I overheard two of my colleagues arguing about whether or not to create a new data model class which only contains one string field and a setter and a getter for it. A program will then create a few objects of the class and put them in an array list. The guy who is storing them argue that there should be a new type while the guy who is getting the data said there is not point going through all this trouble while you can simple store string.
Personally I prefer creating a new type so we know what's being stored in the array list, but I don't have strong arguments to persuade the 'getting' data guy. Do you?
Sarah
... a new data model class which only contains one string field and a setter and a getter for it.
If it was just a getter, then it is not possible to say in general whether a String or a custom class is better. It depends on things like:
consistency with the rest of your data model,
anticipating whether you might want to change the representation,
anticipating whether you might want to implement validation when creating an instance, add helper methods, etc,
implications for memory usage or persistence (if they are even relevant).
(Personally, I would be inclined to use a plain String by default, and only use a custom class if for example, I knew that it was likely that a future representation change / refinement would be needed. In most situations, it is not a huge problem to change a String into custom class later ... if the need arises.)
However, the fact that there is proposed to be a setter for the field changes things significantly. Instances of the class will be mutable, where instances of String are not. On the one hand this could possibly be useful; e.g. where you actually need mutability. On the other hand, mutability would make the class somewhat risky for use in certain contexts; e.g. in sets and as keys in maps. And in other contexts you may need to copy the instances. (This would be unnecessary for an immutable wrapper class or a bare String.)
(The simple answer is to get rid of the setter, unless you really need it.)
There is also the issue that the semantics of equals will be different for a String and a custom wrapper. You may therefore need to override equals and hashCode to get a more intuitive semantic in the custom wrapper case. (And that relates back to the issue of a setter, and use of the class in collections.)
Wrap it in a class, if it matches the rest of your data model's design.
It gives you a label for the string so that you can tell what it represents at run time.
It makes it easier to take your entity and add additional fields, and behavior. (Which can be a likely occurrence>)
That said, the key is if it matches the rest of your data model's design... be consistent with what you already have.
Counterpoint to mschaef's answer:
Keep it as a string, if it matches the rest of your data model's design. (See how the opening sounds so important, even if I temper it with a sentence that basically says we don't know the answer?)
If you need a label saying what it is, add a comment. Cost = one line, total. Heck, for that matter, you need a line (or three) to comment your new class, anyway, so what's the class declaration for?
If you need to add additional fields later, you can refactor it then. You can't design for everything, and if you tried, you'd end up with a horrible mess.
As Yegge says, "the worst thing that can happen to a code base is size". Add a class declaration, a getter, a setter, now call those from everywhere that touches it, and you've added size to your code without an actual (i.e., non-hypothetical) purpose.
I disagree with the other answers:
It depends whether there's any real possibility of adding behavior to the type later [Matthew Flaschen]
No, it doesn’t. …
Never hurts to future-proof the design [Alex]
True, but not relevant here …
Personally, I would be inclined to use a plain String by default [Stephen C]
But this isn’t a matter of opinion. It’s a matter of design decisions:
Is the entity you store logically a string, a piece of text? If yes, then store a string (ignoring the setter issue).
If not – then do not store a string. That data may be stored as a string is an implementation detail, it should not be reflected in your code.
For the second point it’s irrelevant whether you might want to add behaviour later on. All that matters is that in a strongly typed language, the data type should describe the logical entity. If you handle things that are not text (but may be represented by text, may contain text …) then use a class that internally stores said text. Do not store the text directly.
This is the whole point of abstraction and strong typing: let the types represent the semantics of your code.
And finally:
As Yegge says, "the worst thing that can happen to a code base is size". [Ken]
Well, this is so ironic. Have you read any of Steve Yegge’s blog posts? I haven’t, they’re just too damn long.
It depends whether there's any real possibility of adding behavior to the type later. Even if the getters and setters are trivial now, a type makes sense if there is a real chance they could do something later. Otherwise, clear variable names should be sufficient.
In the time spent discussing whether to wrap it in a class, it could be wrapped and done with. Never hurts to future-proof the design, especially when it only takes minimal effort.
I see no reason why the String should be wrapped in a class. The basic perception behind the discussion is, the need of time is a String object. If it gets augmented later, get it refactored then. Why add unnecessary code in the name of future proofing.
Wrapping it in a class provides you with more type safety - in your model you can then only use instances of the wrapper class, and you can't easily make a mistake where you put a string that contains something different into the model.
However, it does add overhead, extra complexity and verbosity to your code.
Related
I am unable to get what are the scenarios where we need an immutable class.
Have you ever faced any such requirement? or can you please give us any real example where we should use this pattern.
The other answers seem too focused on explaining why immutability is good. It is very good and I use it whenever possible. However, that is not your question. I'll take your question point by point to try to make sure you're getting the answers and examples you need.
I am unable to get what are the scenarios where we need an immutable class.
