How to prevent an object from getting garbage collected? - java

How to prevent an object from getting garbage collected?
Are there any approaches by finalize or phantom reference or any other approaches?
I was asked this question in an interview. The interviewer suggested that finalize() can be used.

Hold a reference. If your object is getting collected prematurely, it is a symptom that you have a bug in the design of your application.
The garbage collector collects only objects to which there is no reference in your application. If there is no object that would naturally reference the collected object, ask yourself why it should be kept alive.
One usecase in which you typically have no references, but want to keep an object is a singleton. In this case, you could use a static variable. One possible implementation of a singleton would look like this:
public class Singleton {
private static Singleton uniqueInstance;
private Singleton() {
}
public static synchronized Singleton getInstance() {
if (uniqueInstance == null) {
uniqueInstance = new Singleton();
}
return uniqInstance;
}
}
Edit: Technically, you can store a reference somewhere in your finalizer. This will prevent the object from being collected until the collector determines again that there are no more references. The finalizer will only be called at most once, however, so you must ensure that your object (including its superclasses) need not be finalized after the first collection. I would advise you, however, not to use this technique in actual programs. (It will leave colleagues like me yelling WTF!? ;)
protected void finalize() throws Throwable {
MyObjectStore.getInstance().store(this);
super.finalize(); // questionable, but you should ensure calling it somewhere.
}

The trick answer your interviewer was looking for is probably that he wants you to know that you can prevent garbage collection from removing an object by forcing a memory leak.
Obviously, if you keep a reference to the object in some long-lived context, it won't be collected, but that's not what the OP's recruiter asked about. That's not something which happens in the finalize method.
What you can do to prevent garbage collection from within the finalize method is to write an infinite loop, in which you call Thread.yield();(presumably to keep an empty loop from being optimized away):
#Override
protected void finalize() throws Throwable {
while (true) {
Thread.yield();
}
}
My reference here is an article by Elliot Back, in which describes forcing a memory leak by this method.
Just another way in which finalize methods are evil.

The best way is to use Unsafe, although ByteBuffer might be a possible workaround for some cases.
Also search for the keyword "off-heap" memory.
Unsafe
Advantages over ByteBuffer:
allows objects to be represented directly, without for serialization and thus faster
no bounds checking, so faster
explicit deallocation control
can allocate more than the JVM limit
It is not however easy to get working. The method is described in the following articles:
http://mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe/
https://highlyscalable.wordpress.com/2012/02/02/direct-memory-access-in-java/
http://java.dzone.com/articles/understanding-sunmiscunsafe
They all consist of the following steps:
we need a sizeof operator, which Unsafe does not have. How to make one was asked at: In Java, what is the best way to determine the size of an object?. The best options is likely the instrument API, but that requires you to create a Jar and use special command line options...
once we have sizeof, allocate enough memory with Unsafe#allocateMemory, which is basically a malloc and returns an address
create a regular on heap object, copy it to the allocated memory with Unsafe#copyMemory. To do this, you need to the address of the on-heap object, and the size of the object
set an Object to point to the allocated memory, then cast the Object to your class.
It does not seem possible to set the address of a variable directly with Unsafe, so we need to wrap the object into an array or wrapper object, and use Unsafe#arrayBaseOffset or Unsafe#objectFieldOffset.
once you are done, free the allocated memory with freeMemory
If I ever get this to not segfault I will post an example :-)
ByteBuffer
Advantages over Unsafe:
stable across Java versions while Unsafe may break
does bound checking, so safer than... Unsafe, which allows for memory leaks and SIGSEGV
JLS says:
The contents of direct buffers may reside outside of the normal garbage-collected heap.
Example of usage with primitives:
ByteBuffer bb = ByteBuffer.allocateDirect(8);
bb.putInt(0, 1);
bb.putInt(4, 2);
assert bb.getInt(0) == 1;
assert bb.getInt(4) == 2;
// Bound chekcs are done.
boolean fail = false;
try {
bb.getInt(8);
} catch(IndexOutOfBoundsException e) {
fail = true;
}
assert fail;
Related threads:
Difference between "on-heap" and "off-heap"

If there is still a reference to the object, it won't get garbage collected. If there aren't any references to it, you shouldn't care.
In other words - the garbage collector only collects garbage. Let it do its job.

I suspect what you might be referring to is if your finalize method stashes away a reference to the object being finalized. In this case (if my reading of the Java Language Spec is correct) the finalize method will never be re-run, but the object will not yet be garbage collected.
This is not the sort of thing one does in real life, except possibly by accident!

This sounds like one of those interview-only-time-you'll-see-it questions. finalize() is run when your object is getting garbage collected, so it'd be pretty perverse to put something in there to prevent collection. Normally you just hold a reference and that's all you need.
I'm not even sure what would happen if you'd create a new reference for something in the finalizer - since the garbage collector's already decided to collect it would you then end up with a null ref? Seems like a poor idea, in any case. e.g.
public class Foo {
static Foo reference;
...
finalize (){
reference = this;
}
}
I doubt this would work, or it might work but be dependant on the GC implenetation, or be "unspecified behavior". Looks evil, though.

The key point is if we set the real reference variable pointing to the object null,although we have instance variables of that class pointing to that object not set to null.
The object is automatically eligible for garbage collection.if save the object to GC, use this code...
public class GcTest {
public int id;
public String name;
private static GcTest gcTest=null;
#Override
protected void finalize() throws Throwable {
super.finalize();
System.out.println("In finalize method.");
System.out.println("In finalize :ID :"+this.id);
System.out.println("In finalize :ID :"+this.name);
gcTest=this;
}
public static void main(String[] args) {
GcTest myGcTest=new GcTest();
myGcTest.id=1001;
myGcTest.name="Praveen";
myGcTest=null;
// requesting Garbage Collector to execute.
// internally GC uses Mark and Sweep algorithm to clear heap memory.
// gc() is a native method in RunTime class.
System.gc(); // or Runtime.getRuntime().gc();
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("\n------- After called GC () ---------\n");
System.out.println("Id :"+gcTest.id);
System.out.println("Name :"+gcTest.name);
}
}
Output :
In finalize method.
In finalize :ID :1001
In finalize :ID :Praveen
------- After called GC () --------
Id :1001
Name :Praveen

I wonder if what they're going for is the pattern with resource pools (e.g. for network/db connections, or threads) where you use finalize to return a resource to the pool so that the actual object holding the resource isn't GC'ed.
Stupid example, in Java-like pseudocode and missing any kind of synchronization:
class SlowResourceInternal {
private final SlowResourcePool parent;
<some instance data>
returnToPool() {
parent.add(this);
}
}
class SlowResourceHolder {
private final SlowResourceInternal impl;
<delegate actual stuff to the internal object>
finalize() {
if (impl != null) impl.returnToPool();
}
}

I believe there is a pattern out there for this. Not sure if it the factory pattern. But you have one object that creates all your objects and holds a reference to them. When you are finished with them, you de-reference them in the factory, making the call explicit.

