I'm writing an application that spawns multiple concurrent tasks. I'm using a thread pool to implement that.
It may happen that an event occurs that renders the computations being done in the tasks invalid. In that case, I would like to stop the currently running tasks, and start new ones.
My problem: How do I stop the currently running tasks? The solution I implemented is to store a reference to the task thread and call interrupt() on this thread. In demo code:
public class Task implements Runnable {
private String name;
private Thread runThread;
public Task(String name) {
super();
this.name = name;
}
#Override
public void run() {
runThread = Thread.currentThread();
System.out.println("Starting thread " + name);
while (true) {
try {
Thread.sleep(4000);
System.out.println("Hello from thread " + name);
} catch (InterruptedException e) {
// We've been interrupted: no more messages.
return;
}
}
}
public void stop() {
runThread.interrupt();
}
public String getName() {
return name;
}
}
And the main method is:
public static void main(String args[]) {
executorService = Executors.newFixedThreadPool(2);
Task t1 = new Task("Task1");
Task t2 = new Task("Task2");
executorService.execute(t1);
executorService.execute(t2);
executorService.execute(new Task("Task3"));
executorService.execute(new Task("Task4"));
try {
Thread.sleep(12000);
t1.stop();
System.err.println("Stopped thread " + t1.getName());
Thread.sleep(8000);
t2.stop();
System.err.println("Stopped thread " + t2.getName());
} catch (InterruptedException e) {
e.printStackTrace();
}
}
Is this a good solution, or is there a better way to stop a running thread in a thread pool?
You can stop it by holding a reference to that future
Future<?> future = exec.submit( new Runnable() {
while (true){
try{
obj.wait();
} catch(InterruptedException e){
System.out.println("interrupted");
return;
}
}
});
future.cancel(true);
boolean is for - may interrupt if running.
I tested out and got an interrupted exception from that thread.
If you have cachedThreadPool you may want to double check that you catch the exception in your runnable, and then don't set back the flag interrupted, because your thread will run another future, if you set interrupt, the other queue future may not run.
The idea behind your approach is one of the several correct solutions. Dealing with InterruptedException gives a great rundown on how you should use the interrupt mechanism. This mechanism is mainly useful when you are long computations. One other thing to keep in mind is that it is possible for other libraries to spoil your interrupt mechanism by not doing what the guide says (not resetting the interrupt state when they haven't handled it etc).
Do note that your Task class isn't thread-safe. You could be stopping the task before saving the currentThread, which would give a NullPointerException.
A much simpler approach is to set a volatile boolean variable running and instead of a while(true) loop doing a while(running) approach (this is however much more general).
Another thing to look at is the FutureTask mechanism, as this already has a canceling mechanism that uses the interrupt mechanism.
In your overridden run() method you loop forever with while(true). The standard behaviour would be to have a boolean runIndicator which the run() method sets to true when it starts, and your loop should then be while(runIndicator). Your stop() method should simple set runIndicator = false so the next iteration of the loop will fall out.
executorService.shutdown() and executorService.shutdownNow() should be used to shutdown the thread pool to gracefully exiting the application. See ExecutorService.
See Qwerky's answer for ending the currently running thread.
Related
I have a thread which executes code periodically, e. g. every 10 seconds. I'd like to have the option to also invoke the same code in a spontaneous way and not have to wait 10 seconds. But the code of the automatic and spontaneous execution must never run concurrently, instead they should run in sequence if the user presses the execute button while the thread is invoking the same method.
Does anyone know a good pattern or even a class that can address this kind of requirement?
First thing that comes to mind would be to make the work method synchronized. But in that case the manual execution (e. g. button press) is blocked and has to wait until the method in the thread is finished. Is there a better approach without blocking?
