Recursive function taking ages to run - java

I profiled my code and found that my program spent roughly 85% of the time executing this particular recursive function. The function aims to calculate the probability of reaching a set of states in a markov chain, given an initial position (x,y).
private static boolean condition(int n){
int i = 0;
while ( n >= i){
if( n == i*4 || n == (i*4 - 1))
return true;
i++;
}
return false;
}
public static double recursiveVal(int x, int y, double A, double B){
if(x> 6 && (x- 2 >= y)){ return 1;}
if(y> 6 && (y- 2 >= x)){ return 0;}
if(x> 5 && y> 5 && x== y){ return (A*(1-B) / (1 -(A*B) - ((1-A)*(1-B))));}
if(condition(x+ y)){
return (recursiveVal(x+1, y,A,B)*A + recursiveVal(x, y+1,A,B)*(1-A));
}
else{
return (recursiveVal(x+1, y,A,B)*(1-B) + recursiveVal(x,y+1,A,B)*B);
}
}
I was once told that 99% of recursive functions could be replaced by a while loop. I'm having trouble doing this though. Does anyone know how I could improve the execution time or rewrite this as a iterative loop?
Thanks

You could try to use a technique called memoization which basically caches previously computed results for recursive calls.
Wikipedia article on memoization.
As a side note, I recommend reformatting your code a bit. Here is a simplified version of yoru code.
private static boolean condition(int n){
for (int i = 0; i <= n; i++)
if(n == i*4 || n == (i * 4 - 1))
return true;
return false;
}
public static double recursiveVal(int x, int y, double A, double B){
if (x > 6 && (x - 2 >= y))
return 1;
if (y > 6 && (y - 2 >= x))
return 0;
if(x > 5 && y > 5 && x == y)
return A*(1-B) / (1 -(A*B) - ((1-A)*(1-B)));
double val1 = recursiveVal(x+1, y, A, B);
double val2 = recursiveVal(x, y+1, A, B);
return condition(x + y)
? A * val1 + val2 * (1-A)
: (1-B) * val1 + B * val2;
}

If you want to refactor a recursive function to an iterative one the steps are as follows:
1) Determine the base case of the Recursion. Base case, when reached, causes Recursion to end. Every Recursion must have a defined base case. In addition, each recursive call must make a progress towards the base case (otherwise recursive calls would be performed infinitely).
2) Implement a loop that will iterate until the base case is reached.
3) Make a progress towards the base case. Send the new arguments to the top of the loop instead to the recursive method.

Example of how trying to understand what it is doing can make the code faster/simpler...
This method is trying to determine if 'n' is a multiple of 4 or n+1 is a multiple of 4. This can be written much shorter as.
private static boolean condition(int n){
return (n+1) & 3 <= 1;
}

To convert this to an iterative form, note that you are computing a function on two (discrete) variables. You can use a table to store the values of the function, and fill in the table in a specific order so that you have already computed values you need by the time you need them. (in this case, from higher values of x and y).
In this case, the boundary cases (corresponding to the base cases in the original recursion) are:
f(7, y..5), f(8, 6)
f(x..5, 7), f(6, 8)
f(7, 7)
Then we fill in f(7, 6) and f(6, 7) and then proceed "downwards" - i.e.
f(6, 6), f(5, 6) ... f(x, 6), f(6, 5), f(5, 5) ... f(x, 5) ... f(x, y).
Note that what looks like function call syntax corresponds to a table lookup (it really converts to array syntax).

Related

Check if square root is a perfect integer in Java [duplicate]

I'm looking for the fastest way to determine if a long value is a perfect square (i.e. its square root is another integer):
I've done it the easy way, by using the built-in Math.sqrt()
function, but I'm wondering if there is a way to do it faster by
restricting yourself to integer-only domain.
Maintaining a lookup table is impractical (since there are about
231.5 integers whose square is less than 263).
Here is the very simple and straightforward way I'm doing it now:
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
long tst = (long)(Math.sqrt(n) + 0.5);
return tst*tst == n;
}
Note: I'm using this function in many Project Euler problems. So no one else will ever have to maintain this code. And this kind of micro-optimization could actually make a difference, since part of the challenge is to do every algorithm in less than a minute, and this function will need to be called millions of times in some problems.
I've tried the different solutions to the problem:
After exhaustive testing, I found that adding 0.5 to the result of Math.sqrt() is not necessary, at least not on my machine.