We have three ways to achieve same -
1) Increasing the Heap -Eden space size .
2) Create Singleton class with Static reference .
3) Override finalize() method and never let that object dereference.

There are 3 ways to prevent an Object from Garbage Collection as following:-
Increase the Heap Size of JVM
// Xms specifies initial memory to be allocated
// and Xmx specifies maximum memory can be allocated
java -Xms1024m -Xmx4096m ClassFile
Use a SingleTon Class Object as #Tobias mentioned
public class MySingletonClass {
private static MySingletonClass uniqueInstance;
// marking constructor as private
private MySingletonClass() {
}
public static synchronized MySingletonClass getInstance() {
if (uniqueInstance == null) {
uniqueInstance = new Singleton();
}
return uniqInstance;
}
}
We can override finalize method. That is last method executed on an object. Hence, it will remain in memory.
// using finalize method
class MyClassNotGc{
static MyClassNotGc staticSelfObj;
pubic void finalize() {
// Putting the reference id
//Object reference saved.
//The object won't be collected by the garbage collector
staticSelfObj = this;
}
}

Related

Does JVM garbage collect objects being referenced by local variables which are no longer used? [duplicate]

This question already has answers here:
Can java finalize an object when it is still in scope?
(2 answers)
Closed 3 years ago.
As far as I know, a method's local variable is located in a stack frame in an executing thread and a reference type of a local variable only has a objects' reference, not the object itself. All of objects in JVM are located in a heap space.
I want to know that objects referenced by local variables in a method being executed are never garbage collected until the end of the method execution. (without using java.lang.ref.WeakReference and SoftReference.)
Are they garbage collected? or never? Is there compiler's optimization to this type of stuff?
(If they are never garbage collected, this means it may be needed to assign null to variables no longer used when executing big methods which take long time.)
As elaborated in Can java finalize an object when it is still in scope?, local variables do not prevent the garbage collection of referenced objects. Or, as this answer puts it, scope is a only a language concept, irrelevant to the garbage collector.
I’ll cite the relevant part of the specification, JLS §12.6.1 again:
A reachable object is any object that can be accessed in any potential continuing computation from any live thread.
Further, I extended the answer’s example to
class A {
static volatile boolean finalized;
Object b = new Object() {
#Override protected void finalize() {
System.out.println(this + " was finalized!");
finalized = true;
}
#Override public String toString() {
return "B#"+Integer.toHexString(hashCode());
}
};
#Override protected void finalize() {
System.out.println(this + " was finalized!");
}
#Override public String toString() {
return super.toString() + " with "+b;
}
public static void main(String[] args) {
A a = new A();
System.out.println("Created " + a);
for(int i = 0; !finalized; i++) {
if (i % 1_000_000 == 0)
System.gc();
}
System.out.println("finalized");
}
}
Created A#59a6e353 with B#6aaa5eb0
B#6aaa5eb0 was finalized!
finalized
A#59a6e353 with B#6aaa5eb0 was finalized!
which demonstrates that even the method with the variable in scope may detect the finalization of the referenced object. Further, being referenced from a heap variable doesn’t necessarily prevent the garbage collection either, as the B object is unreachable, as no continuing computation can access it when the object containing the reference is unreachable too.
It’s worth emphasizing that even using the object does not always prevent its garbage collection. What matters, is whether the object’s memory is needed for the ongoing operation(s) and not every access to an object’s field in source code has to lead to an actual memory access at runtime. The specification states:
Optimizing transformations of a program can be designed that reduce the number of objects that are reachable to be less than those which would naively be considered reachable. […]
Another example of this occurs if the values in an object's fields are stored in registers. The program may then access the registers instead of the object, and never access the object again. This would imply that the object is garbage.
This is not only a theoretical option. As discussed in finalize() called on strongly reachable object in Java 8, it may even happen to objects while a method is invoked on them, or in other words, the this reference may get garbage collected while an instance method is still executing.
The only ways to prevent an objects garbage collection for sure, are synchronization on the object if the finalizer also does synchronization on the object or calling Reference.reachabilityFence(object), a method added in Java 9. The late addition of the fence method demonstrates the impact of the optimizers getting better from version to version on the issue of earlier-than-wanted garbage collection. Of course, the preferred solution is to write code that does not depend on the time of garbage collection at all.
It is not quite true that all of the objects are in heap space; but it is generally true. Java has been extended to have stack-local objects, provided the JVM can detect that the object will live only as long as the stack frame.
Now for the objects on the heap, which have a local reference in a method. While the method is being processed, the stack frame associated with the method run contains the local variable references. As long as the reference can be used (which includes being still in the stack frame) the object will not be garbage collected.
Once the reference has been destroyed, and the object can no longer be reached by the running program (because there's no references that can reach it), then the garbage collector will collect it.

Can object be garbage collected between two subsequent calls to WeakReference.get()?

I sometimes see the code of this kind in some library APIs and just in someone's code:
class SomeClass {
private WeakReference<SomeObject> objectWeakReference; // initialized elsewhere
public boolean isObjectAttached() {
return objectWeakReference.get() != null;
}
public SomeObject getObject() {
return objectWeakReference.get();
}
}
and
public void checkAndGetWeakReference() {
SomeClass someClass = new SomeClass();
if (someClass.isObjectAttached()) {
someClass.getObject().doSomethingDirectlyOnReturnedObject(); // can the returned reference be null here ?
}
}
And I'm always worried if there could be NullPointerException once in a blue moon, assuming there are no strong reference to the underlying object at this point.
I don't really know when exactly Garbage Collector can start deleting objects from memory and how does it correlate with the basic thread flow.
It would be nice if someone can shed the light on this particular subject and/or provide some information about the topic.
P.S. I would personally get reference only once and assign it to strong reference. The point of the question is to get some proof the code above is wrong.
The whole point of the WeakReference (and SoftReference as well) is that the referred object may be gc'd at any time no strong reference to the object exists.
Since there exists no strong reference when isObjectAttached() returns, yes it can be garbage collected before it actually gets to execute getObject(). The whole idom is faulty for this use case.
The only safe way is to first get the reference (e.g. to a local variable) and then check it against null. The object can then not be garbage collected in that case, because a local variable is a strong reference.
As per java doc. You should not rely on Garbage collector. Its not sure when it will be executed. Though you are trying explicitly System.gc()
Its always been a lowest priority for JVM for garbage collector. When JVM is free or when your program is around to ran out of memory it can execute GC.
In other case when your program will exit. It will be garbage collected before it is flushed out of JVM memory.
Please refer javadoc for detailed explanation for GC.
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
I would like to add something to all answers.
Your object can be null when you call below method :
public SomeObject getObject() {
return objectWeakReference.get();
}
about garbage collection of this object.
If you do something like below :
public static void main(String args[]) {
SomeClass oSomeClass = new SomeClass();
// this one is strong reference "obj"
// this object can be null. Best practice is to null check before you use it.
// Or i will suggest to call isObjectAttached() method before you use it
Object obj = oSomeClass.getObject();
}
When you do obj = null; somewhere in code after above statement.
This object memory is available for garbage collection. Whenever JVM feels to clean memory. Yes it can collect this object.
Regarding proof of code you are asking.
public boolean isObjectAttached() {
return objectWeakReference.get() != null;
}
This method is made for you to check whether this object is present in memory or it has a valid reference for you.
If it returns true you will never get nullpointer exception.
but if you are not using this method i will suggest to use null check always before you use your object.
Hope I am on right direction and making some sense in my answer. Please respond accordingly.
We all are here to learn ;-)
Enjoy Java, OOP concepts.
Garbage collector internally has its heuristics to collect soft/weak/phantom references. It will not collect those objects in subsequent GC calls. It tracks these objects until it reaches the threshold of that heuristics, GC is not allowed to collect these references.

