How would contravariance be used in Java generics? - java

In Java, covariance allows the API designer to specify that an instance may be generalised as a certain type or any of that type's subtypes. For example:
List<? extends Shape> shapes = new ArrayList<Circle>();
// where type Circle extends Shape
Contravariance goes the other way. It allows us to specify that an instance may be generalised as a certain type or supertype.
List<? super Shape> shapes = new ArrayList<Geometry>();
// where Shape extends Geometry
How is Java generic's contravariance useful? When would you choose to use it?

Here's a relevant excerpt from Java Generics and Collections:
2.4. The Get and Put Principle
It may be good practice to insert wildcards whenever possible, but how do you decide
which wildcard to use? Where should you use extends, where should you use super,
and where is it inappropriate to use a wildcard at all?
Fortunately, a simple principle determines which is appropriate.
The Get and Put Principle: use an
extends wildcard when you only get
values out of a structure, use a super
wildcard when you only put values into
a structure, and don't use a wildcard
when you both get and put.
We already saw this principle at work in the signature of the copy method:
public static <T> void copy(List<? super T> dest, List<? extends T> src)
The method gets values out of the source src, so it is declared with an extends wildcard,
and it puts values into the destination dst, so it is declared with a super wildcard.
Whenever you use an iterator, you get values out of a structure, so use an extends
wildcard. Here is a method that takes a collection of numbers, converts each to a double,
and sums them up:
public static double sum(Collection<? extends Number> nums) {
double s = 0.0;
for (Number num : nums) s += num.doubleValue();
return s;
}

Well, your second example would allow you to write:
Shape shape = getShapeFromSomewhere();
shapes.add(shape);
whereas you couldn't do that with the first form. It's not useful as often as covariance, I'll grant you.
One area where it can be useful is in terms of comparisons. For example, consider:
class AreaComparer implements Comparator<Shape>
...
You can use that to compare any two shapes... so it would be nice if we could also use it to sort a List<Circle> for example. Fortunately, we can do that with contravariance, which is why there's an overload for Collections.sort of:
public static <T> void sort(List<T> list, Comparator<? super T> c)

For example, when implementing the Collections.addAll() method, you need a collection that can contain some type T or a supertype of T. The method then looks like:
public static <T> void addAll(Collection<? super T> collection, T... objects) {
// Do something
}

Related

Java generics, a way to enforce either super or subtype

Assume I have a class and a method such as this:
class MyClass<T> {
void doStuff(Wrapper<T> wrapper) {
//impl.
}
}
Generic bounds of the parameter "wrapper" can be modified to Wrapper<? extends T> to make the method accept subtypes of T, and Wrapper<? super T> to accept super types. However, is there a way to modify MyClass such that it accepts both sub and super types of T (not any type), and there is only one method name? (there can be overloads)
I could simply go with Wrapper<?> of course, but "accept anything" is not the same as "accept something that's in the class hierarchy for T". I could also make 2 separate methods, one with <? super T> and one with <? extends T>, but then these methods would need different names, since the signature is the same after erasure.
Note: Please consider this a question out of curiosity.
You could try the following
<S extends T> void doStuff(Wrapper<? super S> wrapper)
but would need to double check this satisfies your requirements.