Example:
public class Executor extends Thread {
// endless loop, executes work method periodically with pause inbetween
#Override
public void run() {
while( true) {
work( "automatic");
pause(10000);
}
}
// Working method that's executed periodically or manually
private synchronized void work( String text) {
System.out.println( "Working " + text + " " + System.currentTimeMillis());
}
// helper method that pauses the thread
private static void pause( long sleepMs) {
try {
Thread.sleep(sleepMs);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static void main(String[] args) {
// start automatic execution
Executor executor = new Executor();
executor.start();
// pause a while
pause(1000);
// manual execution
executor.work( "manual");
}
}
Edit: Solution for my requirement:
public class ScheduledExecutor {
public static void main(String[] args) throws InterruptedException {
ScheduledThreadPoolExecutor executor = (ScheduledThreadPoolExecutor) Executors.newScheduledThreadPool(1);
executor.scheduleWithFixedDelay(new Work("auto"), 0, 10, TimeUnit.SECONDS);
Thread.sleep(1000);
executor.execute(new Work("manual"));
}
public static class Work implements Runnable {
String text;
public Work(String text) {
this.text = text;
}
#Override
public void run() {
System.out.println("Working " + text + " " + System.currentTimeMillis());
}
}
}
I would create a new, single-thread executor service:
ExecutorService executorService = Executors.newFixedThreadPool(1);
Then, I would set up a timer that feeds the executorService a task once every 10 seconds.
new Timer(10000, new ActionListener {
public void actionPerformed(ActionEvent evt) {
executorService.execute(() -> doWhatever());
}
}).start();
Finally, you can call executorService.execute(() -> doWhatever()); in your button press handler, or wherever else you want in your code.
Only one activation of doWhatever() will run at a time because the executorService has only one thread on which to run them. And, your button press handler will never have to wait, because it does nothing but put a new object on a queue.
I have a thread which executes code periodically, e. g. every 10 seconds. I'd like to have the option to also invoke the same code in a spontaneous way and not have to wait 10 seconds.
A simple way to do this in your code is not to pause by using Thread.sleep(...) but rather do wait(...). Then whenever you want the command to wakeup and run manually it just does a notify().
So you code would look something like:
while( true) {
work( "automatic");
synchronized (this) {
try {
// wait for a bit but allow someone else to awake us to run manually
wait(10000);
} catch (InterruptedException ie) {
// always a good pattern
Thread.currentThread().interrupt();
return;
}
}
}
Then when you want to have it run manually you do:
synchronized (executor) {
executor.notify();
}
The notify will awaken the thread immediately so that it can run it's task. The work method then does not need to be synchronized because only the Executor thread is running it.
NOTE: As pointed out by #shinobi, using wait() like this could suffer from spurious wake-ups which can happen with certain OS thread implementations.
Lastly, it is a better practice to make Executor implement Runnable as opposed to extending Thread.
Share a semaphore between the server thread (the one that executes the task) and client threads (the ones that need to trigger immediate execution):
Semaphore sem = new Semaphore( 0 );
The server thread needs to execute the following code (note that it's an endless loop — you'll likely want to plug-in your program termination check as the condition to while()):
while( true ) {
try {
sem.tryAcquire( 10, TimeUnit.SECONDS );
} catch( InterruptedException e ) {
continue;
}
runTask();
sem.drainPermits();
}
Then, in order to trigger immediate execution, the client thread needs to do:
sem.release();
Thus, the server thread will execute the task upon either acquiring a permit from the semaphore as soon as a client thread releases one (triggered immediate execution,) or timing-out in Semaphore.tryAcquire() (periodic executions 10s apart, end-to-start.) Having executions 10s apart start-to-start will take some slightly more involved logic, as well as keeping track of last execution's starting time, but the basic idea remains the same.
You need to drain the permits each time in order to avoid multiple back-to-back executions of the task, in cases where it might be triggered for immediate execution while still being executed.
I am dealing with threads and I want to run this code whenever I open Cal_JInternalFrame. It runs the fist time, but whenever I reopen the frame, it doesn't run again. I use t1.interrupted() at exit time of the whole application. The code is:
Thread t1 = new Thread( new Runnable() {
#Override
public void run() {
while ( !t1.isInterrupted() ) {
// ......... Oil Calculation Thread ...
int price = (Integer.parseInt(jLabel22.getText()));
int qty = (Integer)jSpinner8.getValue();
int totalOil =qty * price;
jTextField19.setText(String.valueOf(totalOil));
}
}
});
t1.start() is in the constructor of the main frame.
The thread primitive methods destroy(), stop(), resume(), and suspend() have been deprecated, so I can't use those. How can I stop and resume a thread now? And if my thread t1 is interrupted, how can it be resumed or run again?
Threads cannot be re-used. For tasks that require to be executed on a separate thread at different times, use a single thread executor.
