I am looking for ways to zoom in a Java Swing application. That means that I would like to resize all components in a given JPanel by a given factor as if I would take an screenshot of the UI and just applied an "Image scale" operation. The font size as well as the size of checkboxes, textboxes, cursors etc. has to be adjusted.
It is possible to scale a component by applying transforms to a graphics object:
protected Graphics getComponentGraphics(Graphics g) {
Graphics2D g2d=(Graphics2D)g;
g2d.scale(2, 2);
return super.getComponentGraphics(g2d);
}
That works as long as you don't care about self-updating components. If you have a textbox in your application this approach ceases to work since the textbox updates itself every second to show the (blinking) cursor. And since it doesn't use the modified graphics object this time the component appears at the old location. Is there a possibility to change a components graphics object permanently? There is also a problem with the mouse click event handlers.
The other possibility would be to resize all child components of the JPanel (setPreferredSize) to a new size. That doesn't work for checkboxes since the displayed picture of the checkbox doesn't change its size.
I also thought of programming my own layout manager but I don't think that this will work since layout managers only change the position (and size) of objects but are not able to zoom into checkboxes (see previous paragraph). Or am I wrong with this hypothesis?
Do you have any ideas how one could achieve a zoomable Swing GUI without programming custom components? I looked for rotatable user interfaces because the problem seems familiar but I also didn't find any satisfying solution to this problem.
Thanks for your help,
Chris
You could give a try to the JXLayer library.
There are several tools in it, which could help you to make a zoom. Check the examples shown here. I would recommend you to read more about the TransformUI, from this library. From the example, it seems like it could help solving your problem.
Scaling the view is easy enough; transforming mouse coordinates is only slightly more difficult. Here's an elementary example. I'd keep JComponents out, although it might make sense to develop an analogous ScaledComponent that knows about the geometry. That's where #Gnoupi's suggestion of using a library comes in.
hey you can try this if you want to zoom a image like any other image viewer the use a JPanel draw an image using drawImage() method now create a button and when you click the button increase the size of the panel on the frame it appears as if the image is being viewed in Zoom
You might find Piccolo2D.java API useful: http://code.google.com/p/piccolo2d/
It is very simple.
It touts in particular its smooth zooming. You essentially make a "canvas" that can contain various elements, and can then zoom by just holding right-click and panning the mouse back and forth.
I worked on a team that used it to create this: http://sourceforge.net/apps/mediawiki/guitar/index.php?title=WebGuitar#EFG.2FGUI_Visualizer
The nodes you see there are clickable links themselves.
Since Java 9, there are VM arguments (actually meant to be used for high dpi scaling) that can render a application with a higher scaling factor:
java -Dsun.java2d.uiScale=2.0 -jar MyApplication.jar
Or:
java -Dsun.java2d.win.uiScaleX=2.0 -Dsun.java2d.win.uiScaleY=2.0 -jar MyApplication.jar
Related
Actually, my work is based on displaying a diagram in the screen, and while zooming in/out, the information in the diagram becomes more/less (just like Google Map).
May anyone guide to a 2D Graphics API that can allow me zoom in/out my drawings in Java easily?
I have used Graphics2D with AffineTransform, but showing more/less details in the diagram is somehow difficult using these stuff. I actually mean that Java Graphics API does not help in showing more/less details, positioning them, changing their size, etc. I have to write code for everything and every change in my design requires too much effort to modify my code.
You should use the MVC pattern where the diagram class representing the diagram with all the details is your model, the displayed image is your view and the zoom buttons/wheel are your controllers.
Here are some quick ideas:
You could have some method that builds the rendered image always using the same "internal" size, with more or less details depending on the zoom required and then use the AffineTransform to enlarge it (which is the easiest way to zoom an image as far as I know). Each time the zoom is changed this method is invoked passing the new zoom and the image is rebuilt.
If this is not feasible (e.g. because the coordinates of the additional information are not easy to compute on a small image) you can try the other way round: first build the basic image, enlarge it, then use the method to incrementally add new informations to this image. You can even cache the images built from smaller zoom values to speed up the process.
