number of bits in n doublings (as per above) + the number of 1 bits in n addings; in the case of 104, this would be (7 bits, 3 '1' bits) = 14 multiplications (squarings), 10 additions.
(*) assuming adding two numbers takes the same time, irrelevant of the size of the two numbers.
Here's a way of provably doing it in O(log n) (as the loop runs log n times):
/*
* Fast doubling method
* F(2n) = F(n) * (2*F(n+1) - F(n)).
* F(2n+1) = F(n+1)^2 + F(n)^2.
* Adapted from:
* https://www.nayuki.io/page/fast-fibonacci-algorithms
*/
private static long getFibonacci(int n) {
long a = 0;
long b = 1;
for (int i = 31 - Integer.numberOfLeadingZeros(n); i >= 0; i--) {
long d = a * ((b<<1) - a);
long e = (a*a) + (b*b);
a = d;
b = e;
if (((n >>> i) & 1) != 0) {
long c = a+b;
a = b;
b = c;
}
}
return a;
}
I am assuming here (as is conventional) that one multiply / add / whatever operation is constant time irrespective of number of bits, i.e. that a fixed-length data type will be used.
This page explains several methods of which this is the fastest. I simply translated it away from using BigInteger for readability. Here's the BigInteger version:
/*
* Fast doubling method.
* F(2n) = F(n) * (2*F(n+1) - F(n)).
* F(2n+1) = F(n+1)^2 + F(n)^2.
* Adapted from:
* http://www.nayuki.io/page/fast-fibonacci-algorithms
*/
private static BigInteger getFibonacci(int n) {
BigInteger a = BigInteger.ZERO;
BigInteger b = BigInteger.ONE;
for (int i = 31 - Integer.numberOfLeadingZeros(n); i >= 0; i--) {
BigInteger d = a.multiply(b.shiftLeft(1).subtract(a));
BigInteger e = a.multiply(a).add(b.multiply(b));
a = d;
b = e;
if (((n >>> i) & 1) != 0) {
BigInteger c = a.add(b);
a = b;
b = c;
}
}
return a;
}

Recursion vs. Iteration (Fibonacci sequence)

I've got two different methods, one is calculating Fibonacci sequence to the nth element by using iteration and the other one is doing the same thing using recursive method.
Program example looks like this:
import java.util.Scanner;
public class recursionVsIteration {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
//nth element input
System.out.print("Enter the last element of Fibonacci sequence: ");
int n = sc.nextInt();
//Print out iteration method
System.out.println("Fibonacci iteration:");
long start = System.currentTimeMillis();
System.out.printf("Fibonacci sequence(element at index %d) = %d \n", n, fibIteration(n));
System.out.printf("Time: %d ms\n", System.currentTimeMillis() - start);
//Print out recursive method
System.out.println("Fibonacci recursion:");
start = System.currentTimeMillis();
System.out.printf("Fibonacci sequence(element at index %d) = %d \n", n, fibRecursion(n));
System.out.printf("Time: %d ms\n", System.currentTimeMillis() - start);
}
//Iteration method
static int fibIteration(int n) {
int x = 0, y = 1, z = 1;
for (int i = 0; i < n; i++) {
x = y;
y = z;
z = x + y;
}
return x;
}
//Recursive method
static int fibRecursion(int n) {
if ((n == 1) || (n == 0)) {
return n;
}
return fibRecursion(n - 1) + fibRecursion(n - 2);
}
}
I was trying to find out which method is faster. I came to the conclusion that recursion is faster for the smaller amount of numbers, but as the value of nth element increases recursion becomes slower and iteration becomes faster. Here are the three different results for three different n:
Example #1 (n = 10)
Enter the last element of Fibonacci sequence: 10
Fibonacci iteration:
Fibonacci sequence(element at index 10) = 55
Time: 5 ms
Fibonacci recursion:
Fibonacci sequence(element at index 10) = 55
Time: 0 ms
Example #2 (n = 20)
Enter the last element of Fibonacci sequence: 20
Fibonacci iteration:
Fibonacci sequence(element at index 20) = 6765
Time: 4 ms
Fibonacci recursion:
Fibonacci sequence(element at index 20) = 6765
Time: 2 ms
Example #3 (n = 30)
Enter the last element of Fibonacci sequence: 30
Fibonacci iteration:
Fibonacci sequence(element at index 30) = 832040
Time: 4 ms
Fibonacci recursion:
Fibonacci sequence(element at index 30) = 832040
Time: 15 ms
What I really want to know is why all of a sudden iteration became faster and recursion became slower. I'm sorry if I missed some obvious answer to this question, but I'm still new to the programming, I really don't understand what's going on behind that and I would like to know. Please provide a good explanation or point me in the right direction so I can find out the answer myself. Also, if this is not a good way to test which method is faster let me know and suggest me different method.