"Need" is a relative term here. Immutable classes are a design pattern that, like any paradigm/pattern/tool, is there to make constructing software easier. Similarly, plenty of code was written before the OO paradigm came along, but count me among the programmers that "need" OO. Immutable classes, like OO, aren't strictly needed, but I going to act like I need them.
Have you ever faced any such requirement?
If you aren't looking at the objects in the problem domain with the right perspective, you may not see a requirement for an immutable object. It might be easy to think that a problem domain doesn't require any immutable classes if you're not familiar when to use them advantageously.
I often use immutable classes where I think of a given object in my problem domain as a value or fixed instance. This notion is sometimes dependent on perspective or viewpoint, but ideally, it will be easy to switch into the right perspective to identify good candidate objects.
You can get a better sense of where immutable objects are really useful (if not strictly necessary) by making sure you read up on various books/online articles to develop a good sense of how to think about immutable classes. One good article to get you started is Java theory and practice: To mutate or not to mutate?
I'll try to give a couple of examples below of how one can see objects in different perspectives (mutable vs immutable) to clarify what I mean by perspective.
... can you please give us any real example where we should use this pattern.
Since you asked for real examples I'll give you some, but first, let's start with some classic examples.
Classic Value Objects
Strings and integers are often thought of as values. Therefore it's not surprising to find that String class and the Integer wrapper class (as well as the other wrapper classes) are immutable in Java. A color is usually thought of as a value, thus the immutable Color class.
Counterexample
In contrast, a car is not usually thought of as a value object. Modeling a car usually means creating a class that has changing state (odometer, speed, fuel level, etc). However, there are some domains where it car may be a value object. For example, a car (or specifically a car model) might be thought of as a value object in an app to look up the proper motor oil for a given vehicle.
Playing Cards
Ever write a playing card program? I did. I could have represented a playing card as a mutable object with a mutable suit and rank. A draw-poker hand could be 5 fixed instances where replacing the 5th card in my hand would mean mutating the 5th playing card instance into a new card by changing its suit and rank ivars.
However, I tend to think of a playing card as an immutable object that has a fixed unchanging suit and rank once created. My draw poker hand would be 5 instances and replacing a card in my hand would involve discarding one of those instance and adding a new random instance to my hand.
Map Projection
One last example is when I worked on some map code where the map could display itself in various projections. The original code had the map use a fixed, but mutatable projection instance (like the mutable playing card above). Changing the map projection meant mutating the map's projection instance's ivars (projection type, center point, zoom, etc).
However, I felt the design was simpler if I thought of a projection as an immutable value or fixed instance. Changing the map projection meant having the map reference a different projection instance rather than mutating the map's fixed projection instance. This also made it simpler to capture named projections such as MERCATOR_WORLD_VIEW.
Immutable classes are in general much simpler to design, implement and use correctly. An example is String: the implementation of java.lang.String is significantly simpler than that of std::string in C++, mostly due to its immutability.
One particular area where immutability makes an especially big difference is concurrency: immutable objects can safely be shared among multiple threads, whereas mutable objects must be made thread-safe via careful design and implementation - usually this is far from a trivial task.
Update: Effective Java 2nd Edition tackles this issue in detail - see Item 15: Minimize mutability.
See also these related posts:
non-technical benefits of having string-type immutable
Downsides to immutable objects in Java?
Effective Java by Joshua Bloch outlines several reasons to write immutable classes:
Simplicity - each class is in one state only
Thread Safe - because the state cannot be changed, no synchronization is required
Writing in an immutable style can lead to more robust code. Imagine if Strings weren't immutable; Any getter methods that returned a String would require the implementation to create a defensive copy before the String was returned - otherwise a client may accidentally or maliciously break that state of the object.
In general it is good practise to make an object immutable unless there are severe performance problems as a result. In such circumstances, mutable builder objects can be used to build immutable objects e.g. StringBuilder
Hashmaps are a classic example. It's imperative that the key to a map be immutable. If the key is not immutable, and you change a value on the key such that hashCode() would result in a new value, the map is now broken (a key is now in the wrong location in the hash table.).
Java is practically one and all references. Sometimes an instance is referenced multiple times. If you change such an instance, it would be reflected into all its references. Sometimes you simply don't want to have this to improve robustness and threadsafety. Then an immutable class is useful so that one is forced to create a new instance and reassign it to the current reference. This way the original instance of the other references remain untouched.
Imagine how Java would look like if String was mutable.
Let's take an extreme case: integer constants. If I write a statement like "x=x+1" I want to be 100% confidant that the number "1" will not somehow become 2, no matter what happens anywhere else in the program.
