I need to get a file object online, and I know the file is located at : http://nmjava.com/Dir_App_IDs/Dir_GlassPaneDemo/GlassPaneDemo_2010_04_06_15_00_SNGRGLJAMX
If I paste it into my browser's url, I'll be able to download this file, now I'm trying to get it with Java, my code looks like this :
String File_Url="http://nmjava.com/Dir_App_IDs/Dir_GlassPaneDemo/GlassPaneDemo_2010_04_06_15_00_SNGRGLJAMX";
Object myObject=Get_Online_File(new URI(File_Url));
Object Get_Online_File(URI File_Uri) throws IOException
{
return readObject(new ObjectInputStream(new FileInputStream(new File(File_Uri))));
}
public static synchronized Object readObject(ObjectInput in) throws IOException
{
Object o;
......
return o;
}
But I got the following error message :
java.lang.IllegalArgumentException: URI scheme is not "file"
at java.io.File.<init>(File.java:366)
Why ? How to fix it ?
Frank
I'm not sure if FileInputStream is designed for reading over the internet .. try new URL(File_Uri).openConnection().getInputStream()
Don't use FileInputStream for this purpose. Create URL, then get input stream and read data from it.
URL url = new URL (fileUrl);
InputStream inputStream = url.openStream ();
readData (inputStream);
For reading data I recommend you to use Commons IO library (especially if there are 2 or more places where you work with streams, it'll save your time and make your code more expressive):
private byte[] readData (InputStream in) {
try {
return IOUtils.toByteArray (in);
} finally {
IOUtils.closeQuietly(in);
}
}
You also operate in your code with Object streams (like ObjectInputStream). But that stream should be used only to read serialized java object and it's not the case as I understand from the description (if it would be a serialized object then your browser hadn't opened that file).
I got inspired, the correct answer is :
Object myObject=Get_Online_File(new URL(File_Url));
Object Get_Online_File(URL File_Url) throws IOException
{
return readObject(new ObjectInputStream(File_Url.openConnection().getInputStream()));
// or readObject(new ObjectInputStream(File_Url.openStream()));
}
Try "file://nmjava.com/Dir_App_IDs/Dir_GlassPaneDemo/GlassPaneDemo_2010_04_06_15_00_SNGRGLJAMX"
Related
I have the following method to load resources as String where path is the String to the resource on my classpath (which works just fine on plain text):
try (Scanner scanner = new Scanner(MyClass.class.getResourceAsStream(path))) {
return scanner.useDelimiter("\\A").hasNext() ? scanner.next() : "";
}
Now I want to load a PNG image as a base64 String so I can send it back through sparkjava with Content-Type: image/png.
How can I do that?
Do not use any libraries, only plain old Java.
After setting the MIME type in the header with response.header("Content-Type", "image/png") (look up your MIME type here), you can use this:
try {
return Files.readAllBytes(Paths.get(MyClass.class.getResource(path).toURI()));
} catch (IOException | URISyntaxException exception) {
exception.printStackTrace();
}
return null;
Apart from that, to base64-encode a String in Java 8, you can use the java.util.Base64.Encoder class, so you'd just run the result of the method I posted in my description through
Base64.getMimeEncoder().encodeToString(resourceAsString.getBytes(StandardCharsets.UTF_8))
and send it back as response. I haven't got it to work for me though, for some odd reason. I simply used my framework's static files feature.
I have files which consist of json elements in an array.
(several file. each file has json array of elements)
I have a process that knows to take each json element as a line from file and process it.
So I created a small program that reads the JSON array, and then writes the elements to another file.
The output of this utility will be the input of the other process.
I used Java 7 NIO (and gson).
I tried to use as much Java 7 NIO as possible.
Is there any improvement I can do?
What about the filter? Which approach is better?