The fast inverse square root was faster, but it gave incorrect results for n >= 410881. However, as suggested by BobbyShaftoe, we can use the FISR hack for n < 410881.
Newton's method was a good bit slower than Math.sqrt(). This is probably because Math.sqrt() uses something similar to Newton's Method, but implemented in the hardware so it's much faster than in Java. Also, Newton's Method still required use of doubles.
A modified Newton's method, which used a few tricks so that only integer math was involved, required some hacks to avoid overflow (I want this function to work with all positive 64-bit signed integers), and it was still slower than Math.sqrt().
Binary chop was even slower. This makes sense because the binary chop will on average require 16 passes to find the square root of a 64-bit number.
According to John's tests, using or statements is faster in C++ than using a switch, but in Java and C# there appears to be no difference between or and switch.
I also tried making a lookup table (as a private static array of 64 boolean values). Then instead of either switch or or statement, I would just say if(lookup[(int)(n&0x3F)]) { test } else return false;. To my surprise, this was (just slightly) slower. This is because array bounds are checked in Java.
I figured out a method that works ~35% faster than your 6bits+Carmack+sqrt code, at least with my CPU (x86) and programming language (C/C++). Your results may vary, especially because I don't know how the Java factor will play out.
My approach is threefold:
First, filter out obvious answers. This includes negative numbers and looking at the last 4 bits. (I found looking at the last six didn't help.) I also answer yes for 0. (In reading the code below, note that my input is int64 x.)
if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )
return false;
if( x == 0 )
return true;
Next, check if it's a square modulo 255 = 3 * 5 * 17. Because that's a product of three distinct primes, only about 1/8 of the residues mod 255 are squares. However, in my experience, calling the modulo operator (%) costs more than the benefit one gets, so I use bit tricks involving 255 = 2^8-1 to compute the residue. (For better or worse, I am not using the trick of reading individual bytes out of a word, only bitwise-and and shifts.)
int64 y = x;
y = (y & 4294967295LL) + (y >> 32);
y = (y & 65535) + (y >> 16);
y = (y & 255) + ((y >> 8) & 255) + (y >> 16);
// At this point, y is between 0 and 511. More code can reduce it farther.
To actually check if the residue is a square, I look up the answer in a precomputed table.
if( bad255[y] )
return false;
// However, I just use a table of size 512
Finally, try to compute the square root using a method similar to Hensel's lemma. (I don't think it's applicable directly, but it works with some modifications.) Before doing that, I divide out all powers of 2 with a binary search:
if((x & 4294967295LL) == 0)
x >>= 32;
if((x & 65535) == 0)
x >>= 16;
if((x & 255) == 0)
x >>= 8;
if((x & 15) == 0)
x >>= 4;
if((x & 3) == 0)
x >>= 2;
At this point, for our number to be a square, it must be 1 mod 8.
if((x & 7) != 1)
return false;
The basic structure of Hensel's lemma is the following. (Note: untested code; if it doesn't work, try t=2 or 8.)
int64 t = 4, r = 1;
t <<= 1; r += ((x - r * r) & t) >> 1;
t <<= 1; r += ((x - r * r) & t) >> 1;
t <<= 1; r += ((x - r * r) & t) >> 1;
// Repeat until t is 2^33 or so. Use a loop if you want.
The idea is that at each iteration, you add one bit onto r, the "current" square root of x; each square root is accurate modulo a larger and larger power of 2, namely t/2. At the end, r and t/2-r will be square roots of x modulo t/2. (Note that if r is a square root of x, then so is -r. This is true even modulo numbers, but beware, modulo some numbers, things can have even more than 2 square roots; notably, this includes powers of 2.) Because our actual square root is less than 2^32, at that point we can actually just check if r or t/2-r are real square roots. In my actual code, I use the following modified loop:
int64 r, t, z;
r = start[(x >> 3) & 1023];
do {
z = x - r * r;
if( z == 0 )
return true;
if( z < 0 )
return false;
t = z & (-z);
r += (z & t) >> 1;
if( r > (t >> 1) )
r = t - r;
} while( t <= (1LL << 33) );
The speedup here is obtained in three ways: precomputed start value (equivalent to ~10 iterations of the loop), earlier exit of the loop, and skipping some t values. For the last part, I look at z = r - x * x, and set t to be the largest power of 2 dividing z with a bit trick. This allows me to skip t values that wouldn't have affected the value of r anyway. The precomputed start value in my case picks out the "smallest positive" square root modulo 8192.