Now okay, integer constants are not a class, but the concept is the same. Suppose I write:
String customerId=getCustomerId();
String customerName=getCustomerName(customerId);
String customerBalance=getCustomerBalance(customerid);
Looks simple enough. But if Strings were not immutable, then I would have to consider the possibility that getCustomerName could change customerId, so that when I call getCustomerBalance, I am getting the balance for a different customer. Now you might say, "Why in the world would someone writing a getCustomerName function make it change the id? That would make no sense." But that's exactly where you could get in trouble. The person writing the above code might take it as just obvious that the functions would not change the parameter. Then someone comes along who has to modify another use of that function to handle the case where where a customer has multiple accounts under the same name. And he says, "Oh, here's this handy getCustomer name function that's already looking up the name. I'll just make that automatically change the id to the next account with the same name, and put it in a loop ..." And then your program starts mysteriously not working. Would that be bad coding style? Probably. But it's precisely a problem in cases where the side effect is NOT obvious.
Immutability simply means that a certain class of objects are constants, and we can treat them as constants.
(Of course the user could assign a different "constant object" to a variable. Someone can write
String s="hello";
and then later write
s="goodbye";
Unless I make the variable final, I can't be sure that it's not being changed within my own block of code. Just like integer constants assure me that "1" is always the same number, but not that "x=1" will never be changed by writing "x=2". But I can be confidant that if I have a handle to an immutable object, that no function I pass it to can change it on me, or that if I make two copies of it, that a change to the variable holding one copy will not change the other. Etc.
We don't need immutable classes, per se, but they can certainly make some programming tasks easier, especially when multiple threads are involved. You don't have to perform any locking to access an immutable object, and any facts that you've already established about such an object will continue to be true in the future.
There are various reason for immutability:
Thread Safety: Immutable objects cannot be changed nor can its internal state change, thus there's no need to synchronise it.
It also guarantees that whatever I send through (through a network) has to come in the same state as previously sent. It means that nobody (eavesdropper) can come and add random data in my immutable set.
It's also simpler to develop. You guarantee that no subclasses will exist if an object is immutable. E.g. a String class.
So, if you want to send data through a network service, and you want a sense of guarantee that you will have your result exactly the same as what you sent, set it as immutable.
My 2 cents for future visitors:
2 scenarios where immutable objects are good choices are:
In multi-threading
Concurrency issues in multi-threaded environment can very well be solved by synchronization but synchronization is costly affair (wouldn't dig here on "why"), so if you are using immutable objects then there is no synchronization to solve concurrency issue because state of immutable objects cannot be changed, and if state cannot be changed then all threads can seamless access the object. So, immutable objects makes a great choice for shared objects in multi-threaded environment.
As key for hash based collections
One of the most important thing to note when working with hash based collection is that key should be such that its hashCode() should always return the same value for the lifetime of the object, because if that value is changed then old entry made into the hash based collection using that object cannot be retrieved, hence it would cause memory leak. Since state of immutable objects cannot be changed so they makes a great choice as key in hash based collection. So, if you are using immutable object as key for hash based collection then you can be sure that there will not be any memory leak because of that (of course there can still be memory leak when the object used as key is not referenced from anywhere else, but that's not the point here).
I'm going to attack this from a different perspective. I find immutable objects make life easier for me when reading code.
If I have a mutable object I am never sure what its value is if it's ever used outside of my immediate scope. Let's say I create MyMutableObject in a method's local variables, fill it out with values, then pass it to five other methods. ANY ONE of those methods can change my object's state, so one of two things has to occur:
I have to keep track of the bodies of five additional methods while thinking about my code's logic.
I have to make five wasteful defensive copies of my object to ensure that the right values get passed to each method.
The first makes reasoning about my code difficult. The second makes my code suck in performance -- I'm basically mimicking an immutable object with copy-on-write semantics anyway, but doing it all the time whether or not the called methods actually modify my object's state.
If I instead use MyImmutableObject, I can be assured that what I set is what the values will be for the life of my method. There's no "spooky action at a distance" that will change it out from under me and there's no need for me to make defensive copies of my object before invoking the five other methods. If the other methods want to change things for their purposes they have to make the copy – but they only do this if they really have to make a copy (as opposed to my doing it before each and every external method call). I spare myself the mental resources of keeping track of methods which may not even be in my current source file, and I spare the system the overhead of endlessly making unnecessary defensive copies just in case.
(If I go outside of the Java world and into, say, the C++ world, among others, I can get even trickier. I can make the objects appear as if they're mutable, but behind the scenes make them transparently clone on any kind of state change—that's copy-on-write—with nobody being the wiser.)
Immutable objects are instances whose states do not change once initiated.
The use of such objects is requirement specific.
Immutable class is good for caching purpose and it is thread safe.
By the virtue of immutability you can be sure that the behavior/state of the underlying immutable object do not to change, with that you get added advantage of performing additional operations:
You can use multiple core/processing(concurrent/parallel processing) with ease(as the sequence of operations will no longer matter.)
Can do caching for expensive operations (as you are sure of the same
result).