Should i use finalize() or not in java? [duplicate]

This question already has answers here:
When is the finalize() method called in Java?
(18 answers)
Closed 8 years ago.
Why execution of finalize() isn't guaranteed at all in Java? Is finalize() method shouldn't be used???
Consider below program.
class Test{
protected void finalize()
{
System.out.println("Will i execute?");
}
public static void main(String args[])
{
Test t=new Test();
}
}
There is an empty output when this program runs. We know that finalize() is used to cleanup any external resources before the object becomes eligible for garbage collection & finalize() will be called by JVM. Inside finalize() we will specify those actions that must be performed before an object is destroyed. Is finalize() method evil??
Javadoc link, because many quotes will follow.
We know that finalize() is used to cleanup any external resources before the object becomes eligible for garbage collection
No. Once the object becomes eligible for garbage collection, then finalize() can get invoked. finalize could theoretically make the object no longer eligible for garbage collection and the garbage collector would then skip it. As stated
After the finalize method has been invoked for an object, no further
action is taken until the Java virtual machine has again determined
that there is no longer any means by which this object can be accessed
by any thread that has not yet died
Why execution of finalize() isn't guaranteed at all in Java?
It is guaranteed to run. As the Javadoc states
The general contract of finalize is that it is invoked if and when the
Java™ virtual machine has determined that there is no longer any means
by which this object can be accessed by any thread that has not yet
died, except as a result of an action taken by the finalization of
some other object or class which is ready to be finalized.
What isn't guaranteed is when or if garbage collection will occur.
Should i use finalize() or not in java?
That depends on your use case. Start by reading the javadoc and understand the implications.
finalize() is Called by the garbage collector on an object when garbage collection determines that there are no more references to the object. .
You could use System.gc() to explicitly call for garbage collection and check if your statement gets printed.
But the JVM has the liberty to ignore your request (depends on the JVM implementation actually..). Only when the JVM's internal state tells it that there is too much garbage and it needs to be collected, then it will run GC (and the line will I execute) will be printed.
If I understand your question, you can use the System.gc() to request garbage collection with something like this,
#Override
protected void finalize() {
System.out.println("I will execute.");
}
public static void main(String args[]) {
Test t = new Test();
t = null; // <-- make it eligible for gc.
System.gc(); // <-- request gc.
System.runFinalization(); // <-- run finalization(s).
System.out.println("Exit"); // <-- exit.
}
Depending on your JVM, you might find the order of output swaps if you comment out System.runFinalization(); -
public static void main(String args[]) {
Test t = new Test();
t = null; // <-- make it eligible for gc.
System.gc(); // <-- request gc.
// System.runFinalization(); // <-- run finalization(s).
System.out.println("Exit"); // <-- exit.
}
Before removing an object from memory Garbage collection thread invokes finalize () method of that object and gives an opportunity to perform any sort of cleanup operations.
Generally an object becomes eligible for garbage collection in Java on following cases:
All references of that object explicitly set to null e.g. object = null.
Object is created inside a block and reference goes out scope once control exit that block.
Parent object set to null, if an object holds reference of another object and when you set container object's reference null, child or contained object automatically becomes eligible for garbage collection.
If an object has only live references via WeakHashMap it will be eligible for garbage collection.
public Test(){
System.out.println("Object created");
}
protected void finalize(){
System.out.println("Will i execute?");
}
public static void main(String args[]){
Test test = new Test();
test = null;
new Test();
System.gc();
}
finalize() of any particular class is called by jvm just before collecting the object of that class as a garbage.
Now next question is when an object of a class is collected as garbage?
Answer is:
When there is no more objects reference to that object or simply no more object reference is pointing to that allocated memory space or an object has only live references via WeakHashMap it will be eligible for garbage collection.
Read more here.
As an option we can use System.gc() or Runtime.gc() that will give a request to jvm to consider the garbage collection. But whether your request will be listened or ignored by jvm that depends upon following factors:
Internal implementation of JVM & its Garbage Collection algorithm
Java Heap size
Free memory available in Heap

Is memory leaks possible in java? [duplicate]