Question about Java generics and design of java.util.function.Function

question about Wildcard
Example:Student extends Person
Person person = new Person();
Student student = new Student();
List<? super Student> list = new ArrayList<>();
list.add(student); // success
list.add(person); // compile error
List<? extends Person> list2 = new ArrayList<>();
list2.add(person); // compile error
list2.add(student);// compile error
I have read the answer below a question "capture#1-of ? extends Object is not applicable"
You are using generic wildcard. You cannot perform add operation as class type is not determinate. You cannot add/put anything(except null) -- Aniket Thakur
Official doc:The wildcard is never used as a type argument for a generic method invocation, a generic class instance creation, or a supertype
But why could list.add(student) compile successfully ?
Design of java.util.function.Function
public interface Function<T, R>{
//...
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
}
Why before is designed to Function<? super V, ? extends T> rather than Function<V,T> when the type of return is Function<V,R> and type of the input is V ? (It still can pass compile and use flexibly)
To understand these questions, you have to understand how generics work with subtyping (which is explicitly denoted in Java using the extends keyword). Andreas mentioned the PECS rules, which are their representations in Java.
First of all, I want to point out that the codes above can be corrected by a simple cast
ArrayList<? super Student> list = new ArrayList<>();
list.add(new Student());
ArrayList<Person> a = (ArrayList<Person>) list; // a covariance
a.add(new Person());
And compiles & runs well (rather than raising any exceptions)
The reason is simple, when we have a consumer (which takes some objects and consume them, such as the add method), we expect it to take objects of type no more than(superclasses) the type T we specified, because the process of consuming needs possibly any member(variables, methods etc.) of the type it wants, and we want to ensure that type T satisfy all the members the consumer requires.
On the contrary, a producer, which produces objects for us (like the get method), has to supply objects of type no less than the specified type T so that we can access any member that T has on the object produced.
These two are closely related to subtyping forms called covariance and contravariance
As for the second question, you can refer to the implementation of Consumer<T> as well (which is somewhat simpler):
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
the reason why we need this ? super T is that: when we are combining two Consumers using the method andThen, suppose that the former Consumer takes an object of type T, we expect the later to take a object of type no more than T so it would not try to access any member that T doesn't have.
Therefore, rather than simply writing Consumer<T> after but Consumer<? super T> after, we allow the former consumer (of type T) to be combined with a consumer that takes an object not exactly of type T, but maybe smaller then T, by the convenience of covariance. That makes the following codes sound:
Consumer<Student> stu = (student) -> {};
Consumer<Person> per = (person) -> {};
stu.andThen(per);
The compose method of type Function also applies, by the same consideration.
IMO This is probably the most complex concept in vanilla Java. So let's break this down a bit. I'll start with your second question.
Function<T, R> takes an instance t of type T and returns an instance r of type R. With inheritance that means that you could supply an instance foo of type Foo if Foo extends T and similarly return bar of type Bar if Bar extends R.
As a library maintainer who wants to write a flexible generic method, it's hard, and actually impossible, to know in advance all the classes which might be used with this method which extend T and R. So how are we going to write a method that handles them? Further, the fact that these instances have types which extend the base class is none of our concern.
This is where the wildcard comes in. During the method call we say that you can use any class which meets the envelope of the required class. For the method in question, we have two different wildcards using upper and lower bounded generic type parameters:
public interface Function<T, R>{
default <V> Function<V, R> compose(Function<? super V, ? extends T> before)
Lets now say that we want to take advantage of this method... for the example lets define some basic classes:
class Animal{}
class Dog extends Animal{}
class Fruit{}
class Apple extends Fruit{}
class Fish{}
class Tuna extends Fish{}
Imagine our function and transformation is defined as below:
Function<Animal, Apple> base = ...;
Function<Fish, Animal> transformation = ...;
We can combine these functions using compose to create a new function:
Function<Fish, Apple> composed = base.compose(transformation);
This is all fine and dandy, but now imagine that in the desired output function we actually only want to use Tuna as the input. If we did not use the lower-bounded ? super V as the input type parameter for the Function we pass to compose then we would get a compiler error:
default <V> Function<V, R> compose(Function<V, ? extends T> before)
...
Function<Tuna, Apple> composed = base.compose(transformation);
> Incompatible types:
> Found: Function<Fish, Apple>, required: Function<Tuna, Apple>
This happens because the return type for the call to compose specifies V as Tuna while transformation on the other hand specifies its "V" as Fish. So now when we try to pass transformation to compose the compiler requires transformation to accept a Tuna as its V and of course Tuna does not identically match Fish.
On the other hand, the original version of the code (? super V) allows us to treat V as a lower bound (i.e. it allows "contravariance" vs. "invariance" over V). Instead of encountering a mismatch between Tuna and Fish the compiler is able to successfully apply the lower bound check ? super V which evaluates to Fish super Tuna, which is true since Tuna extends Fish.
For the other case, imagine our call is defined as:
Function<Animal, Apple> base = ...;
Function<Fish, Dog> transformation = ...;
Function<Fish, Apple> composed = base.compose(transformation);
If we did not have the wildcard ? extends T then we would get another error:
default <V> Function<V, R> compose(Function<? super V, T> before)
Function<Fish, Apple> composed = base.compose(transformation);
// error converting transformation from
// Function<Fish, Dog> to Function<Fish, Animal>
The wildcard ? extends T allows this to work as T is resolved to Animal and the wildcard resolves to Dog, which can satisfy the constraint Dog extends Animal.
For your first question; these bounds really only work in the context of a method call. During the course of the method, the wildcard will be resolved to an actual type, just as ? super V was resolved to Fish and ? extends T was resolved to Dog. Without the information from the generic signature, we would have no way for the compiler to know what class can be used on the type's methods, and therefore none are allowed.

