I want to know how to get the bounds of an QuadCurve2D. I found a method to get the bounds from a CubicCurve2D.
Using this methods is possible to change it to use QuadCurve2D?
private static void ProcessMonotonicCubic(double[] coords, double[] bbox ) {
if (bbox[0] > coords[0]) bbox[0] = coords[0];
if (bbox[1] > coords[1]) bbox[1] = coords[1];
if (bbox[2] < coords[0]) bbox[2] = coords[0];
if (bbox[3] < coords[1]) bbox[3] = coords[1];
if (bbox[0] > coords[6]) bbox[0] = coords[6];
if (bbox[1] > coords[7]) bbox[1] = coords[7];
if (bbox[2] < coords[6]) bbox[2] = coords[6];
if (bbox[3] < coords[7]) bbox[3] = coords[7];
}
/*
* Bite the piece of the cubic curve from start point till the point
* corresponding to the specified parameter then call ProcessCubic for the
* bitten part.
* Note: coords array will be changed
*/
private static void ProcessFirstMonotonicPartOfCubic(double[] coords,
double[] bbox,
double t)
{
double[] coords1 = new double[8];
double tx, ty;
coords1[0] = coords[0];
coords1[1] = coords[1];
tx = coords[2] + t*(coords[4] - coords[2]);
ty = coords[3] + t*(coords[5] - coords[3]);
coords1[2] = coords[0] + t*(coords[2] - coords[0]);
coords1[3] = coords[1] + t*(coords[3] - coords[1]);
coords1[4] = coords1[2] + t*(tx - coords1[2]);
coords1[5] = coords1[3] + t*(ty - coords1[3]);
coords[4] = coords[4] + t*(coords[6] - coords[4]);
coords[5] = coords[5] + t*(coords[7] - coords[5]);
coords[2] = tx + t*(coords[4] - tx);
coords[3] = ty + t*(coords[5] - ty);
coords[0]=coords1[6]=coords1[4] + t*(coords[2] - coords1[4]);
coords[1]=coords1[7]=coords1[5] + t*(coords[3] - coords1[5]);
ProcessMonotonicCubic(coords1, bbox);
}
/*
* Split cubic curve into monotonic in X and Y parts. Calling
* ProcessMonotonicCubic for each monotonic piece of the curve.
*
* Note: coords array could be changed
*/
private static void ProcessCubic(double[] coords, double[] bbox) {
/* Temporary array for holding parameters corresponding to the extreme
* in X and Y points
*/
double params[] = new double[4];
double eqn[] = new double[3];
double res[] = new double[2];
int cnt = 0;
/* Simple check for monotonicity in X before searching for the extreme
* points of the X(t) function. We first check if the curve is
* monotonic in X by seeing if all of the X coordinates are strongly
* ordered.
*/
if ((coords[0] > coords[2] || coords[2] > coords[4] ||
coords[4] > coords[6]) &&
(coords[0] < coords[2] || coords[2] < coords[4] ||
coords[4] < coords[6]))
{
/* Searching for extreme points of the X(t) function by solving
* dX(t)
* ---- = 0 equation
* dt
*/
eqn[2] = -coords[0] + 3*coords[2] - 3*coords[4] + coords[6];
eqn[1] = 2*(coords[0] - 2*coords[2] + coords[4]);
eqn[0] = -coords[0] + coords[2];
int nr = QuadCurve2D.solveQuadratic(eqn, res);
/* Following code also correctly works in degenerate case of
* the quadratic equation (nr = -1) because we do not need
* splitting in this case.
*/
for (int i = 0; i < nr; i++) {
if (res[i] > 0 && res[i] < 1) {
params[cnt++] = res[i];
}
}
}
/* Simple check for monotonicity in Y before searching for the extreme
* points of the Y(t) function. We first check if the curve is
* monotonic in Y by seeing if all of the Y coordinates are strongly
* ordered.
*/
if ((coords[1] > coords[3] || coords[3] > coords[5] ||
coords[5] > coords[7]) &&
(coords[1] < coords[3] || coords[3] < coords[5] ||
coords[5] < coords[7]))
{
/* Searching for extreme points of the Y(t) function by solving
* dY(t)
* ----- = 0 equation
* dt
*/
eqn[2] = -coords[1] + 3*coords[3] - 3*coords[5] + coords[7];
eqn[1] = 2*(coords[1] - 2*coords[3] + coords[5]);
eqn[0] = -coords[1] + coords[3];
int nr = QuadCurve2D.solveQuadratic(eqn, res);
/* Following code also correctly works in degenerate case of
* the quadratic equation (nr = -1) because we do not need
* splitting in this case.
*/
for (int i = 0; i < nr; i++) {
if (res[i] > 0 && res[i] < 1) {
params[cnt++] = res[i];
}
}
}
if (cnt > 0) {
/* Sorting parameter values corresponding to the extreme points
* of the curve
*/
Arrays.sort(params, 0, cnt);
/* Processing obtained monotonic parts */
ProcessFirstMonotonicPartOfCubic(coords, bbox,
(float)params[0]);
for (int i = 1; i < cnt; i++) {
double param = params[i] - params[i-1];
if (param > 0) {
ProcessFirstMonotonicPartOfCubic(coords, bbox,
/* Scale parameter to match with rest of the curve */
(float)(param/(1.0 - params[i - 1])));
}
}
}
ProcessMonotonicCubic(coords, bbox);
}
private Rectangle2D.Double getCurveBounds(CubicCurve2D curve) {
double minX = Double.MAX_VALUE, minY = Double.MAX_VALUE;
double maxX = Double.MIN_VALUE, maxY = Double.MIN_VALUE;
double [] bbox = new double[] {Double.MAX_VALUE, Double.MAX_VALUE, Double.MIN_VALUE, Double.MIN_VALUE};
ProcessCubic(new double[] {curve.getP1().getX(), curve.getP1().getY(),
curve.getCtrlP1().getX(), curve.getCtrlP1().getY(), curve.getCtrlP2().getX(),
curve.getCtrlP2().getY(), curve.getP2().getX(), curve.getP2().getY()}, bbox);
return new Rectangle2D.Double(bbox[0], bbox[1], bbox[2] - bbox[0], bbox[3] - bbox[1]);
}
"How does your use of the term "bounds" differ from the result of getBounds()?"
Get bounds 2D grab the control points, i want an rectangle that doesn't wrap the control points.
well testing a little i found another method in the same site that can be changed to use QuadCurve2D.