I just had an interview where I was asked to create a memory leak with Java.
Needless to say, I felt pretty dumb, having no idea how to start creating one.
What would an example be?
Here's a good way to create a true memory leak (objects inaccessible by running code but still stored in memory) in pure Java:
The application creates a long-running thread (or use a thread pool to leak even faster).
The thread loads a class via an (optionally custom) ClassLoader.
The class allocates a large chunk of memory (e.g. new byte[1000000]), stores a strong reference to it in a static field, and then stores a reference to itself in a ThreadLocal. Allocating the extra memory is optional (leaking the class instance is enough), but it will make the leak work that much faster.
The application clears all references to the custom class or the ClassLoader it was loaded from.
Repeat.
Due to the way ThreadLocal is implemented in Oracle's JDK, this creates a memory leak:
Each Thread has a private field threadLocals, which actually stores the thread-local values.
Each key in this map is a weak reference to a ThreadLocal object, so after that ThreadLocal object is garbage-collected, its entry is removed from the map.
But each value is a strong reference, so when a value (directly or indirectly) points to the ThreadLocal object that is its key, that object will neither be garbage-collected nor removed from the map as long as the thread lives.
In this example, the chain of strong references looks like this:
Thread object → threadLocals map → instance of example class → example class → static ThreadLocal field → ThreadLocal object.
(The ClassLoader doesn't really play a role in creating the leak, it just makes the leak worse because of this additional reference chain: example class → ClassLoader → all the classes it has loaded. It was even worse in many JVM implementations, especially prior to Java 7, because classes and ClassLoaders were allocated straight into permgen and were never garbage-collected at all.)
A variation on this pattern is why application containers (like Tomcat) can leak memory like a sieve if you frequently redeploy applications which happen to use ThreadLocals that in some way point back to themselves. This can happen for a number of subtle reasons and is often hard to debug and/or fix.
Update: Since lots of people keep asking for it, here's some example code that shows this behavior in action.
Static field holding an object reference [especially a final field]
class MemorableClass {
static final ArrayList list = new ArrayList(100);
}
(Unclosed) open streams (file , network, etc.)
try {
BufferedReader br = new BufferedReader(new FileReader(inputFile));
...
...
} catch (Exception e) {
e.printStackTrace();
}
Unclosed connections
try {
Connection conn = ConnectionFactory.getConnection();
...
...
} catch (Exception e) {
e.printStackTrace();
}
Areas that are unreachable from JVM's garbage collector, such as memory allocated through native methods.
In web applications, some objects are stored in application scope until the application is explicitly stopped or removed.
getServletContext().setAttribute("SOME_MAP", map);
Incorrect or inappropriate JVM options, such as the noclassgc option on IBM JDK that prevents unused class garbage collection
See IBM JDK settings.
A simple thing to do is to use a HashSet with an incorrect (or non-existent) hashCode() or equals(), and then keep adding "duplicates". Instead of ignoring duplicates as it should, the set will only ever grow and you won't be able to remove them.
If you want these bad keys/elements to hang around you can use a static field like
class BadKey {
// no hashCode or equals();
public final String key;
public BadKey(String key) { this.key = key; }
}
Map map = System.getProperties();
map.put(new BadKey("key"), "value"); // Memory leak even if your threads die.
Below there will be a non-obvious case where Java leaks, besides the standard case of forgotten listeners, static references, bogus/modifiable keys in hashmaps, or just threads stuck without any chance to end their life-cycle.
File.deleteOnExit() - always leaks the string, if the string is a substring, the leak is even worse (the underlying char[] is also leaked) - in Java 7 substring also copies the char[], so the later doesn't apply; #Daniel, no needs for votes, though.
I'll concentrate on threads to show the danger of unmanaged threads mostly, don't wish to even touch swing.
Runtime.addShutdownHook and not remove... and then even with removeShutdownHook due to a bug in ThreadGroup class regarding unstarted threads it may not get collected, effectively leak the ThreadGroup. JGroup has the leak in GossipRouter.
Creating, but not starting, a Thread goes into the same category as above.
Creating a thread inherits the ContextClassLoader and AccessControlContext, plus the ThreadGroup and any InheritedThreadLocal, all those references are potential leaks, along with the entire classes loaded by the classloader and all static references, and ja-ja. The effect is especially visible with the entire j.u.c.Executor framework that features a super simple ThreadFactory interface, yet most developers have no clue of the lurking danger. Also a lot of libraries do start threads upon request (way too many industry popular libraries).
ThreadLocal caches; those are evil in many cases. I am sure everyone has seen quite a bit of simple caches based on ThreadLocal, well the bad news: if the thread keeps going more than expected the life the context ClassLoader, it is a pure nice little leak. Do not use ThreadLocal caches unless really needed.
Calling ThreadGroup.destroy() when the ThreadGroup has no threads itself, but it still keeps child ThreadGroups. A bad leak that will prevent the ThreadGroup to remove from its parent, but all the children become un-enumerateable.
Using WeakHashMap and the value (in)directly references the key. This is a hard one to find without a heap dump. That applies to all extended Weak/SoftReference that might keep a hard reference back to the guarded object.
Using java.net.URL with the HTTP(S) protocol and loading the resource from(!). This one is special, the KeepAliveCache creates a new thread in the system ThreadGroup which leaks the current thread's context classloader. The thread is created upon the first request when no alive thread exists, so either you may get lucky or just leak. The leak is already fixed in Java 7 and the code that creates thread properly removes the context classloader. There are few more cases (like ImageFetcher, also fixed) of creating similar threads.
Using InflaterInputStream passing new java.util.zip.Inflater() in the constructor (PNGImageDecoder for instance) and not calling end() of the inflater. Well, if you pass in the constructor with just new, no chance... And yes, calling close() on the stream does not close the inflater if it's manually passed as constructor parameter. This is not a true leak since it'd be released by the finalizer... when it deems it necessary. Till that moment it eats native memory so badly it can cause Linux oom_killer to kill the process with impunity. The main issue is that finalization in Java is very unreliable and G1 made it worse till 7.0.2. Moral of the story: release native resources as soon as you can; the finalizer is just too poor.
The same case with java.util.zip.Deflater. This one is far worse since Deflater is memory hungry in Java, i.e. always uses 15 bits (max) and 8 memory levels (9 is max) allocating several hundreds KB of native memory. Fortunately, Deflater is not widely used and to my knowledge JDK contains no misuses. Always call end() if you manually create a Deflater or Inflater. The best part of the last two: you can't find them via normal profiling tools available.
(I can add some more time wasters I have encountered upon request.)
Good luck and stay safe; leaks are evil!
Most examples here are "too complex". They are edge cases. With these examples, the programmer made a mistake (like don't redefining equals/hashcode), or has been bitten by a corner case of the JVM/JAVA (load of class with static...). I think that's not the type of example an interviewer want or even the most common case.
But there are really simpler cases for memory leaks. The garbage collector only frees what is no longer referenced. We as Java developers don't care about memory. We allocate it when needed and let it be freed automatically. Fine.
But any long-lived application tend to have shared state. It can be anything, statics, singletons... Often non-trivial applications tend to make complex objects graphs. Just forgetting to set a reference to null or more often forgetting to remove one object from a collection is enough to make a memory leak.
Of course all sort of listeners (like UI listeners), caches, or any long-lived shared state tend to produce memory leak if not properly handled. What shall be understood is that this is not a Java corner case, or a problem with the garbage collector. It is a design problem. We design that we add a listener to a long-lived object, but we don't remove the listener when no longer needed. We cache objects, but we have no strategy to remove them from the cache.
We maybe have a complex graph that store the previous state that is needed by a computation. But the previous state is itself linked to the state before and so on.
Like we have to close SQL connections or files. We need to set proper references to null and remove elements from the collection. We shall have proper caching strategies (maximum memory size, number of elements, or timers). All objects that allow a listener to be notified must provide both a addListener and removeListener method. And when these notifiers are no longer used, they must clear their listener list.
A memory leak is indeed truly possible and is perfectly predictable. No need for special language features or corner cases. Memory leaks are either an indicator that something is maybe missing or even of design problems.
The answer depends entirely on what the interviewer thought they were asking.