Thanks in advance!
For terseness, Let F(x) be the recursive Fibonacci
F(10) = F(9) + F(8)
F(10) = F(8) + F(7) + F(7) + F(6)
F(10) = F(7) + F(6) + F(6) + F(5) + 4 more calls.
....
So your are calling F(8) twice,
F(7) 3 times, F(6) 5 times, F(5) 7 times.. and so on
So with larger inputs, the tree gets bigger and bigger.
This article does a comparison between recursion and iteration and covers their application on generating fibonacci numbers.
As noted in the article,
The reason for the poor performance is heavy push-pop of the registers in the ill level of each recursive call.
which basically says there is more overhead in the recursive method.
Also, take a look at Memoization
When doing the recursive implementation of Fibonacci algorithm, you are adding redundant calls by recomputing the same values over and over again.
fib(5) = fib(4) + fib(3)
fib(4) = fib(3) + fib(2)
fib(3) = fib(2) + fib(1)
Notice, that fib(2) will be redundantly calculated both for fib(4) and for fib(3).
However this can be overcome by a technique called Memoization, that improves the efficiency of recursive Fibonacci by storing the values, you have calculated once. Further calls of fib(x) for known values may be replaced by a simple lookup, eliminating the need for further recursive calls.
This is the main difference between the iterative and recursive approaches, if you are interested, there are also other, more efficient algorithms of calculating Fibonacci numbers.
Why is Recursion slower?
When you call your function again itself (as recursion) the compiler allocates new Activation Record (Just think as an ordinary Stack) for that new function. That stack is used to keep your states, variables, and addresses. Compiler creates a stack for each function and this creation process continues until the base case is reached. So, when the data size becomes larger, compiler needs large stack segment to calculate the whole process. Calculating and managing those Records is also counted during this process.
Also, in recursion, the stack segment is being raised during run-time. Compiler does not know how much memory will be occupied during compile time.
That is why if you don't handle your Base case properly, you will get StackOverflow exception :).
Using recursion the way you have, the time complexity is O(fib(n)) which is very expensive. The iterative method is O(n) This doesn't show because a) your tests are very short, the code won't even be compiled b) you used very small numbers.
Both examples will become faster the more you run them. Once a loop or method has been called 10,000 times, it should be compiled to native code.
If anyone is interested in an iterative Function with array:
public static void fibonacci(int y)
{
int[] a = new int[y+1];
a[0] = 0;
a[1] = 1;
System.out.println("Step 0: 0");
System.out.println("Step 1: 1");
for(int i=2; i<=y; i++){
a[i] = a[i-1] + a[i-2];
System.out.println("Step "+i+": "+a[i]);
}
System.out.println("Array size --> "+a.length);
}
This solution crashes for input value 0.
Reason: The array a will be initialized 0+1=1 but the consecutive assignment of a[1] will result in an index out of bounds exception.
Either add an if statement that returns 0 on y=0 or initialize the array by y+2, which will waste 1 int but still be of constant space and not change big O.
I prefer using a mathematical solution using the golden number. enjoy
private static final double GOLDEN_NUMBER = 1.618d;
public long fibonacci(int n) {
double sqrt = Math.sqrt(5);
double result = Math.pow(GOLDEN_NUMBER, n);
result = result - Math.pow(1d - GOLDEN_NUMBER, n);
result = Math.round(result / sqrt);
return Double.valueOf(result).longValue();
}
Whenever you are looking for time taken to complete a particular algorithm, it's best you always go for time complexity.