Here is the code:
private Rectangle2D.Double getCurveBounds(QuadCurve2D.Double curve) {
double flatness = 0.01;
PathIterator pit = curve.getPathIterator(null, flatness);
double[] coords = new double[2];
double minX = Double.MAX_VALUE, minY = Double.MAX_VALUE;
double maxX = Double.MIN_VALUE, maxY = Double.MIN_VALUE;
while(!pit.isDone()) {
int type = pit.currentSegment(coords);
switch(type) {
case PathIterator.SEG_MOVETO:
// fall through
case PathIterator.SEG_LINETO:
if(coords[0] < minX) minX = coords[0];
if(coords[0] > maxX) maxX = coords[0];
if(coords[1] < minY) minY = coords[1];
if(coords[1] > maxY) maxY = coords[1];
break;
}
pit.next();
}
return new Rectangle2D.Double(minX, minY, maxX-minX, maxY-minY);
}
hope it helps someone. :D
Related
Let's first start off with what I am trying to do. I would like to be able to take PNG file with a transparent background and find anywhere from 90 to 360 points along the edge of the subject of the image. Here is a rough example of what I mean. Given this image of Mario and Yoshi:
I want to make a circle that is centered at the center of the image with a diameter slightly larger than the largest side of the image to serve as a reference. Then, I want to go around the circle at set intervals, and trace a line towards the center until it hits a non-transparent pixel. Here is what that would look like:
I have attempted to implement this a few different times, all of which failed, and I was hoping to get some guidance or insight as to what I am doing wrong. Here is an image of the math I am using behind the code (sorry if the quality is not great, I don't have a scanner):
The Line 1 is either the top, bottom, left or right edge of the image, and Line 2 goes through the center of the circle at the given angle. The point where lines 1 and 2 intersect should be on the edge of the image, and is where we should start looking for the edge of the image's subject.
Here is the code that I came up with from this idea. I did it in Java because BufferedImage is really easy to use, but I am going to translate this over to C# (XNA) for the final product.
public class Mesh {
private int angleA, angleB, angleC, angleD;
private BufferedImage image;
private Point center;
public ArrayList<Point> points = new ArrayList<>();
public Mesh(BufferedImage image) {
center = new Point(image.getWidth() / 2, image.getHeight() / 2);
angleA = (int) (Math.atan(center.y / center.x) * (180 / Math.PI));
angleB = 180 - angleA;
angleC = 180 + angleA;
angleD = 360 - angleA;
this.image = image;
for(int angle = 0; angle <= 360; angle+=4){
Point point = getNext(angle);
if(point != null) points.add(point);
}
}
private Point getNext(int angle) {
double radians = angle * Math.PI / 180;
double xStep = Math.cos(radians);
double yStep = Math.sin(radians);
int addX = angle >= 90 && angle <= 270 ? 1 : -1;
int addY = angle >= 0 && angle <= 180 ? 1 : -1;
double x, y;
if (xStep != 0) {
double slope = yStep / xStep;
double intercept = center.y - (slope * center.x);
if (angle >= angleA && angle <= angleB) {
y = 0;
x = -intercept / slope;
} else if (angle > angleB && angle < angleC) {
x = 0;
y = intercept;
} else if (angle >= angleC && angle <= angleD) {
y = image.getHeight() - 1;
x = (y - intercept) / slope;
} else {
x = image.getWidth() - 1;
y = slope * x + intercept;
}
} else {
x = center.x;
y = angle <= angleB ? 0 : image.getHeight();
}
if (x < 0) x = 0;
if (x > image.getWidth() - 1) x = image.getWidth() - 1;
if (y < 0) y = 0;
if (y > image.getHeight() - 1) y = image.getHeight() - 1;
double distance = Math.sqrt(Math.pow(x - center.x, 2) + Math.pow(y - center.y, 2));
double stepSize = Math.sqrt(Math.pow(xStep, 2) + Math.pow(yStep, 2));
int totalSteps = (int) Math.floor(distance / stepSize);
for (int step = 0; step < totalSteps; step++) {
int xVal = (int) x;
int yVal = (int) y;
if(xVal < 0) xVal = 0;
if(xVal > image.getWidth() -1) xVal = image.getWidth() -1;
if(yVal < 0) yVal = 0;
if(yVal > image.getHeight()-1) yVal = image.getHeight() -1;
int pixel = image.getRGB(xVal, yVal);
if ((pixel >> 24) == 0x00) {
x += (Math.abs(xStep) * addX);
y += (Math.abs(yStep) * addY);
} else {
return new Point(xVal, yVal);
}
}
return null;
}
}
The algorithm should be returning all positive points that are all ordered in counterclockwise rotation (and non-overlapping) but I have failed to get the desired output (this being my most recent attempt) so just to restate the question, is there a formalized way of doing this, or can someone find the mistake I made in my logic. For visual reference, the Mario and Yoshi Traced image is sort of what the final output should look like, but with many more points (which would give more detail to the mesh).
So i'm given to crop out points that are not inside my rectangle or points that lie on the boundrey line. The rectangle is made up of the two points that are taken in by the method p1, p2. so for example if you have the points [(3.0,1.0), (2.0,2.0), (1.5,1.5), (3.0,0.0)] after the crop you should have [(3.0,1.0), (3.0,0.0)] so basically the method should remove all points that are out side the given points..
I solved it this way. But i get some weird errors when it comes to negative numbers..
public void crop(Point p1, Point p2) {
double highX = 0;
double lowX = 0;
double highY = 0;
double lowY = 0;
if (p1.getX() > p2.getX()) {
highX = p1.getX();
lowX = p2.getX();
} else {
highX = p2.getX();
lowX = p1.getX();
}
if (p1.getY() > p2.getY()) {
highY = p1.getY();
lowY = p2.getY();
} else {
highY = p2.getY();
lowY = p1.getY();
}
for (int i = 0; i < points.size(); i++) {
Point P = points.get(i);
if (Math.abs(P.getX() - lowX) < Point.EPSILON
|| Math.abs(P.getX() - highX) < Point.EPSILON
|| Math.abs(P.getY() - lowY) < Point.EPSILON
|| Math.abs(P.getY() - highY) < Point.EPSILON) {
System.out.println(Math.abs(P.getX() - highX) < Point.EPSILON);
System.out.println("Keeping: " + points.get(i));
// keep
} else {
System.out.println("Remvoing: " + points.get(i));
points.remove(i);
}
if (P.getX() < lowX || P.getX() > highX || P.getY() < lowY
|| P.getY() > highY) {
System.out.println("Removing: " + points.get(i));
points.remove(i);
}
}
}
any help solving this problem would be nice i've been stuck for a while now
There is the java.awt.Rectangle for integer and java.awt.Rectangle2D class with the method contains(x, y).
This will solve the case when the points is inside the Rectangle or on the left or upper border.
For good reasons you should not treat points on the right and lower border as beeing inside.
Talk with the person that demandend that.
Otherwise you may get points that are inside both of two touching rectangles, and this is not a good solution.
Further ist is usual to specify: "If a point is exactly at the border, the method may return true or false".
However for axe-parallel rectangles the "to-be-inside-or-on-the-border" task is easy to solve. Look at the src of that java methods and change < to <=. (or similar)
I eventually came up with this as a solution to the problem
public void crop(Point p1, Point p2) {
double highX = 0;
double lowX = 0;
double highY = 0;
double lowY = 0;
ArrayList<Point> list = new ArrayList<Point>();
if (p1.getX() > p2.getX()) {
highX = p1.getX();
lowX = p2.getX();
} else {
highX = p2.getX();
lowX = p1.getX();
}
if (p1.getY() > p2.getY()) {
highY = p1.getY();
lowY = p2.getY();
} else {
highY = p2.getY();
lowY = p1.getY();
}
if (p1.equals(p2)) {
list.add(p1);
points = list;
return;
}
double i = 0;
while (i < points.size()) {
Point P = points.get((int) i);
if (P.getX() < highX + EPSILON && P.getX() > lowX - EPSILON
&& P.getY() < highY + EPSILON && P.getY() > lowY - EPSILON) {
list.add(P);
}
i++;
}//thank god
points = list;
}
I have used a java canny detector from the public source. I wanted to detect edges of fibre in the image from microscope. But the result is kind of dissapointig. If you look at the result you can see that some edges are "doubled", we can see parrallel curves really close to each other in some places and also some false edges. I would like to improve the result of the algorithm. How can I change the parameters beside low/highthreshold to improve effect?