It seems like you need a worker thread. Since standard threads are not reusable without extra work, we use worker threads to manage tasks that should be executed multiple times.
ExecutorService executors = Executors.newSingleThreadExecutor();
With this, you can reuse a single thread to execute code multiple times. It also allows you to make asynchronous callbacks using Future like this:
class Demo {
static ExecutorService executor = Executors.newSingleThreadExecutor();
public static void main(String[] args) {
Future<String> result = executor.submit(new Callable<String>() {
public String call() {
//do something
return "Task Complete";
}
});
try {
System.out.println(result.get()); //get() blocks until call() returns with its value
}catch(Exception e) {
e.printStackTrace();
}
}
}
You can now re-use executor for the task that you want. It accepts Runnable through it's execute(Runnable) method.
I see you're using Swing. Post all swing code to the Event Dispatch Thread using EventQueue.invokeLater(Runnable). getText() and setText() should be called on the Event Dispatch Thread to avoid inconsistancies.
How can I stop and resume a thread now?
You can't. Instead, you need to make your thread stop and resume itself. For example:
private boolean wake;
public synchronized void wakeup() {
this.wake = true;
this.notify();
}
public void run() {
while ( !t1.isInterrupted() ) {
// do stuff ...
wake = false;
synchronized (this) {
while (!wake) {
try {
this.wait();
} catch (InterruptedException ex) {
t1.interrupt(); // reset the interrupted flag
}
}
}
}
}
When some other thread wants to get this one to do something, the calls the wakeup() method on the extended runnable object.
And if my thread t1 is interrupted, how can it be resumed or run again?
As you have written it, No. Once the thread returns from the run() method call, it cannot be restarted. You would need to create and start a brand new Thread.
However, what you are trying to do is unsafe. As #Erwin points out, it is not safe for the t1 thread to be calling methods on Swing objects such as jTextField19. You should only call methods on Swing objects from the Swing event dispatching thread.
Reference:
Concurrency in Swing
I'm actually in need of waiting for the ui thread to execute a runnable before my application thread can continue. Is the wait()/notify() way a proper way to do it or is there something better for this? What I'm actually doing looks like this:
public void showVideoView() {
try {
final AtomicBoolean done = new AtomicBoolean(false);
final Runnable task = new Runnable() {
#Override
public void run() {
synchronized(this) {
mStartupCurtain.setVisibility(View.GONE);
mVideoView.setVisibility(View.VISIBLE);
mWebView.loadUrl("about:blank");
mWebView.setVisibility(View.GONE);
done.set(true);
notify();
}
}
};
mUiHandler.post(task);
synchronized(task) {
while(!done.get()) {
task.wait();
}
Log.d(TAG, "showVideoView done!");
}
} catch (InterruptedException e) {
Log.e(TAG, "Thread got interrupted while waiting for posted runnable to finish its task");
}
}
Also when I do this I have to be sure that the thread is not the one of the UI, which happens when I start calling methods from a listener method coming from an interface like MediaPlayer.OnCompletionListener.
What do you think?
Looks fine to me.
The "done" variable could be a regular Boolean instead of AtomicBoolean since you definitively get/set it's value within the lock. I like that you check the value of "done" prior to calling wait - since it is quite possible the task will have been completed before you ever enter the lock in the worker thread. If you had not done that, the wait() call would go indefinitely since the notify() had already happened.
There is one edge case to consider that may or may not be applicable to your design. What happens if the UI thread is attempting to exit (i.e. app exit) when the worker thread is still stuck waiting for the task to complete? Another variation is when the worker thread is waiting on the task to complete, but the UI thread is waiting on the worker thread to exit. The latter could be solved with another Boolean variable by which the UI thread signals the worker thread to exit. These issues may or may not be relevant - depending on how the UI is managing the thread to begin with.
Use AsyncTask!