Even if this code doesn't work faster for you, I hope you enjoy some of the ideas it contains. Complete, tested code follows, including the precomputed tables.
typedef signed long long int int64;
int start[1024] =
{1,3,1769,5,1937,1741,7,1451,479,157,9,91,945,659,1817,11,
1983,707,1321,1211,1071,13,1479,405,415,1501,1609,741,15,339,1703,203,
129,1411,873,1669,17,1715,1145,1835,351,1251,887,1573,975,19,1127,395,
1855,1981,425,453,1105,653,327,21,287,93,713,1691,1935,301,551,587,
257,1277,23,763,1903,1075,1799,1877,223,1437,1783,859,1201,621,25,779,
1727,573,471,1979,815,1293,825,363,159,1315,183,27,241,941,601,971,
385,131,919,901,273,435,647,1493,95,29,1417,805,719,1261,1177,1163,
1599,835,1367,315,1361,1933,1977,747,31,1373,1079,1637,1679,1581,1753,1355,
513,1539,1815,1531,1647,205,505,1109,33,1379,521,1627,1457,1901,1767,1547,
1471,1853,1833,1349,559,1523,967,1131,97,35,1975,795,497,1875,1191,1739,
641,1149,1385,133,529,845,1657,725,161,1309,375,37,463,1555,615,1931,
1343,445,937,1083,1617,883,185,1515,225,1443,1225,869,1423,1235,39,1973,
769,259,489,1797,1391,1485,1287,341,289,99,1271,1701,1713,915,537,1781,
1215,963,41,581,303,243,1337,1899,353,1245,329,1563,753,595,1113,1589,
897,1667,407,635,785,1971,135,43,417,1507,1929,731,207,275,1689,1397,
1087,1725,855,1851,1873,397,1607,1813,481,163,567,101,1167,45,1831,1205,
1025,1021,1303,1029,1135,1331,1017,427,545,1181,1033,933,1969,365,1255,1013,
959,317,1751,187,47,1037,455,1429,609,1571,1463,1765,1009,685,679,821,
1153,387,1897,1403,1041,691,1927,811,673,227,137,1499,49,1005,103,629,
831,1091,1449,1477,1967,1677,697,1045,737,1117,1737,667,911,1325,473,437,
1281,1795,1001,261,879,51,775,1195,801,1635,759,165,1871,1645,1049,245,
703,1597,553,955,209,1779,1849,661,865,291,841,997,1265,1965,1625,53,
1409,893,105,1925,1297,589,377,1579,929,1053,1655,1829,305,1811,1895,139,
575,189,343,709,1711,1139,1095,277,993,1699,55,1435,655,1491,1319,331,
1537,515,791,507,623,1229,1529,1963,1057,355,1545,603,1615,1171,743,523,
447,1219,1239,1723,465,499,57,107,1121,989,951,229,1521,851,167,715,
1665,1923,1687,1157,1553,1869,1415,1749,1185,1763,649,1061,561,531,409,907,
319,1469,1961,59,1455,141,1209,491,1249,419,1847,1893,399,211,985,1099,
1793,765,1513,1275,367,1587,263,1365,1313,925,247,1371,1359,109,1561,1291,
191,61,1065,1605,721,781,1735,875,1377,1827,1353,539,1777,429,1959,1483,
1921,643,617,389,1809,947,889,981,1441,483,1143,293,817,749,1383,1675,
63,1347,169,827,1199,1421,583,1259,1505,861,457,1125,143,1069,807,1867,
2047,2045,279,2043,111,307,2041,597,1569,1891,2039,1957,1103,1389,231,2037,
65,1341,727,837,977,2035,569,1643,1633,547,439,1307,2033,1709,345,1845,
1919,637,1175,379,2031,333,903,213,1697,797,1161,475,1073,2029,921,1653,
193,67,1623,1595,943,1395,1721,2027,1761,1955,1335,357,113,1747,1497,1461,
1791,771,2025,1285,145,973,249,171,1825,611,265,1189,847,1427,2023,1269,
321,1475,1577,69,1233,755,1223,1685,1889,733,1865,2021,1807,1107,1447,1077,
1663,1917,1129,1147,1775,1613,1401,555,1953,2019,631,1243,1329,787,871,885,
449,1213,681,1733,687,115,71,1301,2017,675,969,411,369,467,295,693,
1535,509,233,517,401,1843,1543,939,2015,669,1527,421,591,147,281,501,
577,195,215,699,1489,525,1081,917,1951,2013,73,1253,1551,173,857,309,
1407,899,663,1915,1519,1203,391,1323,1887,739,1673,2011,1585,493,1433,117,