CODE IS RUNNING, just put the source.jpg in the project folder and run.
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import javax.imageio.ImageIO;
public class CannyEdgeDetector {
// statics
private final static float GAUSSIAN_CUT_OFF = 0.005f;
private final static float MAGNITUDE_SCALE = 100F;
private final static float MAGNITUDE_LIMIT = 1000F;
private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);
// fields
private int height;
private int width;
private int picsize;
private int[] data;
private int[] magnitude;
private BufferedImage sourceImage;
private BufferedImage edgesImage;
private float gaussianKernelRadius;
private float lowThreshold;
private float highThreshold;
private int gaussianKernelWidth;
private boolean contrastNormalized;
private float[] xConv;
private float[] yConv;
private float[] xGradient;
private float[] yGradient;
// constructors
/**
* Constructs a new detector with default parameters.
*/
public CannyEdgeDetector() {
lowThreshold = 2.5f;
highThreshold = 7.5f;
gaussianKernelRadius = 2f;
gaussianKernelWidth = 16;
contrastNormalized = false;
}
// accessors
/**
* The image that provides the luminance data used by this detector to
* generate edges.
*
* #return the source image, or null
*/
public BufferedImage getSourceImage() {
return sourceImage;
}
/**
* Specifies the image that will provide the luminance data in which edges
* will be detected. A source image must be set before the process method
* is called.
*
* #param image a source of luminance data
*/
public void setSourceImage(BufferedImage image) {
sourceImage = image;
}
/**
* Obtains an image containing the edges detected during the last call to
* the process method. The buffered image is an opaque image of type
* BufferedImage.TYPE_INT_ARGB in which edge pixels are white and all other
* pixels are black.
*
* #return an image containing the detected edges, or null if the process
* method has not yet been called.
*/
public BufferedImage getEdgesImage() {
return edgesImage;
}
/**
* Sets the edges image. Calling this method will not change the operation
* of the edge detector in any way. It is intended to provide a means by
* which the memory referenced by the detector object may be reduced.
*
* #param edgesImage expected (though not required) to be null
*/
public void setEdgesImage(BufferedImage edgesImage) {
this.edgesImage = edgesImage;
}
/**
* The low threshold for hysteresis. The default value is 2.5.
*
* #return the low hysteresis threshold
*/
public float getLowThreshold() {
return lowThreshold;
}
/**
* Sets the low threshold for hysteresis. Suitable values for this parameter
* must be determined experimentally for each application. It is nonsensical
* (though not prohibited) for this value to exceed the high threshold value.
*
* #param threshold a low hysteresis threshold
*/
public void setLowThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
lowThreshold = threshold;
}
/**
* The high threshold for hysteresis. The default value is 7.5.
*
* #return the high hysteresis threshold
*/
public float getHighThreshold() {
return highThreshold;
}
/**
* Sets the high threshold for hysteresis. Suitable values for this
* parameter must be determined experimentally for each application. It is
* nonsensical (though not prohibited) for this value to be less than the
* low threshold value.
*
* #param threshold a high hysteresis threshold
*/
public void setHighThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
highThreshold = threshold;
}
/**
* The number of pixels across which the Gaussian kernel is applied.
* The default value is 16.
*
* #return the radius of the convolution operation in pixels
*/
public int getGaussianKernelWidth() {
return gaussianKernelWidth;
}
/**
* The number of pixels across which the Gaussian kernel is applied.
* This implementation will reduce the radius if the contribution of pixel
* values is deemed negligable, so this is actually a maximum radius.
*
* #param gaussianKernelWidth a radius for the convolution operation in
* pixels, at least 2.
*/
public void setGaussianKernelWidth(int gaussianKernelWidth) {
if (gaussianKernelWidth < 2) throw new IllegalArgumentException();
this.gaussianKernelWidth = gaussianKernelWidth;
}
/**
* The radius of the Gaussian convolution kernel used to smooth the source
* image prior to gradient calculation. The default value is 16.
*
* #return the Gaussian kernel radius in pixels
*/
public float getGaussianKernelRadius() {
return gaussianKernelRadius;
}
/**
* Sets the radius of the Gaussian convolution kernel used to smooth the
* source image prior to gradient calculation.
*
* #return a Gaussian kernel radius in pixels, must exceed 0.1f.
*/
public void setGaussianKernelRadius(float gaussianKernelRadius) {
if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException();
this.gaussianKernelRadius = gaussianKernelRadius;
}
/**
* Whether the luminance data extracted from the source image is normalized
* by linearizing its histogram prior to edge extraction. The default value
* is false.
*
* #return whether the contrast is normalized
*/
public boolean isContrastNormalized() {
return contrastNormalized;
}
/**
* Sets whether the contrast is normalized
* #param contrastNormalized true if the contrast should be normalized,
* false otherwise
*/
public void setContrastNormalized(boolean contrastNormalized) {
this.contrastNormalized = contrastNormalized;
}
// methods
public void process() {
width = sourceImage.getWidth();
height = sourceImage.getHeight();
picsize = width * height;
initArrays();
readLuminance();
if (contrastNormalized) normalizeContrast();
computeGradients(gaussianKernelRadius, gaussianKernelWidth);
int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
int high = Math.round( highThreshold * MAGNITUDE_SCALE);
performHysteresis(low, high);
thresholdEdges();
writeEdges(data);
}
// private utility methods
private void initArrays() {
if (data == null || picsize != data.length) {
data = new int[picsize];
magnitude = new int[picsize];
xConv = new float[picsize];
yConv = new float[picsize];
xGradient = new float[picsize];
yGradient = new float[picsize];
}
}
//NOTE: The elements of the method below (specifically the technique for
//non-maximal suppression and the technique for gradient computation)
//are derived from an implementation posted in the following forum (with the
//clear intent of others using the code):
// http://forum.java.sun.com/thread.jspa?threadID=546211&start=45&tstart=0
//My code effectively mimics the algorithm exhibited above.
