I read somewhere that the Java StringBuilder uses around 1 mb for 500 characters. Is this true and if so, isn't that a bit extreme? Is the StringBuilder doing some incredible things with this amount of memory? What is the reason and does this mean I should not make too much use of this class?
No, that's complete rubbish - unless you create a StringBuilder with a mammoth capacity, of course.
Java in general uses 2 bytes per char. There's a little bit of overhead in String and StringBuilder for the length and the array itself, but not a lot.
Now 1K for 500 characters is about right... I suspect that was the cause of confusion. (Either you misheard, or the person talking to you was repeating something they'd misheard.)
I have seen two cases where StringBuilder's tend to use large amounts of memory:
When the StringBuilder is created with an insane initial-capacity.
StringBuilder's who were "cached" to "save" object-allocation time.
So in the second case a StringBuilder might consume 1Mb of memory if some code, which used the SB earlier, stored a very big string in it. That's because it will only grow but not shrink its internal char-array.
Both cases can (and should) easy be avoided.
This information is erroneous, do you remember what the source of this information was? If so you should correct it. Java normally uses 2 bytes per character.
Because of the doubling reallocation 2K for 500 characters would also be right, but not more. Here is a similar question.
I think StringBuilder is the best choice to use. It is faster and safer too. It depends on the scenario. If you have String literal that doesn't change frequently then I would say String is a better choice because it is immutable else StringBuilder is right there. Now for the space that you are talking about I haven't heard that any where.
Related
I feel strings can replace character array in all the scenarios. Even considering the immutability characteristic of Strings, declaration of strings in appropriate scope and java's garbage collection feature should help us avoid any memory leaks. I want to know if there is any corner case where character array should be used instead of Strings in Java.
Character arrays have some slight advantage over plain strings when it comes to storing security sensitive data. There's a lot of resources on that, for example this question: Why is char[] preferred over String for passwords? (with an answer by Jon Skeet himself).
In general it boils down to two things:
You have very little influence on how long a String stays in memory. Because of that you might leak sensitive data through a memory dump.
Leaking sensitive data accidentally in application logs as clear text is much more likely with plain strings
More reading:
Why we read password from console in char array instead of String
https://www.codebyamir.com/blog/use-character-arrays-to-store-sensitive-data-java
https://www.geeksforgeeks.org/use-char-array-string-storing-passwords-java/amp/
https://www.baeldung.com/java-storing-passwords
https://javarevisited.blogspot.com/2012/03/why-character-array-is-better-than.html
https://javainsider.wordpress.com/2012/12/10/character-array-is-better-than-string-for-storing-password-in-java/amp/
String is a class, not a build in type. It most likely does what it does by using a char array underneath, but there is no guarantee. "We dont care how it is implemented". It has methods that make sense for strings, like comparing strings. Comparing arrays?? Hmm. Doesn't really make sense to do it. You could check if they are equal sure, but less or greater than...
Back in point. One scenario is you want to operate with chars, not a string. For example you have letters of the alphabet and want to sort them. Or grades in A-F system and you want to sort them. Generally where it makes sense having chars that are not connected to have some meaning together (like in a message string, or a text message). You would not generally need to sort the chars of a text message now, would you? So, you use an array.
To sort, you can take advantage of the Arrays.sort() method for example, while i dont think there is a method that does it for strings. Perhaps 3rd part libraries.
On another note(unrelated to question) , you can use StringBuilder to if you want to modify strings often. Its better at performace.
You don't have to look much further than at methods in the JDK core API that use char[].
Such as this one (java.io.Reader):
public int read(char[] cbuf)
throws IOException
Reads characters into an array. This method will block until some input is available, an I/O error occurs, or the end of the stream is reached.
Parameters:
cbuf - Destination buffer
Returns:
The number of characters read, or -1 if the end of the stream has been reached
Throws:
IOException - If an I/O error occurs
Instead of returning a String they ask you to pass in a char[] to use as a buffer to write the result into. The reason is efficiency.