Can do debugging with ease(as the history of run will not be a concern
anymore)
Using the final keyword doesn't necessarily make something immutable:
public class Scratchpad {
public static void main(String[] args) throws Exception {
SomeData sd = new SomeData("foo");
System.out.println(sd.data); //prints "foo"
voodoo(sd, "data", "bar");
System.out.println(sd.data); //prints "bar"
}
private static void voodoo(Object obj, String fieldName, Object value) throws Exception {
Field f = SomeData.class.getDeclaredField("data");
f.setAccessible(true);
Field modifiers = Field.class.getDeclaredField("modifiers");
modifiers.setAccessible(true);
modifiers.setInt(f, f.getModifiers() & ~Modifier.FINAL);
f.set(obj, "bar");
}
}
class SomeData {
final String data;
SomeData(String data) {
this.data = data;
}
}
Just an example to demonstrate that the "final" keyword is there to prevent programmer error, and not much more. Whereas reassigning a value lacking a final keyword can easily happen by accident, going to this length to change a value would have to be done intentionally. It's there for documentation and to prevent programmer error.
Immutable data structures can also help when coding recursive algorithms. For example, say that you're trying to solve a 3SAT problem. One way is to do the following:
Pick an unassigned variable.
Give it the value of TRUE. Simplify the instance by taking out clauses that are now satisfied, and recur to solve the simpler instance.
If the recursion on the TRUE case failed, then assign that variable FALSE instead. Simplify this new instance, and recur to solve it.
If you have a mutable structure to represent the problem, then when you simplify the instance in the TRUE branch, you'll either have to:
Keep track of all changes you make, and undo them all once you realize the problem can't be solved. This has large overhead because your recursion can go pretty deep, and it's tricky to code.
Make a copy of the instance, and then modify the copy. This will be slow because if your recursion is a few dozen levels deep, you'll have to make many many copies of the instance.
However if you code it in a clever way, you can have an immutable structure, where any operation returns an updated (but still immutable) version of the problem (similar to String.replace - it doesn't replace the string, just gives you a new one). The naive way to implement this is to have the "immutable" structure just copy and make a new one on any modification, reducing it to the 2nd solution when having a mutable one, with all that overhead, but you can do it in a more efficient way.
One of the reasons for the "need" for immutable classes is the combination of passing everything by reference and having no support for read-only views of an object (i.e. C++'s const).
Consider the simple case of a class having support for the observer pattern:
class Person {
public string getName() { ... }
public void registerForNameChange(NameChangedObserver o) { ... }
}
If string were not immutable, it would be impossible for the Person class to implement registerForNameChange() correctly, because someone could write the following, effectively modifying the person's name without triggering any notification.
void foo(Person p) {
p.getName().prepend("Mr. ");
}
In C++, getName() returning a const std::string& has the effect of returning by reference and preventing access to mutators, meaning immutable classes are not necessary in that context.
They also give us a guarantee. The guarantee of immutability means that we can expand on them and create new patters for efficiency that are otherwise not possible.
http://en.wikipedia.org/wiki/Singleton_pattern
One feature of immutable classes which hasn't yet been called out: storing a reference to a deeply-immutable class object is an efficient means of storing all of the state contained therein. Suppose I have a mutable object which uses a deeply-immutable object to hold 50K worth of state information. Suppose, further, that I wish to on 25 occasions make a "copy" of my original (mutable) object (e.g. for an "undo" buffer); the state could change between copy operations, but usually doesn't. Making a "copy" of the mutable object would simply require copying a reference to its immutable state, so 20 copies would simply amount to 20 references. By contrast, if the state were held in 50K worth of mutable objects, each of the 25 copy operations would have to produce its own copy of 50K worth of data; holding all 25 copies would require holding over a meg worth of mostly-duplicated data. Even though the first copy operation would produce a copy of the data that will never change, and the other 24 operations could in theory simply refer back to that, in most implementations there would be no way for the second object asking for a copy of the information to know that an immutable copy already exists(*).
(*) One pattern that can sometimes be useful is for mutable objects to have two fields to hold their state--one in mutable form and one in immutable form. Objects can be copied as mutable or immutable, and would begin life with one or the other reference set. As soon as the object wants to change its state, it copies the immutable reference to the mutable one (if it hasn't been done already) and invalidates the immutable one. When the object is copied as immutable, if its immutable reference isn't set, an immutable copy will be created and the immutable reference pointed to that. This approach will require a few more copy operations than would a "full-fledged copy on write" (e.g. asking to copy an object which has been mutated since the last copy would require a copy operation, even if the original object is never again mutated) but it avoids the threading complexities that FFCOW would entail.
Why Immutable class?
Once an object is instantiated it state cannot be changed in lifetime. Which also makes it thread safe.
Examples :
Obviously String, Integer and BigDecimal etc. Once these values are created cannot be changed in lifetime.
Use-case :
Once Database connection object is created with its configuration values you might not need to change its state where you can use an immutable class
from Effective Java;
An immutable class is simply a class whose instances cannot be modified. All of
the information contained in each instance is provided when it is created and is
fixed for the lifetime of the object. The Java platform libraries contain many
immutable classes, including String, the boxed primitive classes, and BigInte-
ger and BigDecimal. There are many good reasons for this: Immutable classes
are easier to design, implement and use than mutable classes. They are less prone
to error and are more secure.
