I am doing things now like writing classes and their unit tests -- business logic. Without question, I will need to have something like JPA to allow me to store these classes and initialize the application from a database. I also know that I will need to do a lot of operations within a transaction.
My question is, does it make sense to implement the business logic first and then worry about persistence later or am I asking for trouble in this way -- perhaps instead I should be incorporating persistence in my design from the start: it might be very hard to add it in later? Or is there an approach where business logic can be totally ignorant of persistence? The reason I am guessing not is that the persistent classes need annotations.
Anyway, I could have been more succinct -- maybe the title says it all.
Cheers.
Isolating the implementation from a particular technology is a best practice. In general, you should be better off developing an application without preparing to use JPA.
For this, you can use a separate domain model for your business logic. The domain objects should be mapped to/from a persisteable representation at the boundaries of your business logic layer.
Domain driven design, clean architecture, hexagonal architecture (and probably some others) are different but closely related approaches that emphasize the separation of business domain from frameworks.
The primary benefit is a clean separation of concerns. You can reach a very good testability for your code with very fast tests that do not rely on the DB. You also can switch persistence technologies (going with in-mem DBs or flat files if you should so desire) with much less pain.
The downside is that you will have to define a boundary mapping between your domain classes and persistent classes.
Having said that, sometimes fully embracing a framework can have it's own benefits that have to be weighed against clean design. When creating a simple, one-off webapp, it can make sense to use JPA entities all the way - even using attached JPA entites for display in the UI - this is called 'transaction view'.
The expected benefit is simplicity - sometimes there is no use in introducing a 'business logic' layer if there is no logic to speak of.
The more I read, the more confused I am.
Note that all the question is related to how service and facades fit on the MVC pattern.
My understanding is that a Facade is not a super-smart object, it is simply a way of exposing a simple interface/api to perform a complex operation (example: perform a 10$ payment, it is a complex operation that involves a number of operations, but such complexity can be handled by a facade which will just call the corresponding object in a particular order...etc...)
Now, a service is a way to perform calls to several DAOs in order to get complex data structures (I am not too sure of this, but it is what I understand so far).
Question then is, what is the difference between a facade and a service? At the end of the day, the facade can perfectly access several DAOs in order to perform a complex operation by providing a simple interface, and a service seems to to something similar.
Same happens with transactions, I understand that a service is the place to start transactions, but I equally feel that they could also be placed on facades, after all, a facade may call several DAOs too.
So which stack would make more sense
controller-facade-dao
controller-service-dao
or maybe
controller-facadade-dao AND sometimes controller-facade-service-dao ??
A service is a way of writing an interface to an external system, such as a LDAP identity store, a payment gateway or an application management interface. It's a conceptual way of looking at the external system as a provider of useful services perhaps with internal behaviours rather than a passive lump to be operated upon.
A facade is a way of wrapping up anything (including a service) to present it nicely to another component. Facades are often used when:
A library or component is complex and your application needs only a subset of it. Your Facade presents the simplified API to the application
You are using several libraries or components and need to unify them, presenting a consolidated API to the application
The library you are using has a complex setup or set of dependencies, and the facade wraps all that up in the context of your application.
The bit that is really confusing is that you can (and often do) create a facade over one or more services. The service is the way that the component actually accesses the resource, and the facade is the bit which simplifies the component (such as configuration of options, connecting, etc).
If you write your own DAO, you probably will create your service just how you need, so writing a facade is an indication you did it wrong. If the DAO is built by a third party, and is more complex than your needs, then you can facade the service.
Now, a service is a way to perform calls to several DAOs in order to get complex data structures (I am not too sure of this, but is is what I understand so far).
I would say that the DAO is a design pattern all its own - see wikipedia.
If we contrast a DAO with a service, we have:
Level of API:
DAO: Fine-grained access to properties
Service: Coarse-grained access to services
Where implementation lies:
DAO: Mainly on the client, but storing data (without behavior) in the database
Service: Mainly on the server
How the interface is invoked
DAO: The client directly binds to the object in the same namespace and JVM
Service: The client is simply a stub for a network, cross-vm or cross-namespace operation
... the facade can perfectly access several DAOs in order to perform a complex operation by providing a simple interface, and a service seems to to something similar.
A facade could wrap up the DAO layer, but I don't really see this happening in a useful way. Most likely you need an API to access the individual properties of the objects, traverse the object graph and similar, and that is precisely what the DAO provides.