Evaluate the time complexity on the paper in terms of O(something).
Comparing the above two approaches, time complexity of iterative approach is O(n) whereas that of recursive approach is O(2^n).
Let's try to find the time complexity of fib(4)
Iterative approach, the loop evaluates 4 times, so it's time complexity is O(n).
Recursive approach,
fib(4)
fib(3) + fib(2)
fib(2) + fib(1) fib(1) + fib(0)
fib(1) + fib(0)
so fib() is called 9 times which is slightly lower than 2^n when the value of n is large, even small also(remember that BigOh(O) takes care of upper bound) .
As a result we can say that the iterative approach is evaluating in polynomial time, whereas recursive one is evaluating in exponential time
The recursive approach that you use is not efficient. I would suggest you use tail recursion. In contrast to your approach tail recursion keeps only one function call in the stack at any point in time.
public static int tailFib(int n) {
if (n <= 1) {
return n;
}
return tailFib(0, 1, n);
}
private static int tailFib(int a, int b, int count) {
if(count <= 0) {
return a;
}
return tailFib(b, a+b, count-1);
}
public static void main(String[] args) throws Exception{
for (int i = 0; i <10; i++){
System.out.println(tailFib(i));
}
}
I have a recursive solution that you where the computed values are stored to avoid the further unnecessary computations. The code is provided below,
public static int fibonacci(int n) {
if(n <= 0) return 0;
if(n == 1) return 1;
int[] arr = new int[n+1];
// this is faster than using Array
// List<Integer> lis = new ArrayList<>(Collections.nCopies(n+1, 0));
arr[0] = 0;
arr[1] = 1;
return fiboHelper(n, arr);
}
public static int fiboHelper(int n, int[] arr){
if(n <= 0) {
return arr[0];
}
else if(n == 1) {
return arr[1];
}
else {
if( arr[n-1] != 0 && (arr[n-2] != 0 || (arr[n-2] == 0 && n-2 == 0))){
return arr[n] = arr[n-1] + arr[n-2];
}
else if (arr[n-1] == 0 && arr[n-2] != 0 ){
return arr[n] = fiboHelper(n-1, arr) + arr[n-2];
}
else {
return arr[n] = fiboHelper(n-2, arr) + fiboHelper(n-1, arr );
}
}
}

Tail call optimization for fibonacci function in java

I was studying about Tail call recursion and came across some documentation that mentioned. Sun Java doesn't implement tail call optimization.
I wrote following code to calculate fibonacci number in 3 different ways:
1. Iterative
2. Head Recursive
3. Tail Recursive
public class Fibonacci {
public static void main(String[] args) throws InterruptedException {
int n = Integer.parseInt(args[0]);
System.out.println("\n Value of n : " + n);
System.out.println("\n Using Iteration : ");
long l1 = System.nanoTime();
fibonacciIterative(n);
long l2 = System.nanoTime();
System.out.println("iterative time = " + (l2 - l1));
System.out.println(fibonacciIterative(n));
System.out.println("\n Using Tail recursion : ");
long l3 = System.nanoTime();
fibonacciTail(n);
long l4 = System.nanoTime();
System.out.println("Tail recursive time = " + (l4 - l3));
System.out.println(fibonacciTail(n));
System.out.println("\n Using Recursion : ");
long l5 = System.nanoTime();
fibonacciRecursive(n);
long l6 = System.nanoTime();
System.out.println("Head recursive time = " + (l6 - l5));
}
private static long fibonacciRecursive(int num) {
if (num == 0) {
return 0L;
}
if (num == 1) {
return 1L;
}
return fibonacciRecursive(num - 1) + fibonacciRecursive(num - 2);
}
private static long fibonacciIterative(int n) throws InterruptedException {
long[] arr = new long[n + 1];
arr[0] = 0;
arr[1] = 1;
for (int i = 2; i <= n; i++) {
// Thread.sleep(1);
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr[n];
}
private static long fibonacciTail(int n) {
if (n == 0)
return 0;
return fibHelper(n, 1, 0, 1);
}
private static long fibHelper(int n, int m, long fibM_minus_one, long fibM) {
if (n == m)
return fibM;
return fibHelper(n, m + 1, fibM, fibM_minus_one + fibM);
}
}
On running this program I drew some results:
Head Recursive method does not finish for n>50. Program looked like hanged. Any idea, why this could happen?