Using Java and SWT, I am trying to display a map (provided as an image) and mark points on it. First idea is to use a canvas, draw the image (scaled to the largest possible size for this canvas) and then draw the markings (fixed size) to the scaled coordinates. However I would also like to zoom in and move the image, and would prefer not to develop all this functionality from scratch. However I am not having much luck finding an existing solution, though I would guess there should be something out there.
The criteria would be:
based on SWT (or compatible)
allows exchange of the image (possibly with different sizes)
handles user interaction (selection a point on the image, zooming in/out of the image)
Does anybody know a standard/common solution?
Depending on how complex your system will potentially grow, maybe using GEF is an option.
The whole rendering is done on SWT.Canvas and it provides Zooming/Scrolling/Moving out of the Box.
Downside: Its dependant on RCP, so this is likely to be only an option if you need to build an otherwise complex application - in all other cases GEF will be quite heavyweight to set up.
This program will have an infinite canvas (ie as long as the user scrolls, it becomes bigger) with a tiled background image, and you can drag and drop blocks and draw arrows between blocks. Obviously I won't use a layout manager for placing blocks and lines, since they will be absolutely positioned (any link on this, possibily with a snapping feature?). The problem arises with blocks and lines. Basically I'll have two options:
Using a simple layout for each building block. This is the simplest and clearest approach, but does it scale well when you have hundreds of objects? This may not be uncommon, just imagine a database with 50 tables and dozens of relationships
Drawing everything with primitives (rectangles, bitmaps, etc). This seems too complicated (especially things like text padding and alignment) but may be more scalable if you have a large number of objects. Also there won't be any event handler
Please give me some hints based on your experience. I have never drawn with Java before - well I did something rather basic with PHP and on Android. Here is a simple preview
DISCLAIMER
You are not forced to answer this. I am looking for someone who did something like this before, what's the use of writing I can check an open source project? Do you know how difficult it is to understand someone else's code? I'm talking about implementations details here... Moreover, there is no guarantee that he's right. This project is just for study and will be funny, I don't want to sell it or anything and I don't need your authorization to start it.
Measuring and drawing text isn't such a pain, since java has built in classes for doing that. you may want to take a look at the 2D Text Tutorial for more information. In fact, I did some text drawing computations with a different graphics engine which is much more primitive, and in the end it was rather easy (at least for the single-line drawing, for going multiline see the previous link).
For the infinite canvas problem, that's also something I always wanted to be able to do. A quick search here at stackoverflow gives this which sounds nice, althought I'm not sure I like it. What you can do, is use the way GIMP has a scroll area that can extend as you move - catch the click of the middle mouse button for marking the initial intention to move the viewport. Then, when the mouse is dragged (while the button is clicked) move the viewport of the jscrollpane by the offset between the initial click and the current position. If we moved outside the bounds of the canvas, then you should simply enlarge the canvas.
In case you are still afraid of some of the manual drawing, you can actually have a JPanel as your canvas, with a fixed layout. Then you can override it's paint method for drawing the connectors, while having child components (such as buttongs and text areas) for other interaction (and each component may override it's own paint method in case it wants to have a custom-painted rect).
In my last drawing test in java, I made an application for drawing bezier curves (which are basically curves made of several control points). It was a JPanel with overidden paint method that drew the curve itself, and buttons with custom painting placed on the location of the control points. Clicking on the control point actually was clicking on a button, so it was easy to detect the matching control point (since each button had one control point associated with it). This is bad in terms of efficiency (manual hit detection may be faster) but it was easy in terms of programming.
Anyway, This idea can be extended by having one child JPanel for each class rectangle - this will provide easy click detection and custom painting, while the parent will draw the connectors.
So in short - go for nested JPanels with custom drawing, so that you can also place "on-canvas" widgets (and use real swing widgets such as text labels to do some ready drawing) while also having custom drawing (by overriding the paint method of the panels). Note that the con of this method is that some swing look-and-feel's may interfere with your drawing, so may need to mess a bit with that (as far as I remember, the metal and nimbus look-and-feel's were ok, and they are both cross-platform).