705,1603,1111,965,431,1165,1863,533,1823,605,823,1179,625,813,2009,75,
1279,1789,1559,251,657,563,761,1707,1759,1949,777,347,335,1133,1511,267,
833,1085,2007,1467,1745,1805,711,149,1695,803,1719,485,1295,1453,935,459,
1151,381,1641,1413,1263,77,1913,2005,1631,541,119,1317,1841,1773,359,651,
961,323,1193,197,175,1651,441,235,1567,1885,1481,1947,881,2003,217,843,
1023,1027,745,1019,913,717,1031,1621,1503,867,1015,1115,79,1683,793,1035,
1089,1731,297,1861,2001,1011,1593,619,1439,477,585,283,1039,1363,1369,1227,
895,1661,151,645,1007,1357,121,1237,1375,1821,1911,549,1999,1043,1945,1419,
1217,957,599,571,81,371,1351,1003,1311,931,311,1381,1137,723,1575,1611,
767,253,1047,1787,1169,1997,1273,853,1247,413,1289,1883,177,403,999,1803,
1345,451,1495,1093,1839,269,199,1387,1183,1757,1207,1051,783,83,423,1995,
639,1155,1943,123,751,1459,1671,469,1119,995,393,219,1743,237,153,1909,
1473,1859,1705,1339,337,909,953,1771,1055,349,1993,613,1393,557,729,1717,
511,1533,1257,1541,1425,819,519,85,991,1693,503,1445,433,877,1305,1525,
1601,829,809,325,1583,1549,1991,1941,927,1059,1097,1819,527,1197,1881,1333,
383,125,361,891,495,179,633,299,863,285,1399,987,1487,1517,1639,1141,
1729,579,87,1989,593,1907,839,1557,799,1629,201,155,1649,1837,1063,949,
255,1283,535,773,1681,461,1785,683,735,1123,1801,677,689,1939,487,757,
1857,1987,983,443,1327,1267,313,1173,671,221,695,1509,271,1619,89,565,
127,1405,1431,1659,239,1101,1159,1067,607,1565,905,1755,1231,1299,665,373,
1985,701,1879,1221,849,627,1465,789,543,1187,1591,923,1905,979,1241,181};
bool bad255[512] =
{0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
0,0,1,1,0,1,1,1,1,0,1,1,1,1,1,0,0,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,
1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,1,1,0,1,1,1,
0,1,0,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,1,1,1,1,1,0,1,
1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,1,1,0,0,1,1,1,1,1,1,
1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,1,1,1,1,
1,1,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,
1,1,1,0,0,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,
1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,1,1,1,
0,0};
inline bool square( int64 x ) {
// Quickfail
if( x < 0 || (x&2) || ((x & 7) == 5) || ((x & 11) == 8) )
return false;
if( x == 0 )
return true;
// Check mod 255 = 3 * 5 * 17, for fun
int64 y = x;
y = (y & 4294967295LL) + (y >> 32);
y = (y & 65535) + (y >> 16);
y = (y & 255) + ((y >> 8) & 255) + (y >> 16);
if( bad255[y] )
return false;
// Divide out powers of 4 using binary search
if((x & 4294967295LL) == 0)
x >>= 32;
if((x & 65535) == 0)
x >>= 16;
if((x & 255) == 0)
x >>= 8;
if((x & 15) == 0)
x >>= 4;
if((x & 3) == 0)
x >>= 2;
if((x & 7) != 1)
return false;
// Compute sqrt using something like Hensel's lemma
int64 r, t, z;
r = start[(x >> 3) & 1023];
do {
z = x - r * r;
if( z == 0 )
return true;
if( z < 0 )
return false;
t = z & (-z);
r += (z & t) >> 1;
if( r > (t >> 1) )
r = t - r;
} while( t <= (1LL << 33) );
return false;
}
I'm pretty late to the party, but I hope to provide a better answer; shorter and (assuming my benchmark is correct) also much faster.
long goodMask; // 0xC840C04048404040 computed below
{
for (int i=0; i<64; ++i) goodMask |= Long.MIN_VALUE >>> (i*i);
}
public boolean isSquare(long x) {
// This tests if the 6 least significant bits are right.