//Since I don't know the providence of the code that was posted it is a
//possibility (though I think a very remote one) that this code violates
//someone's intellectual property rights. If this concerns you feel free to
//contact me for an alternative, though less efficient, implementation.
private void computeGradients(float kernelRadius, int kernelWidth) {
//generate the gaussian convolution masks
float kernel[] = new float[kernelWidth];
float diffKernel[] = new float[kernelWidth];
int kwidth;
for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
float g1 = gaussian(kwidth, kernelRadius);
if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
float g2 = gaussian(kwidth - 0.5f, kernelRadius);
float g3 = gaussian(kwidth + 0.5f, kernelRadius);
kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
diffKernel[kwidth] = g3 - g2;
}
int initX = kwidth - 1;
int maxX = width - (kwidth - 1);
int initY = width * (kwidth - 1);
int maxY = width * (height - (kwidth - 1));
//perform convolution in x and y directions
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
float sumX = data[index] * kernel[0];
float sumY = sumX;
int xOffset = 1;
int yOffset = width;
for(; xOffset < kwidth ;) {
sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
yOffset += width;
xOffset++;
}
yConv[index] = sumY;
xConv[index] = sumX;
}
}
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0f;
int index = x + y;
for (int i = 1; i < kwidth; i++)
sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
xGradient[index] = sum;
}
}
for (int x = kwidth; x < width - kwidth; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0.0f;
int index = x + y;
int yOffset = width;
for (int i = 1; i < kwidth; i++) {
sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
yOffset += width;
}
yGradient[index] = sum;
}
}
initX = kwidth;
maxX = width - kwidth;
initY = width * kwidth;
maxY = width * (height - kwidth);
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
int indexN = index - width;
int indexS = index + width;
int indexW = index - 1;
int indexE = index + 1;
int indexNW = indexN - 1;
int indexNE = indexN + 1;
int indexSW = indexS - 1;
int indexSE = indexS + 1;
float xGrad = xGradient[index];
float yGrad = yGradient[index];
float gradMag = hypot(xGrad, yGrad);
//perform non-maximal supression
float nMag = hypot(xGradient[indexN], yGradient[indexN]);
float sMag = hypot(xGradient[indexS], yGradient[indexS]);
float wMag = hypot(xGradient[indexW], yGradient[indexW]);
float eMag = hypot(xGradient[indexE], yGradient[indexE]);
float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
float tmp;
/*
* An explanation of what's happening here, for those who want
* to understand the source: This performs the "non-maximal
* supression" phase of the Canny edge detection in which we
* need to compare the gradient magnitude to that in the
* direction of the gradient; only if the value is a local
* maximum do we consider the point as an edge candidate.
*
* We need to break the comparison into a number of different
* cases depending on the gradient direction so that the
* appropriate values can be used. To avoid computing the
* gradient direction, we use two simple comparisons: first we
* check that the partial derivatives have the same sign (1)
* and then we check which is larger (2). As a consequence, we
* have reduced the problem to one of four identical cases that
* each test the central gradient magnitude against the values at
* two points with 'identical support'; what this means is that
* the geometry required to accurately interpolate the magnitude
* of gradient function at those points has an identical
* geometry (upto right-angled-rotation/reflection).
*
* When comparing the central gradient to the two interpolated
* values, we avoid performing any divisions by multiplying both
* sides of each inequality by the greater of the two partial
* derivatives. The common comparand is stored in a temporary
* variable (3) and reused in the mirror case (4).
*
*/
if (xGrad * yGrad <= (float) 0 /*(1)*/
? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
&& tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
: Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
&& tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
) {
magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
//NOTE: The orientation of the edge is not employed by this
//implementation. It is a simple matter to compute it at
//this point as: Math.atan2(yGrad, xGrad);
} else {
magnitude[index] = 0;
}
}
}
}
//NOTE: It is quite feasible to replace the implementation of this method
//with one which only loosely approximates the hypot function. I've tested
//simple approximations such as Math.abs(x) + Math.abs(y) and they work fine.
private float hypot(float x, float y) {
return (float) Math.hypot(x, y);
}
private float gaussian(float x, float sigma) {
return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
}
private void performHysteresis(int low, int high) {
//NOTE: this implementation reuses the data array to store both
//luminance data from the image, and edge intensity from the processing.
//This is done for memory efficiency, other implementations may wish
//to separate these functions.
Arrays.fill(data, 0);
int offset = 0;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
if (data[offset] == 0 && magnitude[offset] >= high) {
follow(x, y, offset, low);
}
offset++;
}
}
}
private void follow(int x1, int y1, int i1, int threshold) {
int x0 = x1 == 0 ? x1 : x1 - 1;
int x2 = x1 == width - 1 ? x1 : x1 + 1;
int y0 = y1 == 0 ? y1 : y1 - 1;
int y2 = y1 == height -1 ? y1 : y1 + 1;
data[i1] = magnitude[i1];
for (int x = x0; x <= x2; x++) {
for (int y = y0; y <= y2; y++) {
int i2 = x + y * width;
if ((y != y1 || x != x1)
&& data[i2] == 0
&& magnitude[i2] >= threshold) {
follow(x, y, i2, threshold);
return;
}
}
}
}
private void thresholdEdges() {
for (int i = 0; i < picsize; i++) {
data[i] = data[i] > 0 ? -1 : 0xff000000;
}
}
private int luminance(float r, float g, float b) {
return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
}
private void readLuminance() {
int type = sourceImage.getType();
if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
int p = pixels[i];
int r = (p & 0xff0000) >> 16;
int g = (p & 0xff00) >> 8;
int b = p & 0xff;
data[i] = luminance(r, g, b);
}
} else if (type == BufferedImage.TYPE_BYTE_GRAY) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xff);
}
} else if (type == BufferedImage.TYPE_USHORT_GRAY) {
short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xffff) / 256;
}
} else if (type == BufferedImage.TYPE_3BYTE_BGR) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
int offset = 0;
for (int i = 0; i < picsize; i++) {
int b = pixels[offset++] & 0xff;
int g = pixels[offset++] & 0xff;
int r = pixels[offset++] & 0xff;
data[i] = luminance(r, g, b);
}
} else {
throw new IllegalArgumentException("Unsupported image type: " + type);
}
}
private void normalizeContrast() {
int[] histogram = new int[256];
for (int i = 0; i < data.length; i++) {
histogram[data[i]]++;
}
int[] remap = new int[256];
int sum = 0;
int j = 0;
for (int i = 0; i < histogram.length; i++) {
sum += histogram[i];
int target = sum*255/picsize;
for (int k = j+1; k <=target; k++) {
remap[k] = i;
}
j = target;
}
for (int i = 0; i < data.length; i++) {
data[i] = remap[data[i]];
}
}
private void writeEdges(int pixels[]) {
//NOTE: There is currently no mechanism for obtaining the edge data
//in any other format other than an INT_ARGB type BufferedImage.
//This may be easily remedied by providing alternative accessors.
if (edgesImage == null) {
edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
}
edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);
}
public static void main(String[] args) {
//create the detector
CannyEdgeDetector detector = new CannyEdgeDetector();
//adjust its parameters as desired
// detector.setLowThreshold(2.5f);
detector.setHighThreshold(4f);
BufferedImage frame = null;
try {
frame = ImageIO.read(new File("source.jpg"));
} catch (IOException e) {
e.printStackTrace();
}
//apply it to an image
detector.setSourceImage(frame);
detector.process();
BufferedImage edges = detector.getEdgesImage();
try {
ImageIO.write(edges, "png", new File("result.png"));
} catch (IOException e) {
e.printStackTrace();
}
}
}
Decreasing the sigma value should result in more edges and links. It also will result in more spurious edges, but the hysteresis process is there to try to alleviate that.
You may also want to look into the connected components to find important edges.