Why is it not possible to pass a <?> or a <? extends T> generic class instance to a method expecting a <? super T>?

The PECS principle is about what kind of argument you select in a function, depending on how you will use that parameter.
My question is about the fact that, once you chose to use super (because your function possibly is a Consumer), you cannot pass to that function certain generic class instances.
Let's consider the following program:
public class Main{
public static void main(String[] args){
List<?> unbound = new ArrayList<Long>();
List<? extends Long> extendsBound = new ArrayList<Long>();
List<? super Long> superBound = new ArrayList<Long>();
takeExtend(unbound);
takeExtend(extendsBound);
takeExtend(superBound);
takeSuper(unbound);
takeSuper(extendsBound);
takeSuper(superBound);
}
static <T> void takeExtend(List<? extends T> l){}
static <T> void takeSuper(List<? super T> l){}
}
The compiler gives the following error:
error: method takeSuper in class Main cannot be applied to given
types;
takeSuper(unbound);
^ required: List<? super T> found: List<CAP#1> reason: cannot infer type-variable(s) T
(argument mismatch; List<CAP#1> cannot be converted to List<? super T>) where T is a type-variable:
T extends Object declared in method <T>takeSuper(List<? super T>) where CAP#1 is a fresh type-variable:
CAP#1 extends Object from capture of ?
I was trying to find a sort of symmetry, such as the one we have for the PECS rule, but I didn't find any.
So:
Why is it not possible to pass a <?> or a <? extends T> to a function expecting <? super T>?
Why is it possible to pass a <?> to a function expecting a <? extends T>?
Why is it possible to pass a <? super T> to a function expecting a <? extends T>?
You can think of a generic method (i.e. a method with its own type parameters) as making a set of statements about its type parameters.
For example, the method <T> someMethod(List<T>) is saying:
There exists some type T for which the type parameter of this list equals T.
Easy. All lists fit this criterion, so any list is a valid input to the method.
Everything inside the method can now make use of the knowledge that that statement is true. How is that knowledge useful? Well, if we get an item from the list, we know it matches the list's type parameter. Because we captured the type as T, we can hold a reference to the object and put it back in the list later, all still without knowing what type it really is.
The method declaration <T> someMethod(List<? extends T>) makes a slightly different claim:
There exists some type T for which the type parameter of this list is a subtype of T.
This is also trivially true for all lists. However, you might notice that it makes <T> someMethod(List<? extends T>) a bit useless. You're telling the compiler to capture the fact that items that come out of the list share some common supertype with other items that come out of the list. Unless you have, inside the method, some other consumer that is known to accept <? super T>, there's nothing you can do with that information. It's much less useful than the knowledge that all the items that come from the list are of the same type.
So, why doesn't <T> takeSuper(List<? super T>) work the same way?
The method declaration <T> takeSuper(List<? super T>) can be interpreted as claiming that:
There exists some type T for which the type parameter of this list is a supertype of T.
If we have a List<? super Long> and we pass it to a method that captures <T> takeSuper(List<? super T>) it's easy to see that a reference of type Long would satisfy T. We could pass a Long to the method as a parameter of type T, and then add it to the list from inside the method.
But what about if we have a List<?> and we capture its type using the method <T> takeSuper(List<? super T>)? By declaring the list as a List<?> we're saying that we don't currently know what its type parameter is. In doing that, we're telling the compiler that we have absolutely no way to get a reference of a type that matches the type parameter of the list. In other words, the compiler knows with certainty that no object can satisfy the type parameter T. Remember, for this method, an object is of type T if it is known to be of a type that is a subtype of the type parameter of the list. If we don't know anything about the type parameter of the list, that's impossible.
The same is true for a List<? extends Long>. We know that the items we fetch from the list will be a subtype of Long, but we don't have a lower bound for their type. We can never prove that any type is a subtype of the list's type parameter. So, for the method <T> takeSuper(List<? super T>), there is again provably no way to get a reference of type T.
Interestingly, my compiler (Java 8) doesn't complain about calling the method <T> takeSuper(List<? super T>) with a List<?> as input. I suppose it recognizes that since there's no way to get a reference of type T, there's no harm in just ignoring the useless type parameter.
Why is it not possible to pass a <?> or a <? extends T> to a function expecting <? super T>?
Consider this method:
static <T> void sillyAdd(List<? super T> l, T t){
l.add(t);
}
Now look how we could use it if this were possible:
List<Integer> onlyIntegers = new ArrayList<>();
List<? extends Number> anyNumber = onlyIntegers;
sillyAdd(anyNumber, Float.valueOf(0)); /* Not allowed... */
Integer i = onlyIntegers.get(0);
The last line would throw a ClassCastException because we were allowed to put a Float into a List<Integer>.
Why is it possible to pass a <?> to a function expecting a <? extends T>?
takeExtend(unbound);
There are no bounds on T; it could be any type. While the type parameter of unbound is unknown, it does have some type, and since T can be any type, it's a match.
Methods like this are sometimes used as a helper in some odd corners of generics. Logically, we know that the following should be no problem:
public static void rotate(List<?> l) {
l.add(l.remove(0));
}
But the rules of generics don't imply type-safety here. Instead, we can use a helper like this:
public static void rotate(List<?> l) {
helper(l);
}
private static <T> void helper(List<T> l) {
l.add(l.remove(0));
}
Why is it possible to pass a <? super T> to a function expecting a <? extends T>?
It's not, in a way. Given this example:
static <T> void takeExtend(List<? extends T> l)
List<? super Long> superBound = new ArrayList<Long>();
takeExtend(superBound);
You might think that T is inferred to be Long. That would mean that you passed a List<? super Long> to a method declared like void takeExtend(List<? extends Long> l), which seems wrong.
But T isn't inferred to be Long. If you specify Long explicitly as the type parameter, you'll see that it won't work:
Main.<Long>takeExtend(superBound);
What's actually happening is that T is inferred to be ? super Long, so the generic type of the method is something like void takeExtend(List<? extends ? super Long>). That means that everything in the list is something that extends an unknown super class of Long.
Why is it not possible to pass a <?> or a <? extends S> to a function expecting <? super T>? (Question corrected for clarity: ? extends S).
The compiler wants to infer the T, which is the bottom limit, and it can't. Every class extends Object, but there is no universal inheritance tree bottom class, which the compiler could default to.
Why is it possible to pass a <?> to a function expecting a <? extends T>?
It's about inference. You can pass a <?> because the compiler can make something out of it. Namely, it can make Object out of T. The same happens with the following:
List<?> unbound = new ArrayList<>();
Why is it possible to pass a <? super T> to a function expecting a <? extends T>?
Again, it's about inferring the upper limit now, so the compiler can default to Object. It's not interested in what ? is super to, nor whether it is super to anything at all.
I've been thinking this stuff all night long, with the amazing help of your comments, trying to find an easy-to-remember solution.
This is what I got.
A method accepting a <? extends T>, to get T, must infer the upper limit of that hierarchy. Since in Java every class is extending Object, the compiler can rely on the fact that at least the upper limit is Object. So:
if we pass a <? extends T>, the upper bound is already defined and it
will use that one
if we pass <?>, we don't know anything, but we know
that every class extends Object, so the compiler will infer Object
if we pass <? super T>, we know the lower bound, but since every class
extends Object, the compiler infer Object.
A method accepting a <? super T>, to get T, must infer the lower limit of that hierarchy. In Java by default we can count on an upper bound, but not on a lower bound. So the considerations made in the previous case are not valid anymore. So:
if we pass a <? extends T>, there is no lower bound, because the
hierarchy can be extended as much as we want
if we pass a <?>,
there is no lower bound, because the hierarchy can be extended as
much as we want
if we pass a <? super T>, a lower bound is already
defined, so we can use that one.
Recapping:
a method accepting a <? extends T> can always rely on the fact that
an upper bound exists and that is Object -> we can pass every bound to it
a method accepting a <? super T> can infer a lower bound only if it is explicitly defined in the parameter -> we can only pass a <? super T>