Thanks,
public class TransformJsonsUsers {
public TransformJsonsUsers() {
}
public static void main(String[] args) throws IOException {
final Gson gson = new Gson();
Path path = Paths.get("C:\\work\\data\\resources\\files");
final Path outputDirectory = Paths
.get("C:\\work\\data\\resources\\files\\output");
DirectoryStream.Filter<Path> filter = new DirectoryStream.Filter<Path>() {
#Override
public boolean accept(Path entry) throws IOException {
// which is better?
// BasicFileAttributeView attView = Files.getFileAttributeView(entry, BasicFileAttributeView.class);
// return attView.readAttributes().isRegularFile();
return !Files.isDirectory(entry);
}
};
DirectoryStream<Path> directoryStream = Files.newDirectoryStream(path, filter);
directoryStream.forEach(new Consumer<Path>() {
#Override
public void accept(Path filePath) {
String fileOutput = outputDirectory.toString() + File.separator + filePath.getFileName();
Path fileOutputPath = Paths.get(fileOutput);
try {
BufferedReader br = Files.newBufferedReader(filePath);
User[] users = gson.fromJson(br, User[].class);
BufferedWriter writer = Files.newBufferedWriter(fileOutputPath, Charset.defaultCharset());
for (User user : users) {
writer.append(gson.toJson(user));
writer.newLine();
}
writer.flush();
} catch (IOException e) {
throw new RuntimeException(filePath.toString(), e);
}
}
});
}
}
There is no point of using Filter if you want to read all the files from the directory. Filter is primarily designed to apply some filter criteria and read a subset of files. Both of them may not have any real difference in over all performance.
If you looking to improve performance, you can try couple different approaches.
Multi-threading
Depending on how many files exists in the directory and how powerful your CPU is, you can apply multi threading to process more than one file at a time
Queuing
Right now you are reading and writing to another file synchronously. You can queue content of the file using Queue and create asynchronous writer.
You can combine both of these approaches as well to improve performance further.
Don't put the I/O into the filter. That's not what it's for. You should get the complete list of files and then process it. For example if the I/O creates another file in the directory, the behaviour is undefined. You might miss a file, or see the new file in the accept() method.
I'm having issues with reading decrypted data from conceal. It looks like I can't correctly finish streaming.
I pretend there is some issue with conceal, because of when I switch my proxyStream (just the encryption part) to not run it through conceal, everything works as expected. I'm also assuming that writing is ok, there is no exception whatsoever and I can find the encrypted file on disk.
I'm proxying my data through contentprovider to allow other apps read decrypted data when the user wants it. (sharing,...)
In my content provider I'm using the openFile method to allow contentResolvers read the data
#Override
public ParcelFileDescriptor openFile(Uri uri, String mode) throws FileNotFoundException {
try {
ParcelFileDescriptor[] pipe = ParcelFileDescriptor.createPipe();
String name = uri.getLastPathSegment();
File file = new File(name);
InputStream fileContents = mStorageProxy.getDecryptInputStream(file);
ParcelFileDescriptor.AutoCloseOutputStream stream = new ParcelFileDescriptor.AutoCloseOutputStream(pipe[1]);
PipeThread pipeThread = new PipeThread(fileContents, stream);
pipeThread.start();
return pipe[0];
} catch (IOException e) {
e.printStackTrace();
}
return null;
}
I guess in the Facebook app Facebook android team could be rather using a standard query() method with a byte array sent in MediaStore.MediaColumns() which is not suitable for me because of I'm not only encrypting media files and I also like the approach of streams better.
This is how I'm reading from the Inpustream. It's basically a pipe between two parcelFileDescriptors. The inputstream comes from conceal and it is a FileInputstream wrapped into a BufferedInputStream originaly.
static class PipeThread extends Thread {
InputStream input;
OutputStream out;
PipeThread(InputStream inputStream, OutputStream out) {
this.input=inputStream;
this.out=out;
}
#Override
public void run() {
byte[] buf=new byte[1024];
int len;
try {
while ((len=input.read(buf)) > 0) {
out.write(buf, 0, len);
}
input.close();
out.flush();
out.close();
}
catch (IOException e) {
Log.e(getClass().getSimpleName(),
"Exception transferring file", e);
}
}
}
I've tried other methods how to read the stream, so it really shouldn't be the issue.