Is it possible in practice to make Java leak? Of course it is, and there are plenty of examples in the other answers.
But there are multiple meta-questions that may have been being asked?
Is a theoretically "perfect" Java implementation vulnerable to leaks?
Does the candidate understand the difference between theory and reality?
Does the candidate understand how garbage collection works?
Or how garbage collection is supposed to work in an ideal case?
Do they know they can call other languages through native interfaces?
Do they know to leak memory in those other languages?
Does the candidate even know what memory management is, and what is going on behind the scene in Java?
I'm reading your meta-question as "What's an answer I could have used in this interview situation". And hence, I'm going to focus on interview skills instead of Java. I believe you're more likely to repeat the situation of not knowing the answer to a question in an interview than you are to be in a place of needing to know how to make Java leak. So, hopefully, this will help.
One of the most important skills you can develop for interviewing is learning to actively listen to the questions and working with the interviewer to extract their intent. Not only does this let you answer their question the way they want, but also shows that you have some vital communication skills. And when it comes down to a choice between many equally talented developers, I'll hire the one who listens, thinks, and understands before they respond every time.
The following is a pretty pointless example if you do not understand JDBC. Or at least how JDBC expects a developer to close Connection, Statement, and ResultSet instances before discarding them or losing references to them, instead of relying on implementing the finalize method.
void doWork() {
try {
Connection conn = ConnectionFactory.getConnection();
PreparedStatement stmt = conn.preparedStatement("some query");
// executes a valid query
ResultSet rs = stmt.executeQuery();
while(rs.hasNext()) {
// ... process the result set
}
} catch(SQLException sqlEx) {
log(sqlEx);
}
}
The problem with the above is that the Connection object is not closed, and hence the physical Connection will remain open until the garbage collector comes around and sees that it is unreachable. GC will invoke the finalize method, but there are JDBC drivers that do not implement the finalize, at least not in the same way that Connection.close is implemented. The resulting behavior is that while the JVM will reclaim memory due to unreachable objects being collected, resources (including memory) associated with the Connection object might not be reclaimed.
As such, Connection's final method does not clean up everything. One might find that the physical Connection to the database server will last several garbage collection cycles until the database server eventually figures out that the Connection is not alive (if it does) and should be closed.
Even if the JDBC driver implemented finalize, the compiler can throw exceptions during finalization. The resulting behavior is that any memory associated with the now "dormant" object will not be reclaimed by the compiler, as finalize is guaranteed to be invoked only once.
The above scenario of encountering exceptions during object finalization is related to another scenario that could lead to a memory leak - object resurrection. Object resurrection is often done intentionally by creating a strong reference to the object from being finalized, from another object. When object resurrection is misused it will lead to a memory leak in combination with other sources of memory leaks.
There are plenty more examples that you can conjure up - like
Managing a List instance where you are only adding to the list and not deleting from it (although you should be getting rid of elements you no longer need), or
Opening Sockets or Files, but not closing them when they are no longer needed (similar to the above example involving the Connection class).
Not unloading Singletons when bringing down a Java EE application. The Classloader that loaded the singleton class will retain a reference to the class, and hence the singleton instance will never be collected by the JVM. When a new instance of the application is deployed, a new class loader is usually created, and the former class loader will continue to exist due to the singleton.
Probably one of the simplest examples of a potential memory leak, and how to avoid it, is the implementation of ArrayList.remove(int):
public E remove(int index) {
RangeCheck(index);
modCount++;
E oldValue = (E) elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index + 1, elementData, index,
numMoved);
elementData[--size] = null; // (!) Let gc do its work
return oldValue;
}
If you were implementing it yourself, would you have thought to clear the array element that is no longer used (elementData[--size] = null)? That reference might keep a huge object alive ...
Any time you keep references around to objects that you no longer need you have a memory leak. See Handling memory leaks in Java programs for examples of how memory leaks manifest themselves in Java and what you can do about it.
You are able to make memory leak with sun.misc.Unsafe class. In fact this service class is used in different standard classes (for example in java.nio classes). You can't create instances of this class directly, but you may use reflection to get an instance.
Code doesn't compile in the Eclipse IDE - compile it using command javac (during compilation you'll get warnings)
import java.lang.reflect.Constructor;
import java.lang.reflect.Field;
import sun.misc.Unsafe;
public class TestUnsafe {
public static void main(String[] args) throws Exception{
Class unsafeClass = Class.forName("sun.misc.Unsafe");
Field f = unsafeClass.getDeclaredField("theUnsafe");
f.setAccessible(true);
Unsafe unsafe = (Unsafe) f.get(null);
System.out.print("4..3..2..1...");
try
{
for(;;)
unsafe.allocateMemory(1024*1024);
} catch(Error e) {
System.out.println("Boom :)");
e.printStackTrace();
}
}
}
I can copy my answer from here:
Easiest way to cause memory leak in Java
"A memory leak, in computer science (or leakage, in this context), occurs when a computer program consumes memory but is unable to release it back to the operating system." (Wikipedia)
The easy answer is: You can't. Java does automatic memory management and will free resources that are not needed for you. You can't stop this from happening. It will always be able to release the resources. In programs with manual memory management, this is different. You can get some memory in C using malloc(). To free the memory, you need the pointer that malloc returned and call free() on it. But if you don't have the pointer any more (overwritten, or lifetime exceeded), then you are unfortunately incapable of freeing this memory and thus you have a memory leak.
All the other answers so far are in my definition not really memory leaks. They all aim at filling the memory with pointless stuff real fast. But at any time you could still dereference the objects you created and thus freeing the memory --> no leak. acconrad's answer comes pretty close though as I have to admit since his solution is effectively to just "crash" the garbage collector by forcing it in an endless loop).
The long answer is: You can get a memory leak by writing a library for Java using the JNI, which can have manual memory management and thus have memory leaks. If you call this library, your Java process will leak memory. Or, you can have bugs in the JVM, so that the JVM looses memory. There are probably bugs in the JVM, there may even be some known ones since garbage collection is not that trivial, but then it's still a bug. By design this is not possible. You may be asking for some Java code that is effected by such a bug. Sorry I don't know one and it might well not be a bug any more in the next Java version anyway.
Here's a simple/sinister one via http://wiki.eclipse.org/Performance_Bloopers#String.substring.28.29.
public class StringLeaker
{
private final String muchSmallerString;
public StringLeaker()
{
// Imagine the whole Declaration of Independence here
String veryLongString = "We hold these truths to be self-evident...";
// The substring here maintains a reference to the internal char[]
// representation of the original string.
this.muchSmallerString = veryLongString.substring(0, 1);
}
}
Because the substring refers to the internal representation of the original, much longer string, the original stays in memory. Thus, as long as you have a StringLeaker in play, you have the whole original string in memory, too, even though you might think you're just holding on to a single-character string.
The way to avoid storing an unwanted reference to the original string is to do something like this:
...
this.muchSmallerString = new String(veryLongString.substring(0, 1));
...
For added badness, you might also .intern() the substring:
...
this.muchSmallerString = veryLongString.substring(0, 1).intern();
...
Doing so will keep both the original long string and the derived substring in memory even after the StringLeaker instance has been discarded.
A common example of this in GUI code is when creating a widget/component and adding a listener to some static/application scoped object and then not removing the listener when the widget is destroyed. Not only do you get a memory leak, but also a performance hit as when whatever you are listening to fires events, all your old listeners are called too.
Take any web application running in any servlet container (Tomcat, Jetty, GlassFish, whatever...). Redeploy the application 10 or 20 times in a row (it may be enough to simply touch the WAR in the server's autodeploy directory.
Unless anybody has actually tested this, chances are high that you'll get an OutOfMemoryError after a couple of redeployments, because the application did not take care to clean up after itself. You may even find a bug in your server with this test.
The problem is, the lifetime of the container is longer than the lifetime of your application. You have to make sure that all references the container might have to objects or classes of your application can be garbage collected.