generic methods and wildcards

What are the differences between the following three signatures?
static <T> void foo(List<T>, Comparator<? super T>);
static <T> void bar(List<? extends T>, Comparator<T> );
static <T> void baz(List<? extends T>, Comparator<? super T>);
I know what extends and super mean in Generics. My question is whether there is a difference between foo, bar and baz. Should I make one of the parameters invariant and the other one variant in the appropriate direction, or should I make both of them variant? Does it make a difference?
PECS - Producer extends, consumer super.
To explain this "rule":
extends means the genericized object produces elements of the type. When it's a collection, it means you can only take elements from the collection, but not put them in. The comparator
super means the object consumes objects of the selected type. So you can add to the collection, but not read from it.
the lack of extends and super means you can do both for the exact type specified.
Regarding the Comparator, I don't think it makes any difference. Normally, it would be <? super T> because you the comparator consumes objects, but in all three cases you can safely invoke Collections.sort(list, comparator); (the signature of which is <? super T>)
The only difference is whether T represents the type parameter of the List, the Comparator, or something in between.
As far as the caller is concerned, the three method signatures are equivalent, i.e. whenever one of them can be used, the others can be used as well.
For the method implementation foo is probably most convenient, as it allows modifying the list without needing an additional capture conversion, which would require delegating to a helper method.
I believe that ? extends T means that the List may be generic of any type that is derived from T, whereas List<T> can only be a List of T and not any of its derived classes.