Hi I am working a on project that I need to implement an edge detector. I need to do it in VHDL however I am a little better at Java so I am looking at getting a working code in Java first then transfering it over. The code below I found but I can't get it working, I keep getting an error in the main on this line: detector.setSourceImage(frame); error says frame can not be resolved to a variable. I understand why I'm getting the error but not sure how to fix it because I don't know how to get the picture in. I am just looking for a quick fix to make this work so I can get started on the VHDL part. Thanks for any help you can give.
package CannyEdgeDetector;
public class CannyEdgeDetector {
// statics
private final static float GAUSSIAN_CUT_OFF = 0.005f;
private final static float MAGNITUDE_SCALE = 100F;
private final static float MAGNITUDE_LIMIT = 1000F;
private final static int MAGNITUDE_MAX = (int) (MAGNITUDE_SCALE * MAGNITUDE_LIMIT);
// fields
private int height;
private int width;
private int picsize;
private int[] data;
private int[] magnitude;
private BufferedImage sourceImage;
private BufferedImage edgesImage;
private float gaussianKernelRadius;
private float lowThreshold;
private float highThreshold;
private int gaussianKernelWidth;
private boolean contrastNormalized;
private float[] xConv;
private float[] yConv;
private float[] xGradient;
private float[] yGradient;
// constructors
/**
* Constructs a new detector with default parameters.
*/
public CannyEdgeDetector() {
lowThreshold = 2.5f;
highThreshold = 7.5f;
gaussianKernelRadius = 2f;
gaussianKernelWidth = 16;
contrastNormalized = false;
}
// accessors
/**
* The image that provides the luminance data used by this detector to
* generate edges.
*
* #return the source image, or null
*/
public BufferedImage getSourceImage() {
return sourceImage;
}
/**
* Specifies the image that will provide the luminance data in which edges
* will be detected. A source image must be set before the process method
* is called.
*
* #param image a source of luminance data
*/
public void setSourceImage(BufferedImage image) {
sourceImage = image;
}
/**
* Obtains an image containing the edges detected during the last call to
* the process method. The buffered image is an opaque image of type
* BufferedImage.TYPE_INT_ARGB in which edge pixels are white and all other
* pixels are black.
*
* #return an image containing the detected edges, or null if the process
* method has not yet been called.
*/
public BufferedImage getEdgesImage() {
return edgesImage;
}
/**
* Sets the edges image. Calling this method will not change the operation
* of the edge detector in any way. It is intended to provide a means by
* which the memory referenced by the detector object may be reduced.
*
* #param edgesImage expected (though not required) to be null
*/
public void setEdgesImage(BufferedImage edgesImage) {
this.edgesImage = edgesImage;
}
/**
* The low threshold for hysteresis. The default value is 2.5.
*
* #return the low hysteresis threshold
*/
public float getLowThreshold() {
return lowThreshold;
}
/**
* Sets the low threshold for hysteresis. Suitable values for this parameter
* must be determined experimentally for each application. It is nonsensical
* (though not prohibited) for this value to exceed the high threshold value.
*
* #param threshold a low hysteresis threshold
*/
public void setLowThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
lowThreshold = threshold;
}
/**
* The high threshold for hysteresis. The default value is 7.5.
*
* #return the high hysteresis threshold
*/
public float getHighThreshold() {
return highThreshold;
}
/**
* Sets the high threshold for hysteresis. Suitable values for this
* parameter must be determined experimentally for each application. It is
* nonsensical (though not prohibited) for this value to be less than the
* low threshold value.
*
* #param threshold a high hysteresis threshold
*/
public void setHighThreshold(float threshold) {
if (threshold < 0) throw new IllegalArgumentException();
highThreshold = threshold;
}
/**
* The number of pixels across which the Gaussian kernel is applied.
* The default value is 16.
*
* #return the radius of the convolution operation in pixels
*/
public int getGaussianKernelWidth() {
return gaussianKernelWidth;
}
/**
* The number of pixels across which the Gaussian kernel is applied.
* This implementation will reduce the radius if the contribution of pixel
* values is deemed negligable, so this is actually a maximum radius.
*
* #param gaussianKernelWidth a radius for the convolution operation in
* pixels, at least 2.
*/
public void setGaussianKernelWidth(int gaussianKernelWidth) {
if (gaussianKernelWidth < 2) throw new IllegalArgumentException();
this.gaussianKernelWidth = gaussianKernelWidth;
}
/**
* The radius of the Gaussian convolution kernel used to smooth the source
* image prior to gradient calculation. The default value is 16.
*
* #return the Gaussian kernel radius in pixels
*/
public float getGaussianKernelRadius() {
return gaussianKernelRadius;
}
/**
* Sets the radius of the Gaussian convolution kernel used to smooth the
* source image prior to gradient calculation.
*
* #return a Gaussian kernel radius in pixels, must exceed 0.1f.
*/
public void setGaussianKernelRadius(float gaussianKernelRadius) {
if (gaussianKernelRadius < 0.1f) throw new IllegalArgumentException();
this.gaussianKernelRadius = gaussianKernelRadius;
}
/**
* Whether the luminance data extracted from the source image is normalized
* by linearizing its histogram prior to edge extraction. The default value
* is false.
*
* #return whether the contrast is normalized
*/
public boolean isContrastNormalized() {
return contrastNormalized;
}
/**
* Sets whether the contrast is normalized
* #param contrastNormalized true if the contrast should be normalized,
* false otherwise
*/
public void setContrastNormalized(boolean contrastNormalized) {
this.contrastNormalized = contrastNormalized;
}
// methods
public void process() {
width = sourceImage.getWidth();
height = sourceImage.getHeight();
picsize = width * height;
initArrays();
readLuminance();
if (contrastNormalized) normalizeContrast();
computeGradients(gaussianKernelRadius, gaussianKernelWidth);
int low = Math.round(lowThreshold * MAGNITUDE_SCALE);
int high = Math.round( highThreshold * MAGNITUDE_SCALE);
performHysteresis(low, high);
thresholdEdges();
writeEdges(data);
}
// private utility methods
private void initArrays() {
if (data == null || picsize != data.length) {
data = new int[picsize];
magnitude = new int[picsize];
xConv = new float[picsize];
yConv = new float[picsize];
xGradient = new float[picsize];
yGradient = new float[picsize];
}
}
//NOTE: The elements of the method below (specifically the technique for
//non-maximal suppression and the technique for gradient computation)
//are derived from an implementation posted in the following forum (with the
//clear intent of others using the code):
// http://forum.java.sun.com/thread.jspa?threadID=546211&start=45&tstart=0
//My code effectively mimics the algorithm exhibited above.
//Since I don't know the providence of the code that was posted it is a
//possibility (though I think a very remote one) that this code violates
//someone's intellectual property rights. If this concerns you feel free to
//contact me for an alternative, though less efficient, implementation.