If there is just one reference surviving the undeployment of your web application, the corresponding classloader and by consequence all classes of your web application cannot be garbage collected.
Threads started by your application, ThreadLocal variables, logging appenders are some of the usual suspects to cause classloader leaks.
Maybe by using external native code through JNI?
With pure Java, it is almost impossible.
But that is about a "standard" type of memory leak, when you cannot access the memory anymore, but it is still owned by the application. You can instead keep references to unused objects, or open streams without closing them afterwards.
I have had a nice "memory leak" in relation to PermGen and XML parsing once.
The XML parser we used (I can't remember which one it was) did a String.intern() on tag names, to make comparison faster.
One of our customers had the great idea to store data values not in XML attributes or text, but as tagnames, so we had a document like:
<data>
<1>bla</1>
<2>foo</>
...
</data>
In fact, they did not use numbers but longer textual IDs (around 20 characters), which were unique and came in at a rate of 10-15 million a day. That makes 200 MB of rubbish a day, which is never needed again, and never GCed (since it is in PermGen). We had permgen set to 512 MB, so it took around two days for the out-of-memory exception (OOME) to arrive...
The interviewer was probably looking for a circular reference like the code below (which incidentally only leak memory in very old JVMs that used reference counting, which isn't the case anymore). But it's a pretty vague question, so it's a prime opportunity to show off your understanding of JVM memory management.
class A {
B bRef;
}
class B {
A aRef;
}
public class Main {
public static void main(String args[]) {
A myA = new A();
B myB = new B();
myA.bRef = myB;
myB.aRef = myA;
myA=null;
myB=null;
/* at this point, there is no access to the myA and myB objects, */
/* even though both objects still have active references. */
} /* main */
}
Then you can explain that with reference counting, the above code would leak memory. But most modern JVMs don't use reference counting any longer. Most use a sweep garbage collector, which will in fact collect this memory.
Next, you might explain creating an Object that has an underlying native resource, like this:
public class Main {
public static void main(String args[]) {
Socket s = new Socket(InetAddress.getByName("google.com"),80);
s=null;
/* at this point, because you didn't close the socket properly, */
/* you have a leak of a native descriptor, which uses memory. */
}
}
Then you can explain this is technically a memory leak, but really the leak is caused by native code in the JVM allocating underlying native resources, which weren't freed by your Java code.
At the end of the day, with a modern JVM, you need to write some Java code that allocates a native resource outside the normal scope of the JVM's awareness.
What's a memory leak:
It's caused by a bug or bad design.
It's a waste of memory.
It gets worse over time.
The garbage collector cannot clean it.
Typical example:
A cache of objects is a good starting point to mess things up.
private static final Map<String, Info> myCache = new HashMap<>();
public void getInfo(String key)
{
// uses cache
Info info = myCache.get(key);
if (info != null) return info;
// if it's not in cache, then fetch it from the database
info = Database.fetch(key);
if (info == null) return null;
// and store it in the cache
myCache.put(key, info);
return info;
}
Your cache grows and grows. And pretty soon the entire database gets sucked into memory. A better design uses an LRUMap (Only keeps recently used objects in cache).
Sure, you can make things a lot more complicated:
using ThreadLocal constructions.
adding more complex reference trees.
or leaks caused by 3rd party libraries.
What often happens:
If this Info object has references to other objects, which again have references to other objects. In a way you could also consider this to be some kind of memory leak, (caused by bad design).
I thought it was interesting that no one used the internal class examples. If you have an internal class; it inherently maintains a reference to the containing class. Of course it is not technically a memory leak because Java WILL eventually clean it up; but this can cause classes to hang around longer than anticipated.
public class Example1 {
public Example2 getNewExample2() {
return this.new Example2();
}
public class Example2 {
public Example2() {}
}
}
Now if you call Example1 and get an Example2 discarding Example1, you will inherently still have a link to an Example1 object.
public class Referencer {
public static Example2 GetAnExample2() {
Example1 ex = new Example1();
return ex.getNewExample2();
}
public static void main(String[] args) {
Example2 ex = Referencer.GetAnExample2();
// As long as ex is reachable; Example1 will always remain in memory.
}
}
I've also heard a rumor that if you have a variable that exists for longer than a specific amount of time; Java assumes that it will always exist and will actually never try to clean it up if cannot be reached in code anymore. But that is completely unverified.
I recently encountered a memory leak situation caused in a way by log4j.
Log4j has this mechanism called Nested Diagnostic Context(NDC) which is an instrument to distinguish interleaved log output from different sources. The granularity at which NDC works is threads, so it distinguishes log outputs from different threads separately.
In order to store thread specific tags, log4j's NDC class uses a Hashtable which is keyed by the Thread object itself (as opposed to say the thread id), and thus till the NDC tag stays in memory all the objects that hang off of the thread object also stay in memory. In our web application we use NDC to tag logoutputs with a request id to distinguish logs from a single request separately. The container that associates the NDC tag with a thread, also removes it while returning the response from a request. The problem occurred when during the course of processing a request, a child thread was spawned, something like the following code:
pubclic class RequestProcessor {
private static final Logger logger = Logger.getLogger(RequestProcessor.class);
public void doSomething() {
....
final List<String> hugeList = new ArrayList<String>(10000);
new Thread() {
public void run() {
logger.info("Child thread spawned")
for(String s:hugeList) {
....
}
}
}.start();
}
}
So an NDC context was associated with inline thread that was spawned. The thread object that was the key for this NDC context, is the inline thread which has the hugeList object hanging off of it. Hence even after the thread finished doing what it was doing, the reference to the hugeList was kept alive by the NDC context Hastable, thus causing a memory leak.
Create a static Map and keep adding hard references to it. Those will never be garbage collected.
public class Leaker {
private static final Map<String, Object> CACHE = new HashMap<String, Object>();
// Keep adding until failure.
public static void addToCache(String key, Object value) { Leaker.CACHE.put(key, value); }
}
Everyone always forgets the native code route. Here's a simple formula for a leak:
Declare a native method.
In the native method, call malloc. Don't call free.
Call the native method.
Remember, memory allocations in native code come from the JVM heap.
You can create a moving memory leak by creating a new instance of a class in that class's finalize method. Bonus points if the finalizer creates multiple instances. Here's a simple program that leaks the entire heap in sometime between a few seconds and a few minutes depending on your heap size:
class Leakee {
public void check() {
if (depth > 2) {
Leaker.done();
}
}
private int depth;
public Leakee(int d) {
depth = d;
}
protected void finalize() {
new Leakee(depth + 1).check();
new Leakee(depth + 1).check();
}
}
public class Leaker {
private static boolean makeMore = true;
public static void done() {
makeMore = false;
}
public static void main(String[] args) throws InterruptedException {
// make a bunch of them until the garbage collector gets active
while (makeMore) {
new Leakee(0).check();
}
// sit back and watch the finalizers chew through memory
while (true) {
Thread.sleep(1000);
System.out.println("memory=" +
Runtime.getRuntime().freeMemory() + " / " +
Runtime.getRuntime().totalMemory());
}
}
}
I don't think anyone has said this yet: you can resurrect an object by overriding the finalize() method such that finalize() stores a reference of this somewhere. The garbage collector will only be called once on the object so after that the object will never destroyed.
I came across a more subtle kind of resource leak recently.
We open resources via class loader's getResourceAsStream and it happened that the input stream handles were not closed.
Uhm, you might say, what an idiot.
Well, what makes this interesting is: this way, you can leak heap memory of the underlying process, rather than from JVM's heap.
All you need is a jar file with a file inside which will be referenced from Java code. The bigger the jar file, the quicker memory gets allocated.
You can easily create such a jar with the following class:
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.zip.ZipEntry;
import java.util.zip.ZipOutputStream;
public class BigJarCreator {
public static void main(String[] args) throws IOException {
ZipOutputStream zos = new ZipOutputStream(new FileOutputStream(new File("big.jar")));
zos.putNextEntry(new ZipEntry("resource.txt"));
zos.write("not too much in here".getBytes());
zos.closeEntry();
zos.putNextEntry(new ZipEntry("largeFile.out"));
for (int i=0 ; i<10000000 ; i++) {
zos.write((int) (Math.round(Math.random()*100)+20));
}
zos.closeEntry();
zos.close();
}
}
Just paste into a file named BigJarCreator.java, compile and run it from command line:
javac BigJarCreator.java
java -cp . BigJarCreator