// Moving the to be tested bit to the highest position saves us masking.
if (goodMask << x >= 0) return false;
final int numberOfTrailingZeros = Long.numberOfTrailingZeros(x);
// Each square ends with an even number of zeros.
if ((numberOfTrailingZeros & 1) != 0) return false;
x >>= numberOfTrailingZeros;
// Now x is either 0 or odd.
// In binary each odd square ends with 001.
// Postpone the sign test until now; handle zero in the branch.
if ((x&7) != 1 | x <= 0) return x == 0;
// Do it in the classical way.
// The correctness is not trivial as the conversion from long to double is lossy!
final long tst = (long) Math.sqrt(x);
return tst * tst == x;
}
The first test catches most non-squares quickly. It uses a 64-item table packed in a long, so there's no array access cost (indirection and bounds checks). For a uniformly random long, there's a 81.25% probability of ending here.
The second test catches all numbers having an odd number of twos in their factorization. The method Long.numberOfTrailingZeros is very fast as it gets JIT-ed into a single i86 instruction.
After dropping the trailing zeros, the third test handles numbers ending with 011, 101, or 111 in binary, which are no perfect squares. It also cares about negative numbers and also handles 0.
The final test falls back to double arithmetic. As double has only 53 bits mantissa,
the conversion from long to double includes rounding for big values. Nonetheless, the test is correct (unless the proof is wrong).
Trying to incorporate the mod255 idea wasn't successful.
You'll have to do some benchmarking. The best algorithm will depend on the distribution of your inputs.
Your algorithm may be nearly optimal, but you might want to do a quick check to rule out some possibilities before calling your square root routine. For example, look at the last digit of your number in hex by doing a bit-wise "and." Perfect squares can only end in 0, 1, 4, or 9 in base 16, So for 75% of your inputs (assuming they are uniformly distributed) you can avoid a call to the square root in exchange for some very fast bit twiddling.
Kip benchmarked the following code implementing the hex trick. When testing numbers 1 through 100,000,000, this code ran twice as fast as the original.
public final static boolean isPerfectSquare(long n)
{
if (n < 0)
return false;
switch((int)(n & 0xF))
{
case 0: case 1: case 4: case 9:
long tst = (long)Math.sqrt(n);
return tst*tst == n;
default:
return false;
}
}
When I tested the analogous code in C++, it actually ran slower than the original. However, when I eliminated the switch statement, the hex trick once again make the code twice as fast.
int isPerfectSquare(int n)
{
int h = n & 0xF; // h is the last hex "digit"
if (h > 9)
return 0;
// Use lazy evaluation to jump out of the if statement as soon as possible
if (h != 2 && h != 3 && h != 5 && h != 6 && h != 7 && h != 8)
{
int t = (int) floor( sqrt((double) n) + 0.5 );
return t*t == n;
}
return 0;
}
Eliminating the switch statement had little effect on the C# code.
I was thinking about the horrible times I've spent in Numerical Analysis course.
And then I remember, there was this function circling around the 'net from the Quake Source code:
float Q_rsqrt( float number )
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 = number * 0.5F;
y = number;
i = * ( long * ) &y; // evil floating point bit level hacking
i = 0x5f3759df - ( i >> 1 ); // wtf?
y = * ( float * ) &i;
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
#ifndef Q3_VM
#ifdef __linux__
assert( !isnan(y) ); // bk010122 - FPE?
#endif
#endif
return y;
}
Which basically calculates a square root, using Newton's approximation function (cant remember the exact name).
It should be usable and might even be faster, it's from one of the phenomenal id software's game!
It's written in C++ but it should not be too hard to reuse the same technique in Java once you get the idea:
I originally found it at: http://www.codemaestro.com/reviews/9
Newton's method explained at wikipedia: http://en.wikipedia.org/wiki/Newton%27s_method
You can follow the link for more explanation of how it works, but if you don't care much, then this is roughly what I remember from reading the blog and from taking the Numerical Analysis course:
the * (long*) &y is basically a fast convert-to-long function so integer operations can be applied on the raw bytes.
the 0x5f3759df - (i >> 1); line is a pre-calculated seed value for the approximation function.
the * (float*) &i converts the value back to floating point.
the y = y * ( threehalfs - ( x2 * y * y ) ) line bascially iterates the value over the function again.
The approximation function gives more precise values the more you iterate the function over the result. In Quake's case, one iteration is "good enough", but if it wasn't for you... then you could add as much iteration as you need.