AsyncTask enables proper and easy use of the UI thread. This class
allows to perform background operations and publish results on the UI
thread without having to manipulate threads and/or handlers.
http://developer.android.com/reference/android/os/AsyncTask.html
Function:
public static void postOnUI(Runnable runnable,boolean wait) {
if (Looper.getMainLooper().getThread() == Thread.currentThread()) {
// Is on UI thread.
runnable.run();
return;
}
Handler uiHandler = new Handler(Looper.getMainLooper());
AtomicBoolean done = new AtomicBoolean(false);
uiHandler.post(() -> {
runnable.run();
done.set(true);
});
if (wait) {
while (!done.get()) {
try {
Thread.sleep(20);
} catch (InterruptedException e) {
}
}
}
}
Usage Example:
Utils.postOnUI(headerView::updateUI,true);
I have a situation where I'm using a Thread, she call a method that will do multiple processes, I need to use a "cancel" button in which you have to stop the thread, I not can use: "while" ,to verify that it was canceled because it not has loop in this process.
Ex:
Task<Void> task = new Task<Void>() {
#Override
protected Void call() throws Exception {
controller = new FirstEtapaController();
execProcess();
return null;
}
};
new Thread(task).start();
Call Method
private void execProcess() {
Thread thread = new Thread(new Runnable() {
public void run() {
getController().execMhetod();
refreshTable();
}
});
thread.start();
thread.join();
};
Ie, I need to stop this process, even when the "ExecMethod" already running, it will take minutes, so I've gotta stop it and not have to wait for him to finish so that , others do not continues.
Remembering that this process will do iteration with my DAO.
The only way (well behaved way) is to add logic points in you spawned threads to check for an interrupted state. You can choose to use the built-in Thread.interrupt() mechanisms, or add your own logic using some form of thread-safe variable (an AtomicBoolean?) or a Semaphore of some sort.
If you use the Thread.interrupt() then your child processes will throw an InterruptedException when they encounter certain conditions, like Thread.wait() and other methods which require synchronization or use the java.util.concurrent.* classes.
You will need to (should already be) handle the InterruptedExceptions in the threads anyway, but perhaps you will need to put regular 'checks' in your child processes to look for the interrupted state anyway (can use Thread.isInterrupted() )
It is worth reading this Handling InterruptedException in Java
If instead of a raw Thread if you use an ExecutorService you'll end up with lots of additional methods/levers to control your threads, one of which is shutdownAll() which uses Thread.interrupt() to kill your thread and lets you check thread status via isTerminated()
Your user interface does not have to wait for the worker thread to finish, so don't worry too much about that.
Alas, Thread.destroy() and Thread.stop() are deprecated, due to bad implementations. I don't think there is a good "sig-kill" type of substitute for Java threads. You are going to have to recode the worker to check an abort flag of some kind, if it matters much. Otherwise, just let it waste a little CPU. ("you can't cancel that Save -- I've already done it!", in effect)
Whether or not a task can be canceled really depends on its implementation. Typically it intermittently checks a flag whether it should continue or not.
You can implement such a flag yourself, and a method to set it :
private volatile boolean shouldStop;
public void cancel() {
shouldStop = true;
}
#Override
public void run() {
while (!shouldStop) {
// do work
}
}
But threads already come with a flag : the interrupted flag. And while it is not necessarily used for canceling a thread, it is typical to use it for exactly that purpose. In fact the standard ExecutorService implementations will try to cancel their threads by interrupting them.
Aside from that several blocking methods (methods that put a thread in BLOCKED or WAITING state) will throw an InterruptedException when the thread is interrupted, at which point they become RUNNABLE again. This is something the previous approach with a boolean flag cannot achieve.
Therefore it is a better approach to use interruption to allow a task to be canceled. And you do not really need that cancel() method any more either :
#Override
public void run() {
while (!Thread.currentThread().isInterrupted()) {
// do work
}
}
As a bonus, any code that knows your thread, knows how to cancel it. Including standard ExecutorService implementations.
Care should be taken when catching an InterruptedException, since doing that clears the interrupted flag. It is adviseable to always restore the interrupted flag when catching the Exception, so clients also know it's time to stop doing what they're doing.
private BlockingQueue<Integer> queue;
#Override
public void run() {
while (!Thread.currentThread().isInterrupted()) {
try {
Integer id = queue.take(); // blocking method
// do work
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
To cancel a thread, you can simply keep a reference to the Thread object and call interrupt() on it :
Thread thread = new Thread(new InterruptibleTask());
thread.start();
// some time after :
thread.interrupt();
But a more elegant approach is keeping tabs on your task (and not so much the specific thread it runs on) through a Future object. You can do this by wrapping your Runnable or Callable in a FutureTask.