Tail recursive method took significantly less time as compared to Head recursion. Sometimes took even less time than Iterative method. Does it mean that java does some Tail call optimization internally?
And if it does, why I did it give StackOverflowError at n > 5000?
System specs:
Intel core 5 processor,
Windows XP,
32 bit Java 1.6
Default stack size for JVM.
Does it mean that java does some Tail call optimization internally?
No, it does not. The HotSpot JIT compilers do not implement tail-call optimization.
The results you are observing are typical of the anomalies that you see in a Java benchmark that doesn't take account of JVM warmup. For instance, the "first few" times a method is called, it will be executed by the interpreter. Then the JIT compiler will compile the method ... and it will get faster.
To get meaningful results, put a loop around the whole lot and run it a number of times until the timings stabilize. Then discard the results from the early iterations.
... why I did it give StackOverflowError at n > 5000?
That's just evidence that there isn't any tail-call optimization happening.
For the first question, what is 2^50 (or something close)? Each number N in a recursive Fib function calls it twice (prior 2). Each of those calls 2 prior iterations, etc.. so it's grows to 2^(N-k) of recursion (k is probably 2 or 3).
The 2nd question is because the 2nd one is a straight N recursion. Instead of going double headed (N-1),(N-2), it simply builds up from M=1, M=2... M=N. Each step of the way, the N-1 value is retained for adding. Since it is an O(N) operation, it is comparable to the iterative method, the only difference being how the JIT compiler optimizes it. The problem with recursion though is that it requires a huge memory footprint for each level that you stack onto the frame - you run out of memory or stack space at some limit. It should still generally be slower than the iterative method.
Regarding point 1: Computing Fibonacci numbers recursively without memoization leads to a run time that is exponential in n. This goes for any programming language that does not automatically memoize function results (such as most mainstream non-functional languages, e.g. Java, C#, C++, ...). The reason is that the same functions will get called over and over again - e.g. f(8) will call f(7) and f(6); f(7) will call f(6) and f(5), so that f(6) gets called twice. This effect propagates and causes an exponential growth in the number of function calls. Here's a visualization of which functions get called:
f(8)
f(7)
f(6)
f(5)
f(4)
...
f(3)
...
f(4)
...
f(5)
f(4)
...
f(3)
...
f(6)
f(5)
...
f(4)
...
You can use Memoization to avoid head recursion.
I have tested the following code , when N <=40 , that approach is bad because Map has trade-off.
private static final Map<Integer,Long> map = new HashMap<Integer,Long>();
private static long fibonacciRecursiveMemoization(int num) {
if (num == 0) {
return 0L;
}
if (num == 1) {
return 1L;
}
int num1 = num - 1;
int num2 = num - 2;
long numResult1 = 0;
long numResult2 = 0;
if(map.containsKey(num1)){
numResult1 = map.get(num1);
}else{
numResult1 = fibonacciRecursiveMemoization(num1);
map.put(num1, numResult1);
}
if(map.containsKey(num2)){
numResult2 = map.get(num2);
}else{
numResult2 = fibonacciRecursiveMemoization(num2);
map.put(num2, numResult2);
}
return numResult1 + numResult2;
}
when the value of n : 44
Using Iteration :
iterative time = 6984
Using Tail recursion :
Tail recursive time = 8940
Using Memoization Recursion :
Memoization recursive time = 1799949
Using Recursion :
Head recursive time = 12697568825

Code works extremely slowly and does not print output

I'm working on Project Euler problem #2:
Each new term in the Fibonacci sequence is generated
by adding the previous two terms. By
starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
Find the sum of all the even-valued terms in the sequence which do not exceed four million.