An immutable class is good for caching purposes because you don't have to worry about the value changes. Another benefit of an immutable class is that it is inherently thread-safe, so you don't have to worry about thread safety in case of a multi-threaded environment.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 8 years ago.
Improve this question
In the last weeks I've seen some guys using really long names for a Method or Class (50 characters), this is usually under the premise that it improves readability, my opinion is that a long name like this is an indicator that we are trying to do a lot or too much in a method class if we need such a long name, however I wanted to know what do you guys think about it.
An Example is:
getNumberOfSkinCareEligibleItemsWithinTransaction
A name in Java, or any other language, is too long when a shorter name exists that equally conveys the behavior of the method.
Some techniques for reducing the length of method names:
If your whole program, or class, or module is about 'skin care items' you can drop skin care. For example, if your class is called SkinCareUtils,
that brings you to getNumberOfEligibleItemsWithinTransaction
You can change within to in, getNumberOfEligibleItemsInTransaction
You can change Transaction to Tx, which gets you to getNumberOfEligibleItemsInTx.
Or if the method accepts a param of type Transaction you can drop the InTx altogether: getNumberOfEligibleItems
You change numberOf by count: getEligibleItemsCount
Now that is very reasonable. And it is 60% shorter.
Just for a change, a non-subjective answer: 65536 characters.
A.java:1: UTF8 representation for string "xxxxxxxxxxxxxxxxxxxx..." is too long
for the constant pool
;-)
I agree with everyone: method names should not be too long. I do want to add one exception though:
The names of JUnit test methods, however, can be long and should resemble sentences.
Why?
Because they are not called in other code.
Because they are used as test names.
Because they then can be written as sentences describing requirements. (For example, using AgileDox)
Example:
#Test
public void testDialogClosesDownWhenTheRedButtonIsPressedTwice() {
...
}
See "Behavior Driven Design" for more info on this idea.
Context "...WithinTransaction" should be obvious. That's what object-orientation is all about.
The method is part of a class. If the class doesn't mean "Transaction" -- and if it doesn't save you from having to say "WithinTransaction" all the time, then you've got problems.
Java has a culture of encouraging long names, perhaps because the IDEs come with good autocompletion.
This site says that the longest class name in the JRE is InternalFrameInternalFrameTitlePaneInternalFrameTitlePaneMaximizeButtonWindowNotFocusedState which is 92 chars long.
As for longest method name I have found this one supportsDataDefinitionAndDataManipulationTransactions, which is 52 characters.
Never use a long word when a diminutive one will do.
I don't think your thesis of "length of method name is proportional to length of method" really holds water.
Take the example you give: "getNumberOfSkinCareEligibleItemsWithinTransaction". That sounds to me like it does just one thing: it counts the number of items in a transaction that fall into a certain category. Of course I can't judge without seeing the actual code for the method, but that sounds like a good method to me.
On the other hand, I've seen lots of methods with very short and concise names that do way to much work, like "processSale" or the ever popular "doStuff".
I think it would be tough to give a hard-and-fast rule about method name length, but the goal should be: long enough to convey what the function does, short enough to be readable. In this example, I'd think "getSkinCareCount" would probably have been sufficient. The question is what you need to distinguish. If you have one function that counts skin-care-eligible items in transactions and another that counts skin-care-eligible items in something else, then "withinTransactions" adds value. But if it doesn't mean anything to talk about such items outside of a transaction, then there's no point cluttering up the name with such superfluous information.
Two, I think it's wildly unrealistic to suppose that a name of any manageable length will tell you exactly what the function does in all but the most trivial cases. A realistic goal is to make a name that gives a reader a clue, and that can be remembered later. Like, if I'm trying to find the code that calculates how much antimatter we need to consume to reach warp speed, if I look at function names and see "calibrateTransporter", "firePhasers", and "calcAntimatterBurn", it's pretty clear that the first two aren't it but the third one might be. If I check and find that that is indeed the one I'm looking for, it will be easy to remember that when I come back tomorrow to work on this problem some more. That's good enough.
Three, long names that are similar are more confusing than short names. If I have two functions called "calcSalesmanPay" and "calcGeekPay", I can make a good guess which is which at a quick glance. But if they are called "calculateMonthlyCheckAmountForSalesmanForExportToAccountingSystemAndReconciliation" and "calculateMonthlyCheckAmountForProgrammersForExportToAccountingSystemAndReconciliation", I have to study the names to see which is which. The extra information in the name is probably counter-productive in such cases. It turns a half-second think into a 30-second think.
I tend use the haiku rule for names:
Seven syllable class names
five for variables
seven for method and other names
These are rules of thumb for max names. I violate this only when it improves readability. Something like recalculateMortgageInterest(currentRate, quoteSet...) is better than recalculateMortgageInterestRate or recalculateMortgageInterestRateFromSet since the fact that it involves rates and a set of quotes should be pretty clear from the embedded docs like javadoc or the .NET equivalent.