This should be faster because it reduces the number of division operations done in naive square rooting down to a simple divide by 2 (actually a * 0.5F multiply operation) and replace it with a few fixed number of multiplication operations instead.
I'm not sure if it would be faster, or even accurate, but you could use John Carmack's Magical Square Root, algorithm to solve the square root faster. You could probably easily test this for all possible 32 bit integers, and validate that you actually got correct results, as it's only an appoximation. However, now that I think about it, using doubles is approximating also, so I'm not sure how that would come into play.
If you do a binary chop to try to find the "right" square root, you can fairly easily detect if the value you've got is close enough to tell:
(n+1)^2 = n^2 + 2n + 1
(n-1)^2 = n^2 - 2n + 1
So having calculated n^2, the options are:
n^2 = target: done, return true
n^2 + 2n + 1 > target > n^2 : you're close, but it's not perfect: return false
n^2 - 2n + 1 < target < n^2 : ditto
target < n^2 - 2n + 1 : binary chop on a lower n
target > n^2 + 2n + 1 : binary chop on a higher n
(Sorry, this uses n as your current guess, and target for the parameter. Apologise for the confusion!)
I don't know whether this will be faster or not, but it's worth a try.
EDIT: The binary chop doesn't have to take in the whole range of integers, either (2^x)^2 = 2^(2x), so once you've found the top set bit in your target (which can be done with a bit-twiddling trick; I forget exactly how) you can quickly get a range of potential answers. Mind you, a naive binary chop is still only going to take up to 31 or 32 iterations.
I ran my own analysis of several of the algorithms in this thread and came up with some new results. You can see those old results in the edit history of this answer, but they're not accurate, as I made a mistake, and wasted time analyzing several algorithms which aren't close. However, pulling lessons from several different answers, I now have two algorithms that crush the "winner" of this thread. Here's the core thing I do differently than everyone else:
// This is faster because a number is divisible by 2^4 or more only 6% of the time
// and more than that a vanishingly small percentage.
while((x & 0x3) == 0) x >>= 2;
// This is effectively the same as the switch-case statement used in the original
// answer.
if((x & 0x7) != 1) return false;
However, this simple line, which most of the time adds one or two very fast instructions, greatly simplifies the switch-case statement into one if statement. However, it can add to the runtime if many of the tested numbers have significant power-of-two factors.
The algorithms below are as follows:
Internet - Kip's posted answer
Durron - My modified answer using the one-pass answer as a base
DurronTwo - My modified answer using the two-pass answer (by #JohnnyHeggheim), with some other slight modifications.
Here is a sample runtime if the numbers are generated using Math.abs(java.util.Random.nextLong())
0% Scenario{vm=java, trial=0, benchmark=Internet} 39673.40 ns; ?=378.78 ns # 3 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 37785.75 ns; ?=478.86 ns # 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 35978.10 ns; ?=734.10 ns # 10 trials
benchmark us linear runtime
Internet 39.7 ==============================
Durron 37.8 ============================
DurronTwo 36.0 ===========================
vm: java
trial: 0
And here is a sample runtime if it's run on the first million longs only:
0% Scenario{vm=java, trial=0, benchmark=Internet} 2933380.84 ns; ?=56939.84 ns # 10 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 2243266.81 ns; ?=50537.62 ns # 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronTwo} 3159227.68 ns; ?=10766.22 ns # 3 trials
benchmark ms linear runtime
Internet 2.93 ===========================
Durron 2.24 =====================
DurronTwo 3.16 ==============================
vm: java
trial: 0
As you can see, DurronTwo does better for large inputs, because it gets to use the magic trick very very often, but gets clobbered compared to the first algorithm and Math.sqrt because the numbers are so much smaller. Meanwhile, the simpler Durron is a huge winner because it never has to divide by 4 many many times in the first million numbers.