Same happens with transactions, I understand that a service is the place to start transactions ...
Absolutely, because the transaction is a service provided by the database and on another component or system
... but I equally feel that they could also be placed on facades, after all, a facade may call several DAOs too.
And in many ways the transaction manager service is a facade onto a much more complex backend implementation, co-ordinating the transaction on the web, application, database and other transaction-aware components. However this is already abstracted away by the transaction service implementation. As far as we, the user, are concerned, there is only the public interface.
This is, in fact, the conceptual point of these design patterns - to provide just the right amount of API to the user, abstracting the complexities of the implementation behind the iron wall of the component interface.
So which stack would make more sense
controller-facade-dao controller-service-dao
or maybe
controller-facadade-dao AND sometimes controller-facade-service-dao ??
The DAO is a kind of service to the database, but really the DAO is a design pattern itself.
If you write your own DAO, you should never need a facade.
Therefore the correct answer is:
controller - dao
Literally, Facade as the name suggests means the front face of the building. The people walking past the road can only see the facade, They do not know anything about what inside it, wiring, the pipes and other complexities. The face hides all the complexities of the building and displays a simpler friendly face.
In software terms, facade hides the complexities of software components behind it by providing a simpler interface, doesn't have the functionality of its own and doesn't restrict the access to the substsyem. Commonly used in Object Oriented Design.
Good examples are SLF4J - It is an api which is a simple facade for logging systems allowing the end-user to plug-in the desired logging system at deployment time.
A service is a public interface that provides access to a unit of functionality and always written to a specification. It needs to support the communication contracts (message-based communication, formats, protocols, security, exceptions, and so on) its different consumers require.
There is process services - encapsulation of business workflows , business logic service - encapsulation of rules/functions, data services - interaction with entities, data access management, infrastructure services- utility functions such as monitoring, logging & security. Services are mostly reusable, unassociated, loosely coupled units of functionality.
They are lot similar but depends on how you look at it.
The difference that I see, Facades are designed inside out. You look
at subsystem and design a facade to provide simpler access. Services
are designed outside in. You look at your customer/clients define a
contract and design the service.
My understanding of the classical GoF Facade pattern is that it's mainly intended to hide a poor design. As a rule of thumb, I would say that one should only need a Facade for legacy code.
I also think that this pattern made its way as a J2EE core pattern (Session Facade) mainly because the EJB spec (at least up to 2.x) inherently resulted in a poor service layer design.
Therefore, my answer to your question would be yes -- a facade is actually a service that hasn't been properly implemented the first time. If you need to hide the complexity from client code, it usually means that you only managed to provide a library, not a service layer; so, in this case, the Facade actually becomes your service layer.
On the other hand (assuming you have a decent domain layer), if you really need to provide the option of spawning complex flows with a single method call (something resembling macros/aliases), this would usually be better placed in the application layer and not in your core domain -- notice that I've switched layering terminology to domain driven design, where there's no "data access" or "service" layer, but "application", "domain", "infrastructure".
The first thing to note is that a design pattern is a description for a common (design) problem with a standard solution. In some cases there are several ways to solve the problem in a way that fits all requirements (f.ex. the Iterator and Singleton patterns have tons of different implementations; f.ex. check the work of Alexandrescu and compare it with the standard GoF solutions) and in some cases there are different patterns with the same (code) solution (f.ex. compare the class diagrams of the Composite and the Decorator patterns in the GoF book).
According to the GoF the purpose of the Facade pattern is to (literal quote):
Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher level interface that makes the subsystem easier to use.
Services have the intention of providing a user with a single higher level interface with a given functionality. That doesn't necessarily make it a facade, because a service is strictly speaking not by definition a unified interface to a set of interfaces in a subsystem.
But we can do better than that
Your question was if the patterns are "similar". If we consider them to be "similar" when pattern A equals B and pattern B equals A, then we should answer 2 questions:
Question 1: is a Service a Facade? A service should definitely expose functionality and is definitely a single interface that exposes this functionality. Functionality is normally decomposed into tiny pieces, so yes, services fit the underlying requirements of a facade. In other words: faced by the problem of exposing the underlying interfaces as a unified "service" interface, the facade pattern fits the requirements and is used to solve the service problem. The answer to this is yes.