NOTE: Not a real haiku, as it is 7-5-7 rather than 5-7-5. But I still prefer calling it haiku.
Design your interface the way you want it to be, and make the implementation match.
For example, maybe i'd write that as
getTransaction().getItems(SKIN_CARE).getEligible().size()
or with Java 8 streams:
getTransaction().getItems().stream()
.filter(item -> item.getType() == SKIN_CARE)
.filter(item -> item.isEligible())
.count();
My rule is as follows: if a name is so long that it has to appear on a line of its own, then it is too long. (In practice, this means I'm rarely above 20 characters.)
This is based upon research showing that the number of visible vertical lines of code positively correlates with coding speed/effectiveness. If class/method names start significantly hurting that, they're too long.
Add a comment where the method/class is declared and let the IDE take you there if you want a long description of what it's for.
The length of the method itself is probably a better indicator of whether it's doing too much, and even that only gives you a rough idea. You should strive for conciseness, but descriptiveness is more important. If you can't convey the same meaning in a shorter name, then the name itself is probably okay.
When you are going to write a method name next time , just think the bellow quote
"The man who is going to maintain your code is a phyco who knows where you stay"
That method name is definitely too long. My mind tends to wander when I am reading such sized method names. It's like reading a sentence without spaces.
Personally, I prefer as few words in methods as possible. You are helped if the package and class name can convey meaning. If the responsibility of the class is very concise, there is no need for a giant method name. I'm curious why "WithinTransaction" on there.
"getNumberOfSkinCareEligibleItemsWithinTransaction" could become:
com.mycompany.app.product.SkinCareQuery.getNumEligibleItems();
Then when in use, the method could look like "query.getNumEligibleItems()"
A variable name is too long when a shorter name will allow for better code readability over the entire program, or the important parts of the program.
If a longer name allows you to convey more information about a value. However, if a name is too long, it will clutter the code and reduce the ability to comprehend the rest of the code. This typically happens by causing line wraps and pushing other lines of code off the page.
The trick is determining which will offer better readability. If the variable is used often or several times in a short amount of space, it may be better to give it a short name and use a comment clarify. The reader can refer back to the comment easily. If the variable is used often throughout the program, often as a parameter or in other complicated operations, it may be best to trim down the name, or use acronyms as a reminder to the reader. They can always reference a comment by the variable declaration if they forget the meaning.
This is not an easy trade off to make, since you have to consider what the code reader is likely to be trying to comprehend, and also take into account how the code will change and grow over time. That's why naming things is hard.
Readability is why it's acceptable to use i as a loop counter instead of DescriptiveLoopCounterName. Because this is the most common use for a variable, you can spend the least amount of screen space explaining why it exists. The longer name is just going to waste time by making it harder to understand how you are testing the loop condition or indexing into an array.
On the other end of the spectrum, if a function or variable is used rarely as in a complex operation, such as being passed to a multi-parameter function call, you can afford to give it an overly descriptive name.
As with any other language: when it no longer describes the single action the function performs.
I'd say use a combination of the good answers and be reasonable.
Completely, clearly and readably describe what the method does.
If the method name seems too long--refactor the method to do less.
It's too long when the name of the method wraps onto another line and the call to the method is the only thing on the line and starts pretty close to the margin. You have to take into account the average size of the screen of the people who will be using it.
But! If the name seems too long then it probably is too long. The way to get around it is to write your code in such a way that you are within a context and the name is short but duplicated in other contexts. This is like when you can say "she" or "he" in English instead of someone's full name.
It's too long when it too verbosively explains what the thing is about.
For example, these names are functionally equivalent.
in Java: java.sql.SQLIntegrityConstraintViolationException
in Python/Django: django.db.IntegrityError
Ask yourself, in a SQL/db package, how many more types of integrity errors can you come up with? ;)
Hence db.IntegrityError is sufficient.
An identifier name is too long when it exceeds the length your Java compiler can handle.
There are two ways or points of view here: One is that it really doesn't matter how long the method name is, as long as it's as descriptive as possible to describe what the method is doing (Java best practices basic rule). On the other hand, I agree with the flybywire post. We should use our intelligence to try to reduce as much as possible the method name, but without reducing it's descriptiveness. Descriptiveness is more important :)
A name is too long if it:
Takes more than 1 second to read
Takes up more RAM than you allocate for your JVM
Is something absurdly named
If a shorter name makes perfect sense
If it wraps around in your IDE
Honestly the name only needs to convey its purpose to the the Developers that will utilize it as a public API method or have to maintain the code when you leave. Just remember KISS (keep it simple stupid)
I'm looking at some Java code that are maintained by other parts of the company, incidentally some former C and C++ devs. One thing that is ubiquitous is the use of static integer constants, such as
class Engine {
private static int ENGINE_IDLE = 0;
private static int ENGINE_COLLECTING = 1;
...
}
Besides a lacking 'final' qualifier, I'm a bit bothered by this kind of code. What I would have liked to see, being trained primarily in Java from school, would be something more like
class Engine {
private enum State { Idle, Collecting };
...