Here's Durron:
public final static boolean isPerfectSquareDurron(long n) {
if(n < 0) return false;
if(n == 0) return true;
long x = n;
// This is faster because a number is divisible by 16 only 6% of the time
// and more than that a vanishingly small percentage.
while((x & 0x3) == 0) x >>= 2;
// This is effectively the same as the switch-case statement used in the original
// answer.
if((x & 0x7) == 1) {
long sqrt;
if(x < 410881L)
{
int i;
float x2, y;
x2 = x * 0.5F;
y = x;
i = Float.floatToRawIntBits(y);
i = 0x5f3759df - ( i >> 1 );
y = Float.intBitsToFloat(i);
y = y * ( 1.5F - ( x2 * y * y ) );
sqrt = (long)(1.0F/y);
} else {
sqrt = (long) Math.sqrt(x);
}
return sqrt*sqrt == x;
}
return false;
}
And DurronTwo
public final static boolean isPerfectSquareDurronTwo(long n) {
if(n < 0) return false;
// Needed to prevent infinite loop
if(n == 0) return true;
long x = n;
while((x & 0x3) == 0) x >>= 2;
if((x & 0x7) == 1) {
long sqrt;
if (x < 41529141369L) {
int i;
float x2, y;
x2 = x * 0.5F;
y = x;
i = Float.floatToRawIntBits(y);
//using the magic number from
//http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
//since it more accurate
i = 0x5f375a86 - (i >> 1);
y = Float.intBitsToFloat(i);
y = y * (1.5F - (x2 * y * y));
y = y * (1.5F - (x2 * y * y)); //Newton iteration, more accurate
sqrt = (long) ((1.0F/y) + 0.2);
} else {
//Carmack hack gives incorrect answer for n >= 41529141369.
sqrt = (long) Math.sqrt(x);
}
return sqrt*sqrt == x;
}
return false;
}
And my benchmark harness: (Requires Google caliper 0.1-rc5)
public class SquareRootBenchmark {
public static class Benchmark1 extends SimpleBenchmark {
private static final int ARRAY_SIZE = 10000;
long[] trials = new long[ARRAY_SIZE];
#Override
protected void setUp() throws Exception {
Random r = new Random();
for (int i = 0; i < ARRAY_SIZE; i++) {
trials[i] = Math.abs(r.nextLong());
}
}
public int timeInternet(int reps) {
int trues = 0;
for(int i = 0; i < reps; i++) {
for(int j = 0; j < ARRAY_SIZE; j++) {
if(SquareRootAlgs.isPerfectSquareInternet(trials[j])) trues++;
}
}
return trues;
}
public int timeDurron(int reps) {
int trues = 0;
for(int i = 0; i < reps; i++) {
for(int j = 0; j < ARRAY_SIZE; j++) {
if(SquareRootAlgs.isPerfectSquareDurron(trials[j])) trues++;
}
}
return trues;
}
public int timeDurronTwo(int reps) {
int trues = 0;
for(int i = 0; i < reps; i++) {
for(int j = 0; j < ARRAY_SIZE; j++) {
if(SquareRootAlgs.isPerfectSquareDurronTwo(trials[j])) trues++;
}
}
return trues;
}
}
public static void main(String... args) {
Runner.main(Benchmark1.class, args);
}
}
UPDATE: I've made a new algorithm that is faster in some scenarios, slower in others, I've gotten different benchmarks based on different inputs. If we calculate modulo 0xFFFFFF = 3 x 3 x 5 x 7 x 13 x 17 x 241, we can eliminate 97.82% of numbers that cannot be squares. This can be (sort of) done in one line, with 5 bitwise operations:
if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;
The resulting index is either 1) the residue, 2) the residue + 0xFFFFFF, or 3) the residue + 0x1FFFFFE. Of course, we need to have a lookup table for residues modulo 0xFFFFFF, which is about a 3mb file (in this case stored as ascii text decimal numbers, not optimal but clearly improvable with a ByteBuffer and so forth. But since that is precalculation it doesn't matter so much. You can find the file here (or generate it yourself):
public final static boolean isPerfectSquareDurronThree(long n) {
if(n < 0) return false;
if(n == 0) return true;
long x = n;
while((x & 0x3) == 0) x >>= 2;
if((x & 0x7) == 1) {
if (!goodLookupSquares[(int) ((n & 0xFFFFFFl) + ((n >> 24) & 0xFFFFFFl) + (n >> 48))]) return false;
long sqrt;
if(x < 410881L)
{
int i;
float x2, y;
x2 = x * 0.5F;
y = x;
i = Float.floatToRawIntBits(y);
i = 0x5f3759df - ( i >> 1 );
y = Float.intBitsToFloat(i);
y = y * ( 1.5F - ( x2 * y * y ) );
sqrt = (long)(1.0F/y);
} else {
sqrt = (long) Math.sqrt(x);
}
return sqrt*sqrt == x;
}
return false;
}
I load it into a boolean array like this:
private static boolean[] goodLookupSquares = null;
public static void initGoodLookupSquares() throws Exception {
Scanner s = new Scanner(new File("24residues_squares.txt"));
goodLookupSquares = new boolean[0x1FFFFFE];
while(s.hasNextLine()) {
int residue = Integer.valueOf(s.nextLine());
goodLookupSquares[residue] = true;
goodLookupSquares[residue + 0xFFFFFF] = true;
goodLookupSquares[residue + 0x1FFFFFE] = true;
}
s.close();
}
Example runtime. It beat Durron (version one) in every trial I ran.