private void computeGradients(float kernelRadius, int kernelWidth) {
//generate the gaussian convolution masks
float kernel[] = new float[kernelWidth];
float diffKernel[] = new float[kernelWidth];
int kwidth;
for (kwidth = 0; kwidth < kernelWidth; kwidth++) {
float g1 = gaussian(kwidth, kernelRadius);
if (g1 <= GAUSSIAN_CUT_OFF && kwidth >= 2) break;
float g2 = gaussian(kwidth - 0.5f, kernelRadius);
float g3 = gaussian(kwidth + 0.5f, kernelRadius);
kernel[kwidth] = (g1 + g2 + g3) / 3f / (2f * (float) Math.PI * kernelRadius * kernelRadius);
diffKernel[kwidth] = g3 - g2;
}
int initX = kwidth - 1;
int maxX = width - (kwidth - 1);
int initY = width * (kwidth - 1);
int maxY = width * (height - (kwidth - 1));
//perform convolution in x and y directions
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
float sumX = data[index] * kernel[0];
float sumY = sumX;
int xOffset = 1;
int yOffset = width;
for(; xOffset < kwidth ;) {
sumY += kernel[xOffset] * (data[index - yOffset] + data[index + yOffset]);
sumX += kernel[xOffset] * (data[index - xOffset] + data[index + xOffset]);
yOffset += width;
xOffset++;
}
yConv[index] = sumY;
xConv[index] = sumX;
}
}
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0f;
int index = x + y;
for (int i = 1; i < kwidth; i++)
sum += diffKernel[i] * (yConv[index - i] - yConv[index + i]);
xGradient[index] = sum;
}
}
for (int x = kwidth; x < width - kwidth; x++) {
for (int y = initY; y < maxY; y += width) {
float sum = 0.0f;
int index = x + y;
int yOffset = width;
for (int i = 1; i < kwidth; i++) {
sum += diffKernel[i] * (xConv[index - yOffset] - xConv[index + yOffset]);
yOffset += width;
}
yGradient[index] = sum;
}
}
initX = kwidth;
maxX = width - kwidth;
initY = width * kwidth;
maxY = width * (height - kwidth);
for (int x = initX; x < maxX; x++) {
for (int y = initY; y < maxY; y += width) {
int index = x + y;
int indexN = index - width;
int indexS = index + width;
int indexW = index - 1;
int indexE = index + 1;
int indexNW = indexN - 1;
int indexNE = indexN + 1;
int indexSW = indexS - 1;
int indexSE = indexS + 1;
float xGrad = xGradient[index];
float yGrad = yGradient[index];
float gradMag = hypot(xGrad, yGrad);
//perform non-maximal supression
float nMag = hypot(xGradient[indexN], yGradient[indexN]);
float sMag = hypot(xGradient[indexS], yGradient[indexS]);
float wMag = hypot(xGradient[indexW], yGradient[indexW]);
float eMag = hypot(xGradient[indexE], yGradient[indexE]);
float neMag = hypot(xGradient[indexNE], yGradient[indexNE]);
float seMag = hypot(xGradient[indexSE], yGradient[indexSE]);
float swMag = hypot(xGradient[indexSW], yGradient[indexSW]);
float nwMag = hypot(xGradient[indexNW], yGradient[indexNW]);
float tmp;
/*
* An explanation of what's happening here, for those who want
* to understand the source: This performs the "non-maximal
* supression" phase of the Canny edge detection in which we
* need to compare the gradient magnitude to that in the
* direction of the gradient; only if the value is a local
* maximum do we consider the point as an edge candidate.
*
* We need to break the comparison into a number of different
* cases depending on the gradient direction so that the
* appropriate values can be used. To avoid computing the
* gradient direction, we use two simple comparisons: first we
* check that the partial derivatives have the same sign (1)
* and then we check which is larger (2). As a consequence, we
* have reduced the problem to one of four identical cases that
* each test the central gradient magnitude against the values at
* two points with 'identical support'; what this means is that
* the geometry required to accurately interpolate the magnitude
* of gradient function at those points has an identical
* geometry (upto right-angled-rotation/reflection).
*
* When comparing the central gradient to the two interpolated
* values, we avoid performing any divisions by multiplying both
* sides of each inequality by the greater of the two partial
* derivatives. The common comparand is stored in a temporary
* variable (3) and reused in the mirror case (4).
*
*/
if (xGrad * yGrad <= (float) 0 /*(1)*/
? Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * neMag - (xGrad + yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * swMag - (xGrad + yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * neMag - (yGrad + xGrad) * nMag) /*(3)*/
&& tmp > Math.abs(xGrad * swMag - (yGrad + xGrad) * sMag) /*(4)*/
: Math.abs(xGrad) >= Math.abs(yGrad) /*(2)*/
? (tmp = Math.abs(xGrad * gradMag)) >= Math.abs(yGrad * seMag + (xGrad - yGrad) * eMag) /*(3)*/
&& tmp > Math.abs(yGrad * nwMag + (xGrad - yGrad) * wMag) /*(4)*/
: (tmp = Math.abs(yGrad * gradMag)) >= Math.abs(xGrad * seMag + (yGrad - xGrad) * sMag) /*(3)*/
&& tmp > Math.abs(xGrad * nwMag + (yGrad - xGrad) * nMag) /*(4)*/
) {
magnitude[index] = gradMag >= MAGNITUDE_LIMIT ? MAGNITUDE_MAX : (int) (MAGNITUDE_SCALE * gradMag);
//NOTE: The orientation of the edge is not employed by this
//implementation. It is a simple matter to compute it at
//this point as: Math.atan2(yGrad, xGrad);
} else {
magnitude[index] = 0;
}
}
}
}
//NOTE: It is quite feasible to replace the implementation of this method
//with one which only loosely approximates the hypot function. I've tested
//simple approximations such as Math.abs(x) + Math.abs(y) and they work fine.
private float hypot(float x, float y) {
return (float) Math.hypot(x, y);
}
private float gaussian(float x, float sigma) {
return (float) Math.exp(-(x * x) / (2f * sigma * sigma));
}
private void performHysteresis(int low, int high) {
//NOTE: this implementation reuses the data array to store both
//luminance data from the image, and edge intensity from the processing.
//This is done for memory efficiency, other implementations may wish
//to separate these functions.
Arrays.fill(data, 0);
int offset = 0;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
if (data[offset] == 0 && magnitude[offset] >= high) {
follow(x, y, offset, low);
}
offset++;
}
}
}
private void follow(int x1, int y1, int i1, int threshold) {
int x0 = x1 == 0 ? x1 : x1 - 1;
int x2 = x1 == width - 1 ? x1 : x1 + 1;
int y0 = y1 == 0 ? y1 : y1 - 1;
int y2 = y1 == height -1 ? y1 : y1 + 1;
data[i1] = magnitude[i1];
for (int x = x0; x <= x2; x++) {
for (int y = y0; y <= y2; y++) {
int i2 = x + y * width;
if ((y != y1 || x != x1)
&& data[i2] == 0
&& magnitude[i2] >= threshold) {
follow(x, y, i2, threshold);
return;
}
}
}
}
private void thresholdEdges() {
for (int i = 0; i < picsize; i++) {
data[i] = data[i] > 0 ? -1 : 0xff000000;
}
}
private int luminance(float r, float g, float b) {
return Math.round(0.299f * r + 0.587f * g + 0.114f * b);
}
private void readLuminance() {
int type = sourceImage.getType();
if (type == BufferedImage.TYPE_INT_RGB || type == BufferedImage.TYPE_INT_ARGB) {
int[] pixels = (int[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
int p = pixels[i];
int r = (p & 0xff0000) >> 16;
int g = (p & 0xff00) >> 8;
int b = p & 0xff;
data[i] = luminance(r, g, b);
}
} else if (type == BufferedImage.TYPE_BYTE_GRAY) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xff);
}
} else if (type == BufferedImage.TYPE_USHORT_GRAY) {
short[] pixels = (short[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
for (int i = 0; i < picsize; i++) {
data[i] = (pixels[i] & 0xffff) / 256;
}
} else if (type == BufferedImage.TYPE_3BYTE_BGR) {
byte[] pixels = (byte[]) sourceImage.getData().getDataElements(0, 0, width, height, null);
int offset = 0;
for (int i = 0; i < picsize; i++) {
int b = pixels[offset++] & 0xff;
int g = pixels[offset++] & 0xff;
int r = pixels[offset++] & 0xff;
data[i] = luminance(r, g, b);
}
} else {
throw new IllegalArgumentException("Unsupported image type: " + type);
}
}
private void normalizeContrast() {
int[] histogram = new int[256];
for (int i = 0; i < data.length; i++) {
histogram[data[i]]++;
}
int[] remap = new int[256];
int sum = 0;
int j = 0;
for (int i = 0; i < histogram.length; i++) {
sum += histogram[i];
int target = sum*255/picsize;
for (int k = j+1; k <=target; k++) {
remap[k] = i;
}
j = target;
}
for (int i = 0; i < data.length; i++) {
data[i] = remap[data[i]];
}
}
private void writeEdges(int pixels[]) {
//NOTE: There is currently no mechanism for obtaining the edge data
//in any other format other than an INT_ARGB type BufferedImage.