}
However, the arguments fail me. Why, if at all, is the latter better than the former?
Why, if at all, is the latter better
than the former?
It is much better because it gives you type safety and is self-documenting. With integer constants, you have to look at the API doc to find out what values are valid, and nothing prevents you from using invalid values (or, perhaps worse, integer constants that are completely unrelated). With Enums, the method signature tells you directly what values are valid (IDE autocompletion will work) and it's impossible to use an invalid value.
The "integer constant enums" pattern is unfortunately very common, even in the Java Standard API (and widely copied from there) because Java did not have Enums prior to Java 5.
An excerpt from the official docs, http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html:
This pattern has many problems, such as:
Not typesafe - Since a season is just an int you can pass in any other int value where a season is required, or add two seasons together (which makes no sense).
No namespace - You must prefix constants of an int enum with a string (in this case SEASON_) to avoid collisions with other int enum types.
Brittleness - Because int enums are compile-time constants, they are compiled into clients that use them. If a new constant is added between two existing constants or the order is changed, clients must be recompiled. If they are not, they will still run, but their behavior will be undefined.
Printed values are uninformative - Because they are just ints, if you print one out all you get is a number, which tells you nothing about what it represents, or even what type it is.
And this just about covers it. A one word argument would be that enums are just more readable and informative.
One more thing is that enums, like classes. can have fields and methods. This gives you the option to encompass some additional information about each type of state in the enum itself.
Because enums provide type safety. In the first case, you can pass any integer and if you use enum you are restricted to Idle and Collecting.
FYI : http://www.javapractices.com/topic/TopicAction.do?Id=1.
By using an int to refer to a constant, you're not forcing someone to actually use that constant. So, for example, you might have a method which takes an engine state, to which someone might happy invoke with:
engine.updateState(1);
Using an enum forces the user to stick with the explanatory label, so it is more legible.
There is one situation when static constance is preferred (rather that the code is legacy with tonne of dependency) and that is when the member of that value are not/may later not be finite.
Imagine if you may later add new state like Collected. The only way to do it with enum is to edit the original code which can be problem if the modification is done when there are already a lot of code manipulating it. Other than this, I personally see no reason why enum is not used.
Just my thought.
Readabiliy - When you use enums and do State.Idle, the reader immediately knows that you are talking about an idle state. Compare this with 4 or 5.
Type Safety - When use enum, even by mistake the user cannot pass a wrong value, as compiler will force him to use one of the pre-declared values in the enum. In case of simple integers, he could even pass -3274.
Maintainability - If you wanted to add a new state Waiting, then it would be very easy to add new state by adding a constant Waiting in your enum State without casuing any confusion.
The reasons from the spec, which Lajcik quotes, are explained in more detail in Josh Bloch's Effective Java, Item 30. If you have access to that book, I'd recommend perusing it. Java Enums are full-fledged classes which is why you get compile-time type safety. You can also give them behavior, giving you better encapsulation.
The former is common in code that started pre-1.5. Actually, another common idiom was to define your constants in an interface, because they didn't have any code.
Enums also give you a great deal of flexibility. Since Enums are essentially classes, you can augment them with useful methods (such as providing an internationalized resource string corresponding to a certain value in the enumeration, converting back and forth between instances of the enum type and other representations that may be required, etc.)
I'm creating a cell editor, but I've done (and seen) this in other code. I'm creating an object and then dropping it on the floor like this:
ButtonCellEditor buttonColumn = new ButtonCellEditor(table, 2);
This class takes the table and sets a TableColumnModel and custom cell renderers to it. Then, the method ends and I don't reference the buttonColumn object anymore.
So, is there a difference between doing the above and doing this (which also works)?
new ButtonCellEditor(table, 2);
Anything really wrong with doing this?
You shouldn't have unused variables in your code, that makes it less clear. Also, a constructor is (as its name states) a method for initialize the object, this in your case is not done.
I suggest you to have a static method instead:
ButtonCellEditor.niceNameHere(table, 2);
The only case I can think in which a constructor would be adequate is when it takes params to initialize itself and then perform some actions later, but not for doing the action inside and this is not like yours.
There's nothing wrong with either of those way of creating a ButtonCellEditor. However, if you later want to reference that object, with method two you have no way of doing so. With method 1 you can at least say buttonColumn.method().
No tangible difference, as far as I know.
Nothing wrong either -- I would prefer shorter form, if the only reason really is to get side effects of constructing the object (which is not necessarily a very good API design in itself, IMO, but that's irrelevant here).
There is no real difference between the two cases. In the second case an anonymous variable will be created that will be normally garbage collected. The second case will also save you some typing and is somewhat more readable. A reader may expect to find a reference at the created object (if you choose the first version) and be surprised if he doesn't find one.
In any case, a static method may be more suitable for such cases.
they are the same, but a comment about why you are doing it might be in order. otherwise someone might come along and delete it, thinking it is a no-op without investigating.
you could also be more explict and call
table.getColumn(2).setCellEditor(new ButtonCellEditor());
It is possible to add and remove elements from an enum in Java at runtime?