Finally here's the exception I'm constantly ending up with. Do you know what could be the issue? It points to native calls, which I got lost in..
Exception transferring file
com.facebook.crypto.cipher.NativeGCMCipherException: decryptFinal
at com.facebook.crypto.cipher.NativeGCMCipher.decryptFinal(NativeGCMCipher.java:108)
at com.facebook.crypto.streams.NativeGCMCipherInputStream.ensureTagValid(NativeGCMCipherInputStream.java:126)
at com.facebook.crypto.streams.NativeGCMCipherInputStream.read(NativeGCMCipherInputStream.java:91)
at com.facebook.crypto.streams.NativeGCMCipherInputStream.read(NativeGCMCipherInputStream.java:76)
EDIT:
It looks like the stream is working ok, but what fails is the last iteration of reading from it. As I'm using buffer it seems like the fact that the buffer is bigger then the amount of remaiming data is causing the issue. I've been looking into sources of conceal and it seems to be ok from this regard there. Couldn't it be failing somewhere in the native layer?
Note: I've managed to get the decrypted file except its final chunk of bytes..So I have for example an incomplete image file (with last few thousands of pixels not being displayed)
From my little experience with conceal, I have noticed that, only the same application that encrypts a file could decrypt it successfully irrespective whether it has the same package or not. Be sure to put this in mind
This was resolved in https://github.com/facebook/conceal/issues/24. For posterity's sake, the problem here is that the author forgot to call close() on the output stream.
I'm starting to design an application, that will, in part, run through a directory of files and compare their extensions to their file headers.
Does anyone have any advice as to the best way to approach this? I know I could simply have a lookup table that will contain the file's header signature. e.g., JPEG: \xFF\xD8\xFF\xE0
I was hoping there might be a simper way.
Thanks in advance for your help.
I'm afraid it'll have to be more complicated than that. Not every file type has a header at all, and some (such as RAR) have their characteristic data structures at the end rather than at the beginning.
You may want to take a look at the Unix file command, which does the same job:
http://linux.die.net/man/1/file
http://linux.die.net/man/5/magic
If you don't need to do dirty work on these values (and you don't have linux) you could simply use an external program, like TrID, that is able to do this thing for you.
Maybe you can just work on its output without caring to doing it by yourself.. in anycase if you have just around 20 kinds of files that you will have to manage having a simple lookup table (eg. HashMap<String,byte[]>) is not that bad. Of cours this will work only if desidered file format has a magic number, otherwise you are on your own (or with an external program).
Because of the problem with the missing significant header for some file types (thanks #Michael) I would create a map of extension to a kind of type checker with a simple API like
public interface TypeCheck throws IOException {
public boolean isValid(InputStream data);
}
Now you can code something like
File toBeTested = ...;
Map<String,TypeCheck> typeCheckByExtension = ...;
TypeCheck check = typeCheckByExtension.get(getExtension(toBeTested.getName()));
if (check != null) {
InputStream in = new FileInputStream(toBeTested);
if (check.isValid(in)) {
// process valid file
} else {
// process invalid file
}
in.close();
} else {
// process unknown file
}
The Header check for JPEG for example may look like
public class JpegTypeCheck implements TypeCheck {
private static final byte[] HEADER = new byte[] {0xFF, 0xD8, 0xFF, 0xE0};
public boolean isValid(InputStream data) throws IOException {
byte[] header = new byte[4];
return data.read(header) == 4 && Arrays.equals(header, HEADER);
}
}
For other types with no significant header you can implement completly other type checks.
You can extract the mime type for each file and compare this to a map of mimetype/extension (Map<String, List<String>>, the first String is the mime type, the second is a list of valid extensions).
Resources :
Get the Mime Type from a File
JMimeMagic
On the same topic :
Java - HowTo extract MimeType from a byte[]
Getting A File's Mime Type In Java
You can know the file type of file reading the header using apache tika. Following code need apache tika jar.