You might be knowing String is immutable and how Substring can cause memory leak in Java.
Since Strings are immutable in Java if you store password as plain text it will be available in memory until Garbage collector clears it and since String are used in String pool for reusability there is pretty high chance that it will be remain in memory for long duration, which pose a security threat. Since any one who has access to memory dump can find the password in clear text. Since Strings are immutable there is no way contents of Strings can be changed because any change will produce new String, while if you char[] you can still set all his element as blank or zero. So Storing password in character array clearly mitigates security risk of stealing password.
If I take an XML file that is around 2kB on disk and load the contents as a String into memory in Java and then measure the object size it's around 33kB.
Why the huge increase in size?
If I do the same thing in C++ the resulting string object in memory is much closer to the 2kB.
To measure the memory in Java I'm using Instrumentation.
For C++, I take the length of the serialized object (e.g string).
I think there are multiple factors involved.
First of all, as Bruce Martin said, objects in java have an overhead of 16 bytes per object, c++ does not.
Second, Strings in Java might be 2 Bytes per character instead of 1.
Third, it could be that Java reserves more Memory for its Strings than the C++ std::string does.
Please note that these are just ideas where the big difference might come from.
Assuming that your XML file contains mainly ASCII characters and uses an encoding that represents them as single bytes, then you can espect the in memory size to be at least double, since Java uses UTF-16 internally (I've heard of some JVMs that try to optimize this, thouhg). Added to that will be overhead for 2 objects (the String instance and an internal char array) with some fields, IIRC about 40 bytes overall.
So your "object size" of 33kb is definitely not correct, unless you're using a weird JVM. There must be some problem with the method you use to measure it.
In Java String object have some extra data, that increases it's size.
It is object data, array data and some other variables. This can be array reference, offset, length etc.
Visit http://www.javamex.com/tutorials/memory/string_memory_usage.shtml for details.
String: a String's memory growth tracks its internal char array's growth. However, the String class adds another 24 bytes of overhead.
For a nonempty String of size 10 characters or less, the added overhead cost relative to useful payload (2 bytes for each char plus 4 bytes for the length), ranges from 100 to 400 percent.
More:
What is the memory consumption of an object in Java?
Yes, you should GC and give it time to finish. Just System.gc(); and print totalMem() in the loop. You also better to create a million of string copies in array (measure empty array size and, then, filled with strings), to be sure that you measure the size of strings and not other service objects, which may present in your program. String alone cannot take 32 kb. But hierarcy of XML objects can.
Said that, I cannot resist the irony that nobody cares about memory (and cache hits) in the world of Java. We are know that JIT is improving and it can outperform the native C++ code in some cases. So, there is not need to bother about memory optimization. Preliminary optimization is a root of all evils.
As stated in other answers, Java's String is adding an overhead. If you need to store a large number of strings in memory, I suggest you to store them as byte[] instead. Doing so the size in memory should be the same than the size on disk.
String -> byte[] :
String a = "hello";
byte[] aBytes = a.getBytes();
byte[] -> String :
String b = new String(aBytes);
I've been searching through SO for awhile and all I can find is references to speed for strings and one or two rather misguided attempts at memory benchmarking.
My situation is that we have a ton of logging messages in our application and we're wondering if there is any measurable MEMORY advantage to using String.format vs. + vs. StringBuilder.
I've got a solid grip on measuring the time each of these is taking and there are plenty of SO posts for that.
Can anyone tell me which one is better for lowering memory consumption?
Example:
if(LOG.isDebugEnabled()) LOG.debug(String.format("Invoice id = %s is waiting for processing", invoice.getId()));
Since String.format() is much more complicated because it supports format sequences and data types (%s, %d etc) it is expected to be more performance and memory expensive. However I believe this may be significant for very long strings only.
I believe String.format would use less memory.