Et voilà: you find a jar archive in your current working directory with two files inside.
Let's create a second class:
public class MemLeak {
public static void main(String[] args) throws InterruptedException {
int ITERATIONS=100000;
for (int i=0 ; i<ITERATIONS ; i++) {
MemLeak.class.getClassLoader().getResourceAsStream("resource.txt");
}
System.out.println("finished creation of streams, now waiting to be killed");
Thread.sleep(Long.MAX_VALUE);
}
}
This class basically does nothing, but create unreferenced InputStream objects. Those objects will be garbage collected immediately and thus, do not contribute to heap size.
It is important for our example to load an existing resource from a jar file, and size does matter here!
If you're doubtful, try to compile and start the class above, but make sure to chose a decent heap size (2 MB):
javac MemLeak.java
java -Xmx2m -classpath .:big.jar MemLeak
You will not encounter an OOM error here, as no references are kept, the application will keep running no matter how large you chose ITERATIONS in the above example.
The memory consumption of your process (visible in top (RES/RSS) or process explorer) grows unless the application gets to the wait command. In the setup above, it will allocate around 150 MB in memory.
If you want the application to play safe, close the input stream right where it's created:
MemLeak.class.getClassLoader().getResourceAsStream("resource.txt").close();
and your process will not exceed 35 MB, independent of the iteration count.
Quite simple and surprising.
As a lot of people have suggested, resource leaks are fairly easy to cause - like the JDBC examples. Actual memory leaks are a bit harder - especially if you aren't relying on broken bits of the JVM to do it for you...
The ideas of creating objects that have a very large footprint and then not being able to access them aren't real memory leaks either. If nothing can access it then it will be garbage collected, and if something can access it then it's not a leak...
One way that used to work though - and I don't know if it still does - is to have a three-deep circular chain. As in Object A has a reference to Object B, Object B has a reference to Object C and Object C has a reference to Object A. The GC was clever enough to know that a two deep chain - as in A <--> B - can safely be collected if A and B aren't accessible by anything else, but couldn't handle the three-way chain...
Another way to create potentially huge memory leaks is to hold references to Map.Entry<K,V> of a TreeMap.
It is hard to asses why this applies only to TreeMaps, but by looking at the implementation the reason might be that: a TreeMap.Entry stores references to its siblings, therefore if a TreeMap is ready to be collected, but some other class holds a reference to any of its Map.Entry, then the entire Map will be retained into memory.
Real-life scenario:
Imagine having a db query that returns a big TreeMap data structure. People usually use TreeMaps as the element insertion order is retained.
public static Map<String, Integer> pseudoQueryDatabase();
If the query was called lots of times and, for each query (so, for each Map returned) you save an Entry somewhere, the memory would constantly keep growing.
Consider the following wrapper class:
class EntryHolder {
Map.Entry<String, Integer> entry;
EntryHolder(Map.Entry<String, Integer> entry) {
this.entry = entry;
}
}
Application:
public class LeakTest {
private final List<EntryHolder> holdersCache = new ArrayList<>();
private static final int MAP_SIZE = 100_000;
public void run() {
// create 500 entries each holding a reference to an Entry of a TreeMap
IntStream.range(0, 500).forEach(value -> {
// create map
final Map<String, Integer> map = pseudoQueryDatabase();
final int index = new Random().nextInt(MAP_SIZE);
// get random entry from map
for (Map.Entry<String, Integer> entry : map.entrySet()) {
if (entry.getValue().equals(index)) {
holdersCache.add(new EntryHolder(entry));
break;
}
}
// to observe behavior in visualvm
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
}
public static Map<String, Integer> pseudoQueryDatabase() {
final Map<String, Integer> map = new TreeMap<>();
IntStream.range(0, MAP_SIZE).forEach(i -> map.put(String.valueOf(i), i));
return map;
}
public static void main(String[] args) throws Exception {
new LeakTest().run();
}
}
After each pseudoQueryDatabase() call, the map instances should be ready for collection, but it won't happen, as at least one Entry is stored somewhere else.
Depending on your jvm settings, the application may crash in the early stage due to a OutOfMemoryError.
You can see from this visualvm graph how the memory keeps growing.
The same does not happen with a hashed data-structure (HashMap).
This is the graph when using a HashMap.
The solution? Just directly save the key / value (as you probably already do) rather than saving the Map.Entry.
I have written a more extensive benchmark here.
There are many good examples of memory leaks in Java, and I will mention two of them in this answer.
Example 1:
Here is a good example of a memory leak from the book Effective Java, Third Edition (item 7: Eliminate obsolete object references):
// Can you spot the "memory leak"?
public class Stack {
private static final int DEFAULT_INITIAL_CAPACITY = 16;
private Object[] elements;
private int size = 0;
public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];
}
public void push(Object e) {
ensureCapacity();
elements[size++] = e;
}
public Object pop() {
if (size == 0) throw new EmptyStackException();
return elements[--size];
}
/*** Ensure space for at least one more element, roughly* doubling the capacity each time the array needs to grow.*/
private void ensureCapacity() {
if (elements.length == size) elements = Arrays.copyOf(elements, 2 * size + 1);
}
}
This is the paragraph of the book that describes why this implementation will cause a memory leak:
If a stack grows and then shrinks, the objects that were popped off the
stack will not be garbage collected, even if the program using the
stack has no more references to them. This is because the
stack maintains obsolete references to these objects. An obsolete
reference is simply a reference that will never be dereferenced
again. In this case, any references outside of the “active portion” of
the element array are obsolete. The active portion consists of the
elements whose index is less than size
Here is the solution of the book to tackle this memory leak:
The fix for this sort of problem is simple: null out
references once they become obsolete. In the case of our Stack class,
the reference to an item becomes obsolete as soon as it’s popped
off the stack. The corrected version of the pop method looks like this:
public Object pop() {
if (size == 0) throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;
}
But how can we prevent a memory leak from happening? This is a good caveat from the book:
Generally speaking, whenever a class manages its own memory,
the programmer should be alert for memory leaks. Whenever an element
is freed, any object references contained in the element should be
nulled out.
Example 2:
The observer pattern also can cause a memory leak. You can read about this pattern in the following link: Observer pattern.
This is one implementation of the Observer pattern:
class EventSource {
public interface Observer {
void update(String event);
}
private final List<Observer> observers = new ArrayList<>();
private void notifyObservers(String event) {
observers.forEach(observer -> observer.update(event)); //alternative lambda expression: observers.forEach(Observer::update);
}
public void addObserver(Observer observer) {
observers.add(observer);
}
public void scanSystemIn() {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNextLine()) {
String line = scanner.nextLine();
notifyObservers(line);
}
}
}
In this implementation, EventSource, which is Observable in the Observer design pattern, can hold links to Observer objects, but this link is never removed from the observers field in EventSource. So they will never be collected by the garbage collector. One solution to tackle this problem is providing another method to the client for removing the aforementioned observers from the observers field when they don't need those observers anymore:
public void removeObserver(Observer observer) {
observers.remove(observer);
}
Threads are not collected until they terminate. They serve as roots of garbage collection. They are one of the few objects that won't be reclaimed simply by forgetting about them or clearing references to them.
Consider: the basic pattern to terminate a worker thread is to set some condition variable seen by the thread. The thread can check the variable periodically and use that as a signal to terminate. If the variable is not declared volatile, then the change to the variable might not be seen by the thread, so it won't know to terminate. Or imagine if some threads want to update a shared object, but deadlock while trying to lock on it.
If you only have a handful of threads these bugs will probably be obvious because your program will stop working properly. If you have a thread pool that creates more threads as needed, then the obsolete/stuck threads might not be noticed, and will accumulate indefinitely, causing a memory leak. Threads are likely to use other data in your application, so will also prevent anything they directly reference from ever being collected.
As a toy example:
static void leakMe(final Object object) {
new Thread() {
public void run() {
Object o = object;
for (;;) {
try {
sleep(Long.MAX_VALUE);
} catch (InterruptedException e) {}
}
}
}.start();
}
Call System.gc() all you like, but the object passed to leakMe will never die.
The interviewer might have been looking for a circular reference solution:
public static void main(String[] args) {
while (true) {
Element first = new Element();
first.next = new Element();
first.next.next = first;
}
}
This is a classic problem with reference counting garbage collectors. You would then politely explain that JVMs use a much more sophisticated algorithm that doesn't have this limitation.