My code:
public class Two {
public static void main(String[] args) {
Two obj = new Two();
int sum = 0, i = 1;
while (obj.fibonacci(i) < 4000001) {
if (obj.fibonacci(i) % 2 == 0) {
sum += obj.fibonacci(i);
i++;
}
}
System.out.println(sum);
}
public int fibonacci(int n) {
if (n == 0) {
return -1;
}
if (n == 1) {
return 1;
}
if (n == 2) {
return 3;
} else {
return fibonacci(n - 1) + fibonacci(n - 2);
}
}
}
Please help me that what is wrong with this code that when I run it. It doesn't show the output on the console and the total time will be over than 5 minutes
Thanks
You're stuck in an infinite loop there as you're only increasing i when its mod 2 is equal to 0. You need to move your i++ lower.
while (obj.fibonacci(i) <= 4000000) {
if (obj.fibonacci(i) % 2 == 0) {
sum += obj.fibonacci(i);
}
i++;
}
As other comments have metioned, this isn't the best way to solve the fibonacci problem, but it solves your error/problem. You should walk this through a debugger if you don't see why and you'll notice you use a lot of recursive calls which have already been solved. Since you're calling it numerous times in the code, (in the while statement and in the if statement) you've increased your processing time.
Here is a sample of your fibonacci calls, notice how you call the fibonacci method on the same number multiple times:
1
2
3
2
1
4
3
2
1
2
5
As mentioned, the i++ needs to be moved outside the check for eveness or you'll be stuck in a loop.
But you have a slightly bigger problem. The fibonacci sequence starts with
...1, 2, 3, ...
where instead you have ...1, 3, ... which means you get incorrect results. You should have:
// ...
if (n == 2) {
return 2;
// ...
Although you solution might work, it is quite expensive as it recalculates results already obtained.
Using recursion in this case, to have the value of fibonacci(4), you recursively add the values of fibonacci(3) and fibonacci(2), which you already calculated previously.
Try with storing your values in a list instead of recomputing all the time:
List<Long> fibonacci = new ArrayList<Long>();
// First terms
fibonacci.add(-1L); // 0 is dummy, sequence starts at 1
fibonacci.add(1L);
fibonacci.add(2L);
for (int i = 3; fibonacci.get(i - 1) + fibonacci.get(i - 2) < 4000001; i++) {
long u = fibonacci.get(i - 1) + fibonacci.get(i - 2);
fibonacci.add(i, u);
}
Using this technique, you can compute the Fibonacci sequence up to 4000000 in less than 2 seconds (as I tried on my computer).
Then, just add some code to compute the sum inside the loop :-)
One of your problems is that you're excessively using recursion. You should try to store results to avoid to recalculate everything every time.
There's no reason to store the whole sequence of Fibonacci numbers in this case. You can simply "walk" along the sequence with a few local variables, summing as you go.
int fib2 = 0, fib1 = 1, fib0 = fib1 + fib2;
int sum = 0;
while (fib0 <= N)
{
if (fib0 % 2 == 0) sum += fib0;
fib2 = fib1;
fib1 = fib0;
fib0 = fib1 + fib2;
}
An improvement on #Blastfurnace's solution is to note that every third value is even.
public static void main(String[] args) {
long sum = 0;
int runs = 30000;
for (int i=0;i< runs;i++) {
sum = sumEvenFib();
}
long start = System.nanoTime();
for (int i=0;i< runs;i++) {
sum = sumEvenFib();
}
long time = System.nanoTime() - start;
System.out.println(sum+" took "+time/runs+" ns avg");
}
private static long sumEvenFib() {
int sum = 0;
for(int f1 = 1, f2 = 2;f2 < 4000001;) {
sum += f2;
int f3 = f1 + f2;
f1 = f3 + f2;
f2 = f1 + f3;
}
return sum;
}
On my old labtop this takes about 40 ns. or 0.000000040 seconds.
I think you can improve fibonacci next way:
def fib(x)
if(x==0 or x==1) then
return x;
end
a,b = 0,1
(x-1).times{ a,b = b,a+b; }
return b;
end
In other words convert recursion to iteration.
I think the question in already ambiguous.
The sum of all even valued should be below 4 million, or should the biggest even valued number be below 4 million?

Categories

Resources