When using StringBuilder, you need to create a new builder object and then append string to it. The creation of the object and the constant references to it (via append or similar methods) would seem to me to be more memory intensive than to return a straight forward string using String.format.
StringBuilder uses a temporary object before creating the final string.
String.format seems like a more direct way and therefore less memory intensive.
Moreover, StringBuilder asks for a specific size when initialized (or else it will default to some value).
You could compare the default allocated memory values of a StringBuilder object versus a plain old String object.
You could test these two options with a large dataset of strings to be built and assessing the time it takes for each approach.
Hope this helps.
I have a class that is doing a lot of text processing. For each string, which is anywhere from 100->2000 characters long, I am performing 30 different string replacements.
Example:
string modified;
for(int i = 0; i < num_strings; i++){
modified = runReplacements(strs[i]);
//do stuff
}
public runReplacements(String str){
str = str.replace("foo","bar");
str = str.replace("baz","beef");
....
return str;
}
'foo', 'baz', and all other "targets" are only expected to appear once and are string literals (no need for an actual regex).
As you can imagine, I am concerned about performance :)
Given this,
replaceFirst() seems a bad choice because it won't use Pattern.LITERAL and will do extra processing that isn't required.
replace() seems a bad choice because it will traverse the entire string looking for multiple instances to be replaced.
Additionally, since my replacement texts are the same everytime, it seems to make sense for me to write my own code otherwise String.replaceFirst() or String.replace() will be doing a Pattern.compile every single time in the background. Thinking that I should write my own code, this is my thought:
Perform a Pattern.compile() only once for each literal replacement desired (no need to recompile every single time) (i.e. p1 - p30)
Then do the following for each pX: p1.matcher(str).replaceFirst(Matcher.quoteReplacement("desiredReplacement"));
This way I abandon ship on the first replacement (instead of traversing the entire string), and I am using literal vs. regex, and I am not doing a re-compile every single iteration.
So, which is the best for performance?
So, which is the best for performance?
Measure it! ;-)
ETA: Since a two word answer sounds irretrievably snarky, I'll elaborate slightly. "Measure it and tell us..." since there may be some general rule of thumb about the performance of the various approaches you cite (good ones, all) but I'm not aware of it. And as a couple of the comments on this answer have mentioned, even so, the different approaches have a high likelihood of being swamped by the application environment. So, measure it in vivo and focus on this if it's a real issue. (And let us know how it goes...)
First, run and profile your entire application with a simple match/replace. This may show you that:
your application already runs fast enough, or
your application is spending most of its time doing something else, so optimizing the match/replace code is not worthwhile.
Assuming that you've determined that match/replace is a bottleneck, write yourself a little benchmarking application that allows you to test the performance and correctness of your candidate algorithms on representative input data. It's also a good idea to include "edge case" input data that is likely to cause problems; e.g. for the substitutions in your example, input data containing the sequence "bazoo" could be an edge case. On the performance side, make sure that you avoid the traps of Java micro-benchmarking; e.g. JVM warmup effects.
Next implement some simple alternatives and try them out. Is one of them good enough? Done!
In addition to your ideas, you could try concatenating the search terms into a single regex (e.g. "(foo|baz)" ), use Matcher.find(int) to find each occurrence, use a HashMap to lookup the replacement strings and a StringBuilder to build the output String from input string substrings and replacements. (OK, this is not entirely trivial, and it depends on Pattern/Matcher handling alternates efficiently ... which I'm not sure is the case. But that's why you should compare the candidates carefully.)
In the (IMO unlikely) event that a simple alternative doesn't cut it, this wikipedia page has some leads which may help you to implement your own efficient match/replacer.
Isn't if frustrating when you ask a question and get a bunch of advice telling you to do a whole lot of work and figure it out for yourself?!
I say use replaceAll();
(I have no idea if it is, indeed, the most efficient, I just don't want you to feel like you wasted your money on this question and got nothing.)
[edit]
PS. After that, you might want to measure it.