Question 2: is a Facade a Service? Services are normally designed as reusable, unassociated, loosely coupled units of functionality. Thinking about communication between components is important for services, because they usually rely on a TCP/IP interface such as SOAP or WCF. This also means that functionality is often rewritten to fit the services paradigm more closely, which adds an implicit driven by performance requirement for the pattern. Facades don't have this extra requirement. In other words: a facade is not a service.
In exact terms, these concepts are closely related, but not the same.
But we can do better
This line of thinking raises the question if a service is an extended version of a facade? It is if a service meets all the requirements of a facade and extends on top of that.
If you read the description by the GoF closely, the answer is yes, that is: if one condition is met: The service has to expose subsystems. In reality, I think this condition normally holds, or you're over-designing your services - though strictly speaking I suppose this is not a hard restriction.
FACADE is a design pattern which solves the problem where there is a need for a unified interface to many interfaces in a subsystem so it defines a higher-level interface that makes the subsystem easier to use.
HOWEVER, A SERVICE provides access to resources or a set of interfaces/objects and may not necessarily simplify such an access. So you can employ the facade pattern to better design your service so you can save the client figuring out how to construct to use it.
Usually these terms are just used in their specific contexts.
'Facade' common usage context: simple API for complex parts of the application (like third-party libs)
'Services' context: unlock and surface the business entities in the system. (SOA, DAO, Security, etc)
You can view patterns as a language that evolves. It never seemed to be perfect end each pattern has it's own history and context. Sometimes classes could be viewed as Services and Facades at the same time, sometimes not.
For example: calling third party API by term 'Service' could be considered as misuse, because of the wrong context.
Before I try to answer, let me clarify something: there are three distinct things in enterprise applications - Facade, Service Layer, and Remote Facade.
Facade - while wrapping the subsystem(s), still is an object and UI (MVC) application usually lives in the same process. Thus, the communication is done in an usual OO manner: calling methods, reading properties, listening to the events.
Service Layer - when the business logic layer becomes mature and too complex for the MVC to interact with it directly, then Service Layer is put between them. Service Layer is an API that MVC uses as a wrapper of the business logic. It is not remote and is not required to use DTO since no wire is involved in the communication.
Remote Facade - (simply, any remote service) this is a hybrid of the Facade and Service Layer. Remote Facade starts existing when you want to expose some kind of wrapper over the system (and we call it Facade) as a distribution boundary. One of the reasons can be to allow several UI (MVC) applications use the same Remote Facade.
-
Comparisons:
Facade vs. Service Layer: they are similar since both they wrap subsystems. Difference is that Service Layer is more oriented on UI (MVC) application needs and exposes functions to simplify working with business logic. On the other hand, Facade is exposing functionality to simplify the business logic, but does not necessarily simplify the communication with UI (MVC) application.
Facade vs. Remote Facade (Service?): definitely different since Remote Facade must use DTOs as communication messages. Remote Facade will need some kind of proxy if you still want to use it as a regular object (properties, events); but the proxy will anyway use DTOs to the real object, i.e. Remote Facade.
-
Possible Flows:
controller-facade-dao - doubtful, but still possible. Facade is not usually used to wrap just DAL. There should be something more mature in addition as a subsystem. But, if the facade is part of the business logic, then yes, this is possible. Still the subsystem must be more emphasized. To me, DAL wrapping is not enough to call it Facade.
controller-service-dao - absolutely possible. Many remote services work directly with database through DAL.
controller-facade-service-dao - maybe, if you treat service as a subsystem.
I would add one more that can make sense:
controller-service [layer]-facade (part of business)-subsystem (e.g. accounting, business on its own)-dao - I'm sure you can translate this.
-
Remember, Service (or remote facade) can exist anywhere in the flow. That is just dictated by your distribution needs.
A service interface typically represents business concerns: perform some operation(s) and/or get some information. It wouldn't be unreasonable for the service provider to implement their service as a facade over internal back-end services - you'd never see this.
Your facade might wrap some general interfaces, which might include service interface(s).
For example, you might have service interface for a bank account (operation: Bank transfers money), and a local API to your local accounting records (I transfer money). You might introduce a facade over with a "move money" operation that uses the bank's service interface and manages your local checkbook as well.
It is the "context" that's matters. Facade and Service are not conflicting.
First I have never heard of "Service" and "Facade" in the context of MVC.
When people talk about Service, it is more about a system or component providing business-meaningful actions to outside world. You may sometimes see "Service" related to "Unit-of-work" (and hence, transaction).