//This may be easily remedied by providing alternative accessors.
if (edgesImage == null) {
edgesImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
}
edgesImage.getWritableTile(0, 0).setDataElements(0, 0, width, height, pixels);
}
}
public static void main(String []Args){
//create the detector
CannyEdgeDetector detector = new CannyEdgeDetector();
//adjust its parameters as desired
detector.setLowThreshold(0.5f);
detector.setHighThreshold(1f);
//apply it to an image
detector.setSourceImage(frame);
detector.process();
BufferedImage edges = detector.getEdgesImage();
}
}
Why don't you just read a test image from a file? That way, you can verify that it's working properly before transferring.
I have a standalone Java application below that is:
Generating a random line
Applied to a 2D grid where each cell value is the distance along the line perpindicular to the line
Finds the rise/run and attempts to calculate the original linear equation from the grid
Applies new line to another grid and prints out the greatest difference compared to the first grid
I expected the two grids to have identical values. The gradient lines may be different since the lines can extend outside the area of the grid, but should be similar and in two cases identical.
So is the problem a poor understanding of math, a bug in my code or a misunderstanding of floating point values?
import java.awt.geom.Point2D;
import java.awt.geom.Line2D;
import java.util.Iterator;
import java.util.ArrayList;
public final class TestGradientLine {
private static int SIZE = 3;
public TestGradientLine() {
super();
}
//y = mx + b
//b = y - mx
//m is rise / run = gradient
//width and height of bounding box
//for a box 10x10 then width and height are 9,9
public static Line2D getGradientLine(double run, double rise, double width, double height, double x, double y) {
if (run == 0 && rise == 0) {
return new Line2D.Double(x, y, x + width, y + height);
}
//calculate hypotenuse
//check for a vertical line
if (run == 0) {
return new Line2D.Double(x, y, x, y + height);
}
//check for a horizontal line
if (rise == 0) {
return new Line2D.Double(x, y, x + width, y);
}
//calculate gradient
double m = rise / run;
Point2D start;
Point2D opposite;
if (m < 0) {
//lower left
start = new Point2D.Double(x, y + height);
opposite = new Point2D.Double(x + width, y);
} else {
//upper left
start = new Point2D.Double(x, y);
opposite = new Point2D.Double(x + width, y + height);
}
double b = start.getY() - (m * start.getX());
//now calculate another point along the slope
Point2D next = null;
if (m > 0) {
next = new Point2D.Double(start.getX() + Math.abs(run), start.getY() + Math.abs(rise));
} else {
if (rise < 0) {
next = new Point2D.Double(start.getX() + run, start.getY() + rise);
} else {
next = new Point2D.Double(start.getX() - run, start.getY() - rise);
}
}
final double actualWidth = width;
final double actualHeight = height;
final double a = Math.sqrt((actualWidth * actualWidth) + (actualHeight * actualHeight));
extendLine(start, next, a);
Line2D gradientLine = new Line2D.Double(start, next);
return gradientLine;
}
public static void extendLine(Point2D p0, Point2D p1, double toLength) {
final double oldLength = p0.distance(p1);
final double lengthFraction =
oldLength != 0.0 ? toLength / oldLength : 0.0;
p1.setLocation(p0.getX() + (p1.getX() - p0.getX()) * lengthFraction,
p0.getY() + (p1.getY() - p0.getY()) * lengthFraction);
}
public static Line2D generateRandomGradientLine(int width, int height) {
//so true means lower and false means upper
final boolean isLower = Math.random() > .5;
final Point2D start = new Point2D.Float(0, 0);
if (isLower) {
//change origin for lower left corner
start.setLocation(start.getX(), height - 1);
}
//radius of our circle
double radius = Math.sqrt(width * width + height * height);
//now we want a random theta
//x = r * cos(theta)
//y = r * sin(theta)
double theta = 0.0;
if (isLower) {
theta = Math.random() * (Math.PI / 2);
} else {
theta = Math.random() * (Math.PI / 2) + (Math.PI / 2);
}
int endX = (int)Math.round(radius * Math.sin(theta));
int endY = (int)Math.round(radius * Math.cos(theta)) * -1;
if (isLower) {
endY = endY + (height - 1);
}
final Point2D end = new Point2D.Float(endX, endY);
extendLine(start, end, radius);
return new Line2D.Float(start, end);
}
public static Point2D getNearestPointOnLine(Point2D end, Line2D line) {
final Point2D point = line.getP1();
final Point2D start = line.getP2();
double a = (end.getX() - point.getX()) * (start.getX() - point.getX()) + (end.getY() - point.getY()) * (start.getY() - point.getY());
double b = (end.getX() - start.getX()) * (point.getX() - start.getX()) + (end.getY() - start.getY()) * (point.getY() - start.getY());
final double x = point.getX() + ((start.getX() - point.getX()) * a)/(a + b);
final double y = point.getY() + ((start.getY() - point.getY()) * a)/(a + b);
final Point2D result = new Point2D.Double(x, y);
return result;
}
public static double length(double x0, double y0, double x1, double y1) {
final double dx = x1 - x0;
final double dy = y1 - y0;
return Math.sqrt(dx * dx + dy * dy);
}
public static void main(String[] args) {
final Line2D line = generateRandomGradientLine(SIZE, SIZE);
System.out.println("we're starting with line " + line.getP1() + " " + line.getP2());
double[][] region = new double[SIZE][SIZE];
//load up the region with data from our generated line
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, line);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() + 1,
nearestPoint.getY() + 1);
region[x][y] = distance;
}
}
//now figure out what our line is from the region
double runTotal = 0;
double riseTotal = 0;
double runCount = 0;
double riseCount = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
if (x < SIZE - 1) {
runTotal += region[x + 1][y] - region[x][y];
runCount++;
}
if (y < SIZE - 1) {
riseTotal += region[x][y + 1] - region[x][y];
riseCount++;
}
}
}
double run = 0;
if (runCount > 0) {
run = runTotal / runCount;
}
double rise = 0;
if (riseCount > 0) {
rise = riseTotal / riseCount;
}
System.out.println("rise is " + rise + " run is " + run);
Line2D newLine = getGradientLine(run, rise, SIZE - 1, SIZE - 1, 0, 0);
System.out.println("ending with line " + newLine.getP1() + " " + newLine.getP2());
double worst = 0.0;
int worstX = 0;
int worstY = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, newLine);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() + 1,
nearestPoint.getY() + 1);
final double diff = Math.abs(region[x][y] - distance);
if (diff > worst) {
worst = diff;
worstX = x;
worstY = y;
}
}
}
System.out.println("worst is " + worst + " x: " + worstX + " y: " + worstY);
}
}
I think I have fixed your program.
a) I took out the integer cast.
b) I removed all the 'x + 1' and 'x - 1' fudges you had used.