[edit 2]
PPS. (and tell us what you found)
Strings are immutable, meaning, once they have been created they cannot be changed.
So, does this mean that it would take more memory if you append things with += than if you created a StringBuffer and appended text to that?
If you use +=, you would create a new 'object' each time that has to be saved in the memory, wouldn't you?
Yes, you will create a new object each time with +=. That doesn't mean it's always the wrong thing to do, however. It depends whether you want that value as a string, or whether you're just going to use it to build the string up further.
If you actually want the result of x + y as a string, then you might as well just use string concatenation. However, if you're really going to (say) loop round and append another string, and another, etc - only needing the result as a string at the very end, then StringBuffer/StringBuilder are the way to go. Indeed, looping is really where StringBuilder pays off over string concatenation - the performance difference for 5 or even 10 direct concatenations is going to be quite small, but for thousands it becomes a lot worse - basically because you get O(N2) complexity with concatenation vs O(N) complexity with StringBuilder.
In Java 5 and above, you should basically use StringBuilder - it's unsynchronized, but that's almost always okay; it's very rare to want to share one between threads.
I have an article on all of this which you might find useful.
Rule of thumb is simple:
If you are running concatenations in a loop, don't use +=
If you are not running concatenations in a loop, using += simply does not matter. (Unless a performance critical application
In Java 5 or later, StringBuffer is thread safe, and so has some overhead that you shouldn't pay for unless you need it. StringBuilder has the same API but is not thread safe (i.e. you should only use it internal to a single thread).
Yes, if you are building up large strings, it is more efficient to use StringBuilder. It is probably not worth it to pass StringBuilder or StringBuffer around as part of your API. This is too confusing.
I agree with all the answers posted above, but it will help you a little bit to understand more about the way Java is implemented. The JVM uses StringBuffers internally to compile the String + operator (From the StringBuffer Javadoc):
String buffers are used by the
compiler to implement the binary
string concatenation operator +. For
example, the code:
x = "a" + 4 + "c"
is compiled to the equivalent of:
x = new StringBuffer().append("a").append(4).append("c")
.toString()
Likewise, x += "some new string" is equivalent to x = x + "some new string". Do you see where I'm going with this?
If you are doing a lot of String concatenations, using StringBuffer will increase your performance, but if you're only doing a couple of simple String concatenations, the Java compiler will probably optimize it for you, and you won't notice a difference in performance
Yes. String is immutable. For occasional use, += is OK. If the += operation is intensive, you should turn to StringBuilder.
But the garbage collector will end up freeing the old strings once there are no references to them
Exactly. You should use a StringBuilder though if thread-safety isn't an issue.
As a side note: There might be several String objects using the same backing char[] - for instance whenever you use substring(), no new char[] will be created which makes using it quite efficient.
Additionally, compilers may do some optimization for you. For instance if you do
static final String FOO = "foo";
static final String BAR = "bar";
String getFoobar() {
return FOO + BAR; // no string concatenation at runtime
}
I wouldn't be surprised if the compiler would use StringBuilder internally to optimize String concatenation where possible - if not already maybe in the future.
I think it relies on the GC to collect the memory with the abandoned string.
So doing += with string builder will be definitely faster if you have a lot of operation on string manipulation. But it's shouldn't a problem for most cases.
Yes you would and that is exactly why you should use StringBuffer to concatenate alot of Strings.
Also note that since Java 5 you should also prefer StringBuilder most of the time. It's just some sort of unsynchronized StringBuffer.
You're right that Strings are immutable, so if you're trying to conserve memory while doing a lot of string concatenation, you should use StringBuilder rather than +=.
However, you may not mind. Programs are written for their human readers, so you can go with clarity. If it's important that you optimize, you should profile first. Unless your program is very heavily weighted toward string activity, there will probably be other bottlenecks.
No
It will not use more memory. Yes, new objects are created, but the old ones are recycled. In the end, the amount of memory used is the same.