Service is also used in the context of some layering approach of application: we have Service on top of DAO, for which Service will access data through DAO and business logic is put in Service layer, something like that.
Facade is usually used in the context of design pattern, and the focus is about "hiding complicated operations and expose it as a simple operation".
Facade may be or may not be a Service (a operation in Facade may not represent a Unit of work, but it is still a valid facade), similarly, a Service may or may not be a Facade (a Service may not hide any complicated operations but it is still a Service).
Again, it is all about the "context" that matters.
For example, when you are talking about layering of application, it is simply irrational to say "XXX is a facade to access DAO". Similarly, if you are talking about "design approach", it is more reasonable to say "XXX is a facade to multiple back-end" instead calling it a "Service" here (Although XXX is actually a Service).
Yeah, Facade and Service are not entirely unrelated. And some time we implement Service layer as Facade so that client is not bothered about to many details of the service. The more simpler the invocation/interface of a service is the simpler and easier clients code.
The Martin Fowler says...
A Service Layer defines an application's boundary [Cockburn PloP] and its set of available operations from the perspective of interfacing client layers. It encapsulates the application's business logic, controlling transactions and coordinating responses in the implementation of its operations
So services layer is used at times as Facade.
Ref
Facade and Service Layer has kind of a similarity but both of them has two distinguished meanings. Let me explain this using a simple example.
Imagine we are asked to create new business application. This has a requirement of creating a check-in application but with more value added features and loyalty card features.
Lets say application should support Facebook and Foursquare check-in features if user wish to use. This feature is very much needed because some users are reluctant use several applications doing the same function or get rid of social connectivity.
to get a highlevel idea, refer sample api on the following link https://docs.google.com/file/d/0B3v8S0e-PvVpdWFJOVhqc1d2SHc/edit?usp=sharing
Above check-in API located at ABC facade is an example for usage of Facade.
It has our service API and also facebook and foursqure check-in capabilities based on client's selection. Facebook and foursqure APIs can have specific implementations (SOAP, Restful, etc. ) and security (OAuth etc.) requirements etc.
Satisfying one of these APIs (facebook, foursqure) requirements needs to fulfil different set of tasks. these will be different sub systems with in our check in requirement.
So facade's simplistic usage is to satisfy several sub systems triggered by one simple method
But if we consider our own API which is check-in API located at MngCheckinSvc. This is a service layer API. This is the API that contains our application's check in requirements. This is the API provide public access from your MngCheckinSvc to handle check-in requirement to application.
This will have complex inner behaviors but still most of them will be application specific logic implementations.
This API(MngCheckinSvc.checkin(....)) might access different set of DAOs, Internal APIs, may be other internal services etc. in order to fulfill merchant check-in with in the application.
I haven't found any questions addressing this specific issue.
What is better: to allow Services (or facades) to access several DAOs (classes which talk to the database) or only other Services?
In other words, should I introduce inter-depencencies between different Service classes or is it better to make Service classes completely independent of each other by injecting more than one DAO (if necessary) to each Service class?
I found that both strategies will do the job, but I want to be consistent and make the application as modular and maintainable as possible.
I feel that allowing or forbidding a service to call another service or more than one DAO is subjective.
I try to avoid unnecesary code or odd couplings just to satisy some rule about layer-communication, and following basic OO principles of making simple, clear objects usually leads to a compromise.
If a service B needs another functionality already comprised in a service A then it should call it. I try to reduce dependencies among services and usually end up defining a small set of "basic" services that can be called from other services.
Creating a method in a service only to wrap a call to a DAO is pointless (in my opinion) and therefore I prefer to let services call as many DAOs as they need. Again, a service or a method with many DAOs indicates something that should be refactored or a data model that needs adjustment.
There's some opinion in this to be sure, but a true "service" method should be an atomic unit of work. If they're creating a web of interdependency calling each other back forth and sideways, clearly the invocations aren't performing atomic tasks. I see nothing wrong with letting a "service" use whatever DAOs it needs. Creating a set of "service"-CRUD methods abstracting the DAO which is already a collection of CRUD methods which is itself probably abstracting away the abstraction that is JPA, you can see how that might be one too many levels of non-functional abstraction.
This approach does sometimes lead you to build shared "business beans" that are in the domain rather than the service, that multiple services share. This is fine.