What is <? super T> syntax? [duplicate]

This question already has answers here:
Difference between <? super T> and <? extends T> in Java [duplicate]
(14 answers)
Closed 6 years ago.
I'm having trouble understanding the following syntax:
public class SortedList< T extends Comparable< ? super T> > extends LinkedList< T >
I see that class SortedList extends LinkedList. I just don't know what
T extends Comparable< ? super T>
means.
My understanding of it so far is that type T must be a type that implements Comparable...but what is < ? super T >?
super in Generics is the opposite of extends. Instead of saying the comparable's generic type has to be a subclass of T, it is saying it has to be a superclass of T. The distinction is important because extends tells you what you can get out of a class (you get at least this, perhaps a subclass). super tells you what you can put into the class (at most this, perhaps a superclass).
In this specific case, what it is saying is that the type has to implement comparable of itself or its superclass. So consider java.util.Date. It implements Comparable<Date>. But what about java.sql.Date? It implements Comparable<java.util.Date> as well.
Without the super signature, SortedList would not be able accept the type of java.sql.Date, because it doesn't implement a Comparable of itself, but rather of a super class of itself.
It's a lower-bounded wildcard.
JLS 4.5.1 Type Arguments and Wildcards
Wildcards are useful in situations where only partial knowledge about the type parameter is required. [...] An upper bound is signified by the syntax:
? extends B
where B is the upper bound. [...] it is permissible to declare lower bounds on a wildcard, using the syntax:
? super B
where B is a lower bound.
A List<? super Integer>, for example, includes List<Integer>, List<Number>, and List<Object>.
Wildcards are used to make generics more powerful and flexible; bounds are used to maintain type safety.
See also
Java language guide/Generics/More Fun with wildcards
As to how this is useful in <T extends Comparable<? super T>>, it's when you have something like Cat extends Animal implements Comparable<Animal>.
Look at the signature of Collections.sort
public static <T extends Comparable<? super T>> void sort(List<T> list)
Therefore, with a List<Cat> listOfCat, you can now Collections.sort(listOfCat).
Had it been declared as follows:
public static <T extends Comparable<T>> void sort(List<T> list)
then you'd have to have Cat implements Comparable<Cat> to use sort. By using the ? super T bounded wildcard, Collections.sort becomes more flexible.
See also
Effective Java 2nd Edition, Item 28: Use bounded wildcards to increase API flexibility
Also, PECS principle: "producer extends consumer super"
It means that T must implement Comparable<T itself or one of T's superclasses>
The sense is that because SortedList is sorted, it must know how to compare two classes of its generics T parameter. That's why T must implement Comparable<T itself or one of T's superclasses>
It means that the type T must implement Comparable of T or one of its super classes.
For example, if A extends B, if you want to use SortedList<A>, A must implement Comparable<A> or Comparable<B>, or in fact just Comparable.
This allows the list of As to be constructed with any valid comparator.
Consider the following example:
Using a type parameter defined in the class declaration
public class ArrayList extends AbstractList ... {
public boolean add(E o) // You can use the "E" here ONLY because it's already been defined as part of the class
Using a type parameter that was NOT defined in the class declaration
public <T extends Animal> void takeThing(ArrayList<T> list)
// Here we can use <T> because we declared "T" earlier in the method declaration
If the class itself doesn't use a type parameter, you can still specify one for a method, by declaring it in a really unusual (but available) space - before the return type. This method says that T can be "any type of Animal".
NOTE:
public <T extends Animal> void takeThing(ArrayList<T> list)
is NOT same as
public void takeThing(ArrayList<Animal> list)
Both are legal, but they are different. The first one indicates that you can pass in a ArrayList object instantiated as Animal or any Animal subtype like ArrayList, ArrayList or ArrayList. But, you can only pass ArrayList in the second, and NOT any of the subtypes.

Categories

Resources