RunnableFuture<Void> task = new FutureTask<>(new InterruptibleTask(), null);
new Thread(task).start();
// some time after :
task.cancel(true); // true indicating interruption may be used to cancel.
A Future is key in controlling your task. It allows you to wait for its completion, and optionally receive a value the task calculated :
try {
String value = future.get(); // return value is generically typed String is just as example.
} catch (InterruptedException e) {
Thread.currentThread().interrupt(); // since future.get() blocks
} catch (ExecutionException e) {
logger.log(Level.SEVERE, "Exception on worker thread", e.getCause()); // the ExecutionException's cause is the Exception that occurred in the Task
}
If you have several tasks (or even just one) it is worth using an ExecutorService :
ExecutorService pool = Executors.newCachedThreadPool();
Future<?> submit = pool.submit(new InterruptibleTask());
pool.shutdownNow(); // depending on ExecutorService implementation this will cancel all tasks for you, the ones Executors returns do.
Thread currentThread=Thread.currentThread();
public void run()
{
while(!shutdown)
{
try
{
System.out.println(currentThread.isAlive());
Thread.interrupted();
System.out.println(currentThread.isAlive());
if(currentThread.isAlive()==false)
{
shutdown=true;
}
}
catch(Exception e)
{
currentThread.interrupt();
}
}
}
});
thread.start();
The alternative to calling stop is to use interrupt to signal to the thread that you want it to finish what it's doing. (This assumes the thread you want to stop is well-behaved, if it ignores InterruptedExceptions by eating them immediately after they are thrown and doesn't check the interrupted status then you are back to using stop().)
Here's some code I wrote as an answer to a threading question here, it's an example of how thread interruption works:
public class HelloWorld {
public static void main(String[] args) throws Exception {
Thread thread = new Thread(new Runnable() {
public void run() {
try {
while (!Thread.currentThread().isInterrupted()) {
Thread.sleep(5000);
System.out.println("Hello World!");
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
});
thread.start();
System.out.println("press enter to quit");
System.in.read();
thread.interrupt();
}
}
Some things to be aware of:
Interrupting causes sleep() and wait() to immediately throw, otherwise you are stuck waiting for the sleep time to pass.
Note that there is no need for a separate boolean flag.
The thread being stopped cooperates by checking the interrupted status and catching InterruptedExceptions outside the while loop (using it to exit the loop). Interruption is one place where it's ok to use an exception for flow control, that is the whole point of it.
Setting interrupt on the current thread in the catch block is technically best-practice but is overkill for this example, because there is nothing else that needs the interrupt flag set.
Some observations about the posted code:
The posted example is incomplete, but putting a reference to the current thread in an instance variable seems like a bad idea. It will get initialized to whatever thread is creating the object, not to the thread executing the run method. If the same Runnable instance is executed on more than one thread then the instance variable won't reflect the right thread most of the time.
The check for whether the thread is alive is necessarily always going to result in true (unless there's an error where the currentThread instance variable is referencing the wrong thread), Thread#isAlive is false only after the thread has finished executing, it doesn't return false just because it's been interrupted.
Calling Thread#interrupted will result in clearing the interrupt flag, and makes no sense here, especially since the return value is discarded. The point of calling Thread#interrupted is to test the state of the interrupted flag and then clear it, it's a convenience method used by things that throw InterruptedException.
Typically, a thread is terminated when it's interrupted. So, why not use the native boolean? Try isInterrupted():
Thread t = new Thread(new Runnable(){
#Override
public void run() {
while(!Thread.currentThread().isInterrupted()){
// do stuff
}
}});
t.start();
// Sleep a second, and then interrupt
try {
Thread.sleep(1000);
} catch (InterruptedException e) {}
t.interrupt();
Good way to do it would be to use a boolean flag to signal the thread.
class MyRunnable implements Runnable {
public volatile boolean stopThread = false;
public void run() {
while(!stopThread) {
// Thread code here
}
}
}
Create a MyRunnable instance called myrunnable, wrap it in a new Thread instance and start the instance. When you want to flag the thread to stop, set myrunnable.stopThread = true. This way, it doesn't get stopped in the middle of something, only where we expect it to get stopped.