For example, could I read in the labels and constructor arguments of an enum from a file?
#saua, it's just a question of whether it can be done out of interest really. I was hoping there'd be some neat way of altering the running bytecode, maybe using BCEL or something. I've also followed up with this question because I realised I wasn't totally sure when an enum should be used.
I'm pretty convinced that the right answer would be to use a collection that ensured uniqueness instead of an enum if I want to be able to alter the contents safely at runtime.
No, enums are supposed to be a complete static enumeration.
At compile time, you might want to generate your enum .java file from another source file of some sort. You could even create a .class file like this.
In some cases you might want a set of standard values but allow extension. The usual way to do this is have an interface for the interface and an enum that implements that interface for the standard values. Of course, you lose the ability to switch when you only have a reference to the interface.
Behind the curtain, enums are POJOs with a private constructor and a bunch of public static final values of the enum's type (see here for an example). In fact, up until Java5, it was considered best-practice to build your own enumeration this way, and Java5 introduced the enum keyword as a shorthand. See the source for Enum<T> to learn more.
So it should be no problem to write your own 'TypeSafeEnum' with a public static final array of constants, that are read by the constructor or passed to it.
Also, do yourself a favor and override equals, hashCode and toString, and if possible create a values method
The question is how to use such a dynamic enumeration... you can't read the value "PI=3.14" from a file to create enum MathConstants and then go ahead and use MathConstants.PI wherever you want...
I needed to do something like this (for unit testing purposes), and I came across this - the EnumBuster:
http://www.javaspecialists.eu/archive/Issue161.html
It allows enum values to be added, removed and restored.
Edit: I've only just started using this, and found that there's some slight changes needed for java 1.5, which I'm currently stuck with:
Add array copyOf static helper methods (e.g. take these 1.6 versions: http://www.docjar.com/html/api/java/util/Arrays.java.html)
Change EnumBuster.undoStack to a Stack<Memento>
In undo(), change undoStack.poll() to undoStack.isEmpty() ? null : undoStack.pop();
The string VALUES_FIELD needs to be "ENUM$VALUES" for the java 1.5 enums I've tried so far
I faced this problem on the formative project of my young career.
The approach I took was to save the values and the names of the enumeration externally, and the end goal was to be able to write code that looked as close to a language enum as possible.
I wanted my solution to look like this:
enum HatType
{
BASEBALL,
BRIMLESS,
INDIANA_JONES
}
HatType mine = HatType.BASEBALL;
// prints "BASEBALL"
System.out.println(mine.toString());
// prints true
System.out.println(mine.equals(HatType.BASEBALL));
And I ended up with something like this:
// in a file somewhere:
// 1 --> BASEBALL
// 2 --> BRIMLESS
// 3 --> INDIANA_JONES
HatDynamicEnum hats = HatEnumRepository.retrieve();
HatEnumValue mine = hats.valueOf("BASEBALL");
// prints "BASEBALL"
System.out.println(mine.toString());
// prints true
System.out.println(mine.equals(hats.valueOf("BASEBALL"));
Since my requirements were that it had to be possible to add members to the enum at run-time, I also implemented that functionality:
hats.addEnum("BATTING_PRACTICE");
HatEnumRepository.storeEnum(hats);
hats = HatEnumRepository.retrieve();
HatEnumValue justArrived = hats.valueOf("BATTING_PRACTICE");
// file now reads:
// 1 --> BASEBALL
// 2 --> BRIMLESS
// 3 --> INDIANA_JONES
// 4 --> BATTING_PRACTICE
I dubbed it the Dynamic Enumeration "pattern", and you read about the original design and its revised edition.
The difference between the two is that the revised edition was designed after I really started to grok OO and DDD. The first one I designed when I was still writing nominally procedural DDD, under time pressure no less.
You can load a Java class from source at runtime. (Using JCI, BeanShell or JavaCompiler)
This would allow you to change the Enum values as you wish.
Note: this wouldn't change any classes which referred to these enums so this might not be very useful in reality.
A working example in widespread use is in modded Minecraft. See EnumHelper.addEnum() methods on Github
However, note that in rare situations practical experience has shown that adding Enum members can lead to some issues with the JVM optimiser. The exact issues may vary with different JVMs. But broadly it seems the optimiser may assume that some internal fields of an Enum, specifically the size of the Enum's .values() array, will not change. See issue discussion. The recommended solution there is not to make .values() a hotspot for the optimiser. So if adding to an Enum's members at runtime, it should be done once and once only when the application is initialised, and then the result of .values() should be cached to avoid making it a hotspot.
The way the optimiser works and the way it detects hotspots is obscure and may vary between different JVMs and different builds of the JVM. If you don't want to take the risk of this type of issue in production code, then don't change Enums at runtime.
You could try to assign properties to the ENUM you're trying to create and statically contruct it by using a loaded properties file. Big hack, but it works :)