I know how to draw a rectangle onto a JPanel, but how can I paint a rectangle to the screen so that the rectangle appears to be floating? More specifically, a non-filled rectangle. My thought is to use a transparent JFrame with a rectangle drawn on it; however, this makes all of the content in the JFrame transparent.
My Solution
So I think there are many ways of going about this, some more complex than others, some more practical than others.
I tried the splash screen. The problem with that is you need to pass VM parameters "-splash " when you run. I created a manifest file to automate this/put the parameters into eclipse; but then the code is dependent on the .gif file and I can't change the size/position of the rectangle easily. Similar problems occur while faking it via screen screenshot. Good suggestions though, I learned some pretty cool stuff.
So, back to what I did. I used a JFrame, got the content pane and set the background to red (what ever color you want), then set the frame undecorated which removes the titlebar and border of the window. This created a floating rectangle which I could easily change the size and location of (frame.setSize, .setLocation). I have yet to make this a non filled rectangle, I tried internal frames and layeredpanes, but no success.
JFrame is a heavyweight component, and those were always opaque for the longest time. However, since Java 6u10, there is an inofficial API for transparent windows in the class com.sun.awt.AWTUtilities, which will most likely become official in Java 7. In earlier versions, the only way to simulate this kind of thing was to fake it via screenshots taken with java.awt.Robot
You would probably have to have parts of the window transparent while the actual drawn rectangle is not. I doubt there is a platform-agnostic solution for this so you would need to resort to JNI for this. Depending on what you need to do it might also be nice to make the window invisible for clicks which would need other tricks as well.
https://github.com/twall/jna/
That project offers a library and has examples of a clock and info balloons that are semi-transparent and transcend even what you're trying to do. The demos work well on Windows but I couldn't speak to how cross platform they are.
You might want to look at JLayeredPane. The demo on this page shows partially what you want, however when painting your rectangle you'll need to set your paint to transparent:
AlphaComposite ac = AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5f);
g2d.setComposite(ac);
g2d.drawImage(image, x, y, this);
How would I go about writing my own scrollbar using standard Java 2D.
I really don't want to use swing, and I've already made up my own component parts for everything else such as buttons etc.
I'm not really looking for code, rather the math involved in the event changes and the drawing.
Why on earth would you want to write your own java GUI toolkit? You already have the choice of Swing and SWT, can you really do better than these two teams?
If you've already written the rest of the toolkit, I don't understand why the scrollbar would stump you. Without knowing anything about your event system, or how your custom components are structured, it's impossible to give much advise. I don't see this being particularly maths intensive - just maintain the height of the scrollable component, and the view it's in, and the scrollbar size should match the proportion of the component that is visible. The position of the scrollbar should match which part of the component is visible (this will have to be scaled). Specifically, what do you want to know?
Java is now open. I'd go look at the source for the Swing and/or SWT as they are already implemented. The math seems fairly straight forward. You have a Bar and a Container. To simplify we will only discuss length (the dimension in which the scrollbar moves). The container is of a certain length. The bar is of a length that is equal to or less than the container. It is useful to define the center and the two endpoints of the scrollbar. You can have the scrollbar start at 0 at the top and 1 at the bottom or 0 at the top and 100 at the bottom with the important part being defining your scrollbar in the same manner. Then you can check the endpoints for collision with the edge to stop the bar from moving. If the mouse is held down with the cursor over the coordinates inside the bar, the bar starts caring about where the cursor is and will paint the scrollbar and whatever the scrollbar is ultimately supposed to be affecting. So, you would take the page to be affected and map it to 0 and 1 * the scale in pixels of the scrollbar. Then you get to worry about the arrows at either end and how big of a jump each click is and dealing with mousedown events etc.etc. Use what is given don't reinvent the wheel.
While not Java2D, this straightforward code snippet might help:
http://processing.org/learning/topics/scrollbar.html