I think when dealing with floats and doubles, subtracting '1' from the end of a line is a No-No! What is 1 anyway? - it's ok to do this just before you plot it on the screen once it's an integer. But not while calculating! line length is a 'zero-based' quantity.
This version returns approx 4E-16 always.
import java.awt.geom.Point2D;
import java.awt.geom.Line2D;
import java.awt.geom.QuadCurve2D;
import java.util.Iterator;
import java.util.ArrayList;
public final class TestGradientLine {
private static int SIZE = 3;
public TestGradientLine() {
super();
}
//y = mx + b
//b = y - mx
//m is rise / run = gradient
//width and height of bounding box
//for a box 10x10 then width and height are 9,9
public static Line2D getGradientLine(double run, double rise, double width, double height, double x, double y) {
if (run == 0 && rise == 0) {
return new Line2D.Double(x, y, x + width, y + height);
}
//calculate hypotenuse
//check for a vertical line
if (run == 0) {
return new Line2D.Double(x, y, x, y + height);
}
//check for a horizontal line
if (rise == 0) {
return new Line2D.Double(x, y, x + width, y);
}
//calculate gradient
double m = rise / run;
Point2D start;
Point2D opposite;
if (m < 0) {
//lower left
start = new Point2D.Double(x, y + height);
opposite = new Point2D.Double(x + width, y);
} else {
//upper left
start = new Point2D.Double(x, y);
opposite = new Point2D.Double(x + width, y + height);
}
double b = start.getY() - (m * start.getX());
//now calculate another point along the slope
Point2D next = null;
if (m > 0) {
next = new Point2D.Double(start.getX() + Math.abs(run), start.getY() + Math.abs(rise));
} else {
if (rise < 0) {
next = new Point2D.Double(start.getX() + run, start.getY() + rise);
} else {
next = new Point2D.Double(start.getX() - run, start.getY() - rise);
}
}
final double actualWidth = width;
final double actualHeight = height;
final double a = Math.sqrt((actualWidth * actualWidth) + (actualHeight * actualHeight));
extendLine(start, next, a);
Line2D gradientLine = new Line2D.Double(start, next);
return gradientLine;
}
public static void extendLine(Point2D p0, Point2D p1, double toLength) {
final double oldLength = p0.distance(p1);
final double lengthFraction =
oldLength != 0.0 ? toLength / oldLength : 0.0;
p1.setLocation(p0.getX() + (p1.getX() - p0.getX()) * lengthFraction,
p0.getY() + (p1.getY() - p0.getY()) * lengthFraction);
}
public static Line2D generateRandomGradientLine(int width, int height) {
//so true means lower and false means upper
final boolean isLower = Math.random() > .5;
final Point2D start = new Point2D.Float(0, 0);
if (isLower) {
//change origin for lower left corner
start.setLocation(start.getX(), height );
}
//radius of our circle
double radius = Math.sqrt(width * width + height * height);
//now we want a random theta
//x = r * cos(theta)
//y = r * sin(theta)
double theta = 0.0;
if (isLower) {
theta = Math.random() * (Math.PI / 2);
} else {
theta = Math.random() * (Math.PI / 2) + (Math.PI / 2);
}
float endX = (float)(radius * Math.sin(theta));
float endY = (float)(radius * Math.cos(theta)) * -1;
if (isLower) {
endY = endY + (height );
}
final Point2D end = new Point2D.Float(endX, endY);
extendLine(start, end, radius);
return new Line2D.Float(start, end);
}
public static Point2D getNearestPointOnLine(Point2D end, Line2D line) {
final Point2D point = line.getP1();
final Point2D start = line.getP2();
double a = (end.getX() - point.getX()) * (start.getX() - point.getX()) + (end.getY() - point.getY()) * (start.getY() - point.getY());
double b = (end.getX() - start.getX()) * (point.getX() - start.getX()) + (end.getY() - start.getY()) * (point.getY() - start.getY());
final double x = point.getX() + ((start.getX() - point.getX()) * a)/(a+b);
final double y = point.getY() + ((start.getY() - point.getY()) * a)/(a+b);
final Point2D result = new Point2D.Double(x, y);
return result;
}
public static double length(double x0, double y0, double x1, double y1) {
final double dx = x1 - x0;
final double dy = y1 - y0;
return Math.sqrt(dx * dx + dy * dy);
}
public static void main(String[] args) {
final Line2D line = generateRandomGradientLine(SIZE, SIZE);
System.out.println("we're starting with line " + line.getP1() + " " + line.getP2());
double[][] region = new double[SIZE][SIZE];
//load up the region with data from our generated line
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, line);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() ,
nearestPoint.getY() );
region[x][y] = distance;
}
}
//now figure out what our line is from the region
double runTotal = 0;
double riseTotal = 0;
double runCount = 0;
double riseCount = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
if (x < SIZE - 1) {
runTotal += region[x + 1][y] - region[x][y];
runCount++;
}
if (y < SIZE - 1) {
riseTotal += region[x][y + 1] - region[x][y];
riseCount++;
}
}
}
double run = 0;
if (runCount > 0) {
run = runTotal / runCount;
}
double rise = 0;
if (riseCount > 0) {
rise = riseTotal / riseCount;
}
System.out.println("rise is " + rise + " run is " + run);
Line2D newLine = getGradientLine(run, rise, SIZE, SIZE , 0, 0);
System.out.println("ending with line " + newLine.getP1() + " " + newLine.getP2());
double worst = 0.0;
int worstX = 0;
int worstY = 0;
for (int x = 0; x < SIZE; x++) {
for (int y = 0; y < SIZE; y++) {
final Point2D point = new Point2D.Double(x, y);
final Point2D nearestPoint = getNearestPointOnLine(point, newLine);
if (nearestPoint == null) {
System.err.println("uh -oh!");
return;
}
final double distance = length(line.getP1().getX(),
line.getP1().getY(), nearestPoint.getX() ,
nearestPoint.getY() );
final double diff = Math.abs(region[x][y] - distance);
if (diff > worst) {
worst = diff;
worstX = x;
worstY = y;
}
}
}
System.out.println("worst is " + worst + " x: " + worstX + " y: " + worstY);
}
}
why do you multiply by -1 at the end of this line?
int endY = (int)Math.round(radius * Math.cos(theta)) * -1;
this means that endY is always negative except radius is below 0. (cosinus always returns positive value)
is this intended or am i getting something wrong?
regards
You probably misunderstand float and/or double. This is a common problem with any language that implements the ieee spec for floats and doubles, which Java, C, C++ and just about every other language does.
Essentially
double val = 0;
for(int i=0;i<10;i++) {
val+=0.1;
System.out.println(val);
}
results in
0.1
0.2
0.30000000000000004
0.4
0.5
0.6
0.7
0.7999999999999999
0.8999999999999999
0.9999999999999999
And sometimes even worse. Either use BigDecimal, which alleviates a lot of the problem, or use integers.