How to ensure finalize() is always called (Thinking in Java exercise)

I'm slowly working through Bruce Eckel's Thinking in Java 4th edition, and the following problem has me stumped:
Create a class with a finalize( ) method that prints a message. In main( ), create an object of your class. Modify the previous exercise so that your finalize( ) will always be called.
This is what I have coded:
public class Horse {
boolean inStable;
Horse(boolean in){
inStable = in;
}
public void finalize(){
if (!inStable) System.out.print("Error: A horse is out of its stable!");
}
}
public class MainWindow {
public static void main(String[] args) {
Horse h = new Horse(false);
h = new Horse(true);
System.gc();
}
}
It creates a new Horse object with the boolean inStable set to false. Now, in the finalize() method, it checks to see if inStable is false. If it is, it prints a message.
Unfortunately, no message is printed. Since the condition evaluates to true, my guess is that finalize() is not being called in the first place. I have run the program numerous times, and have seen the error message print only a couple of times. I was under the impression that when System.gc() is called, the garbage collector will collect any objects that aren't referenced.
Googling a correct answer gave me this link, which gives much more detailed, complicated code. It uses methods I haven't seen before, such as System.runFinalization(), Runtime.getRuntime(), and System.runFinalizersOnExit().
Is anybody able to give me a better understanding of how finalize() works and how to force it to run, or walk me through what is being done in the solution code?
When the garbage collector finds an object that is eligible for collection but has a finalizer it does not deallocate it immediately. The garbage collector tries to complete as quickly as possible, so it just adds the object to a list of objects with pending finalizers. The finalizer is called later on a separate thread.
You can tell the system to try to run pending finalizers immediately by calling the method System.runFinalization after a garbage collection.
But if you want to force the finalizer to run, you have to call it yourself. The garbage collector does not guarantee that any objects will be collected or that the finalizers will be called. It only makes a "best effort". However it is rare that you would ever need to force a finalizer to run in real code.
Outside of toy scenarios, it's generally not possible to ensure that a finalize will always be called on objects to which no "meaningful" references exist, because the garbage collector has no way of knowing which references are "meaningful". For example, an ArrayList-like object might have a "clear" method which sets its count to zero, and makes all elements within the backing array eligible to be overwritten by future Add calls, but doesn't actually clear the elements in that backing array. If the object has an array of size 50, and its Count is 23, then there may be no execution path by which code could ever examine the references stored in the last 27 slots of the array, but there would be no way for the garbage-collector to know that. Consequently, the garbage-collector would never call finalize on objects in those slots unless or until the container overwrote those array slots, the container abandoned the array (perhaps in favor of a smaller one), or all rooted references to the container itself were destroyed or otherwise ceased to exist.
There are various means to encourage the system to call finalize on any objects for which no strong rooted references happen to exist (which seems to be the point of the question, and which other answers have already covered), but I think it's important to note the distinction between the set of objects to which strong rooted references exist, and the set of objects that code may be interested in. The two sets largely overlap, but each set can contain objects not in the other. Objects' finalizers` run when the GC determines that the objects would no longer exist but for the existence of finalizers; that may or may not coincide with the time code they cease being of interest to anyone. While it would be helpful if one could cause finalizers to run on all objects that have ceased to be of interest, that is in general not possible.
A call to garabage collecter (System.gc()) method suggests that the Java Virtual Machine expend effort toward recycling unused objects in order to make the memory they currently occupy available for quick reuse (i.e its just a suggestion to the jvm, and does not bind it to perform the action then and there, it may or may not do the same). When control returns from the method call, the Java Virtual Machine has made a best effort to reclaim space from all discarded objects. finalize() is called by the garbage collector on an object when garbage collection determines that there are no more references to the object
run new constructor() and System.gc() more than twice.
public class Horse {
boolean inStable;
Horse(boolean in){
inStable = in;
}
public void finalize(){
if (!inStable) System.out.print("Error: A horse is out of its stable!");
}
}
public class MainWindow {
public static void main(String[] args) {
for (int i=0;i<100;i++){
Horse h = new Horse(false);
h = new Horse(true);
System.gc();
}
}
}
Here's what worked for me (partially, but it does illustrate the idea):
class OLoad {
public void finalize() {
System.out.println("I'm melting!");
}
}
public class TempClass {
public static void main(String[] args) {
new OLoad();
System.gc();
}
}
The line new OLoad(); does the trick, as it creates an object with no reference attached. This helps System.gc() run the finalize() method as it detects an object with no reference. Saying something like OLoad o1 = new OLoad(); will not work as it will create a reference that lives until the end of main(). Unfortunately, this works most of the time. As others pointed out, there's no way to ensure finalize() will be always called, except to call it yourself.

Categories

Resources