(Can you tell I personally think JPA has made the entire idea of DAOs obsolete and we should just use EntityManager in the service? :) )
I am trying to use the DAO pattern in my multiple web app projects. I have three different web applications and they share two different databases. Each databases have number of tables.
Now I am wondering how I can make my program modular by using best practice. I am thinking of making:
DAO project which have two factory class for each database, DAO interfaces for each tables and DTO for each tables.
Then in each web app project I am planning to write implementation code for DAO interface and necessary utility class for getting and closing the connections.
Is this approach good? The doubt/problem i am having is with this design if I am going to ship any one of the project I have to ship DAO project also but that will contain unnecessary info about other databases.
Or will it be good to attach all necessary DAO in web app itself? If so then I have to write same DAO ode for each web app.
Hope anyone can provide me the clear path for this DB connection using DAO pattern.
In general, you're headed in the right direction by separating your concerns.
You mention the multiple web apps rely on the two databases. Does each web app rely on both databases? If so, I'd consider creating a single DAO project to encapsulate all the data access logic.
If it's more a mix and match (web app a uses db a, web app b uses db b, web app c uses a and b), I'd consider having two DAO projects, one per database, unless there's a lot of combined logic - that is, when an app uses both databases, it's doing joins between them [yes, I have had projects that do this].
I'd also recommend looking at an Object/Relational Mapping (ORM) framework such as Hibernate and/or a Dependency Injection framework such as Spring, which can help simplify the process of separating the various projects and then using them together.
You're clearly planning a pretty ambitious project, so taking advantage of existing frameworks to minimize recreating the wheel will let you focus on your specific problem domain.
Use JPA to access DB. If not possible then use JdbcTemplate (Spring)
EntityManager (JPA) is a kind of a DAO
DAO only where it makes sense (e.g. complex, reusable logic using an EntityManager)
Use pooled connections/ DataSources
DTO are usually only needed if your objects need to leave the JVM (e.g. remote EJB services, web services,...)
use EJBs for container-managed transactions
consider the Gateway pattern (a stateful session bean and an extended persistence context, see "Real World Java EE Patterns – Rethinking Best Practices" by Adam Bien) and just return the attached entity.
I would like to know about the design patterns that can be applied in Java EE 6 implementation.
MVC.
GOF.
DAO
Persistent relational mapping
Pooling
CEC
Entity control boundary (ECB)
and many others
Do JPA eliminate the use of DAO?
Please provide other patterns that can be learned.
There is a good reference here: http://martinfowler.com/eaaCatalog/
Also here: http://java.sun.com/blueprints/corej2eepatterns/Patterns/index.html
Also, JPA doesn't necessarily eliminate the need for a DAO layer. Instead, your DAO layer would still build the JPA queries, likely within finder methods, and return the entities that those queries returned.
You could eliminate the DAO layer, and instead hit the JPA entities directly within your business tier, but personally still like to maintain a separate persistence (DAO) and business tier, particularly in those cases where I end up having to mix up some JPA with plain JDBC, etc.
There is a great summary of the debate here. The best answer is that it depends. If your app is complex, and you may be accessing JDBC directly in some cases (because JPA and ORM tools are not the answer to everything, and are very bad at some things), or if you need to pull data from sources that just don't work well with ORM, you'll need a DAO layer anyway, so in my mind, I'd rather be consistent and use a DAO layer for everything. It's generally not that complex, and it isolates your business logic from your persistence logic, which I believe to be a good thing. But, it is a matter of personal preference, and if your app is suitably simple, it's probably overkill.
There is a good recommendation of a generic DAO pattern that can be used with JPA here. This allows you the benefits of a DAO in that you can always override this for a specific DAO, while keeping the more standard and typical database interactions simpler.
If you use Java EE 6 (not Java EE 5), then some of technical J2EE patterns are not needed anymore for the task they are used in J2EE.
For example, use injection instead of ServiceLocator.
#See http://pawelstawicki.blogspot.com/2010/07/review-real-world-java-ee-patterns.html
GOF patterns still required, because they are not (only) related to Java EE.
In general: Patterns have an intend: they want to produce a solution/best practice for an problem, with a given set of functionality that is proviced by the environment (In your case: it is Java, Java EE 6, ...)
If the problem is gone a way: you do not need the pattern anymore
If the environment has changed since the pattern is fond, then you have to rethink the pattern, because may the problem is gone (first point), or there is now a better way the handle the problem.