InputStream is = MainApp.class.getResourceAsStream("/NetFx20SP1_x64.txt");
BufferedInputStream bis = new BufferedInputStream(is);
AutoDetectParser parser = new AutoDetectParser();
Detector detector = parser.getDetector();
Metadata md = new Metadata();
md.add(Metadata.RESOURCE_NAME_KEY,MainApp.class.getResource("/NetFx20SP1_x64.txt").getPath());
MediaType mediaType = detector.detect(bis, md);
System.out.println("MIMe Type of File : " + mediaType.toString());
I'm writing to the browser window using servletResponse.getWriter().write(String).
But how do I clear the text which was written previously by some other similar write call?
The short answer is, you cannot -- once the browser receives the response, there is no way to take it back. (Unless there is some way to abnormally stop a HTTP response to cause the client to reload the page, or something to that extent.)
Probably the last place a response can be "cleared" in a sense, is using the ServletResponse.reset method, which according to the Servlet Specification, will reset the buffer of the servlet's response.
However, this method also seems to have a catch, as it will only work if the buffer has not been committed (i.e. sent to the client) by the ServletOutputStream's flush method.
You cannot. The best thing is to write to a buffer (StringWriter / StringBuilder) and then you can replace the written data any time. Only when you know for sure what is the response you can write the buffer's content to the response.
In the same matter, and reason to write the response this way and not to use some view technology for your output such as JSP, Velocity, FreeMarker, etc.?
If you have an immediate problem that you need to solve quickly, you could work around this design problem by increasing the size of the response buffer - you'll have to read your application server's docs to see if this is possible. However, this solution will not scale as you'll soon run into out-of-memory issues if you site traffic peaks.
No view technology will protect you from this issue. You should design your application to figure out what you're going to show the user before you start writing the response. That means doing all your DB access and business logic ahead of time. This is a common issue I've seen with convoluted system designs that use proxy objects that lazily access the database. E.g. ORM with Entity relationships are bad news if accessed from your view layer! There's not much you can do about an exception that happens 3/4 of the way into a rendered page.
Thinking about it, there might be some way to inject a page redirect via AJAX. Anyone ever heard of a solution like that?
Good luck with re-architecting your design!
I know the post is pretty old, but just thought of sharing my views on this.
I suppose you could actually use a Filter and a ServletResponseWrapper to wrap the response and pass it along the chain.
That is, You can have an output stream in the wrapper class and write to it instead of writing into the original response's output stream... you can clear the wrapper's output stream as and when you please and you can finally write to the original response's output stream when you are done with your processing.
For example,
public class MyResponseWrapper extends HttpServletResponseWrapper {
protected ByteArrayOutputStream baos = null;
protected ServletOutputStream stream = null;
protected PrintWriter writer = null;
protected HttpServletResponse origResponse = null;
public MyResponseWrapper( HttpServletResponse response ) {
super( response );
origResponse = response;
}
public ServletOutputStream getOutputStream()
throws IOException {
if( writer != null ) {
throw new IllegalStateException( "getWriter() has already been " +
"called for this response" );
}
if( stream == null ) {
baos = new ByteArrayOutputStream();
stream = new MyServletStream(baos);
}
return stream;
}
public PrintWriter getWriter()
throws IOException {
if( writer != null ) {
return writer;
}
if( stream != null ) {
throw new IllegalStateException( "getOutputStream() has already " +
"been called for this response" );
}
baos = new ByteArrayOutputStream();
stream = new MyServletStream(baos);
writer = new PrintWriter( stream );
return writer;
}
public void commitToResponse() {
origResponse.getOutputStream().write(baos.toByteArray());
origResponse.flush();
}
private static class MyServletStream extends ServletOutputStream {
ByteArrayOutputStream baos;
MyServletStream(ByteArrayOutputStream baos) {
this.baos = baos;
}
public void write(int param) throws IOException {
baos.write(param);
}
}
//other methods you want to implement
}