0% Scenario{vm=java, trial=0, benchmark=Internet} 40665.77 ns; ?=566.71 ns # 10 trials
33% Scenario{vm=java, trial=0, benchmark=Durron} 38397.60 ns; ?=784.30 ns # 10 trials
67% Scenario{vm=java, trial=0, benchmark=DurronThree} 36171.46 ns; ?=693.02 ns # 10 trials
benchmark us linear runtime
Internet 40.7 ==============================
Durron 38.4 ============================
DurronThree 36.2 ==========================
vm: java
trial: 0
It should be much faster to use Newton's method to calculate the Integer Square Root, then square this number and check, as you do in your current solution. Newton's method is the basis for the Carmack solution mentioned in some other answers. You should be able to get a faster answer since you're only interested in the integer part of the root, allowing you to stop the approximation algorithm sooner.
Another optimization that you can try: If the Digital Root of a number doesn't end in
1, 4, 7, or 9 the number is not a perfect square. This can be used as a quick way to eliminate 60% of your inputs before applying the slower square root algorithm.
I want this function to work with all
positive 64-bit signed integers
Math.sqrt() works with doubles as input parameters, so you won't get accurate results for integers bigger than 2^53.
An integer problem deserves an integer solution. Thus
Do binary search on the (non-negative) integers to find the greatest integer t such that t**2 <= n. Then test whether r**2 = n exactly. This takes time O(log n).
If you don't know how to binary search the positive integers because the set is unbounded, it's easy. You starting by computing your increasing function f (above f(t) = t**2 - n) on powers of two. When you see it turn positive, you've found an upper bound. Then you can do standard binary search.
Just for the record, another approach is to use the prime decomposition. If every factor of the decomposition is even, then the number is a perfect square. So what you want is to see if a number can be decomposed as a product of squares of prime numbers. Of course, you don't need to obtain such a decomposition, just to see if it exists.
First build a table of squares of prime numbers which are lower than 2^32. This is far smaller than a table of all integers up to this limit.
A solution would then be like this:
boolean isPerfectSquare(long number)
{
if (number < 0) return false;
if (number < 2) return true;
for (int i = 0; ; i++)
{
long square = squareTable[i];
if (square > number) return false;
while (number % square == 0)
{
number /= square;
}
if (number == 1) return true;
}
}
I guess it's a bit cryptic. What it does is checking in every step that the square of a prime number divide the input number. If it does then it divides the number by the square as long as it is possible, to remove this square from the prime decomposition.
If by this process, we came to 1, then the input number was a decomposition of square of prime numbers. If the square becomes larger than the number itself, then there is no way this square, or any larger squares, can divide it, so the number can not be a decomposition of squares of prime numbers.
Given nowadays' sqrt done in hardware and the need to compute prime numbers here, I guess this solution is way slower. But it should give better results than solution with sqrt which won't work over 2^54, as says mrzl in his answer.
It's been pointed out that the last d digits of a perfect square can only take on certain values. The last d digits (in base b) of a number n is the same as the remainder when n is divided by bd, ie. in C notation n % pow(b, d).
This can be generalized to any modulus m, ie. n % m can be used to rule out some percentage of numbers from being perfect squares. The modulus you are currently using is 64, which allows 12, ie. 19% of remainders, as possible squares. With a little coding I found the modulus 110880, which allows only 2016, ie. 1.8% of remainders as possible squares. So depending on the cost of a modulus operation (ie. division) and a table lookup versus a square root on your machine, using this modulus might be faster.
By the way if Java has a way to store a packed array of bits for the lookup table, don't use it. 110880 32-bit words is not much RAM these days and fetching a machine word is going to be faster than fetching a single bit.
The following simplification of maaartinus's solution appears to shave a few percentage points off the runtime, but I'm not good enough at benchmarking to produce a benchmark I can trust:
long goodMask; // 0xC840C04048404040 computed below
{
for (int i=0; i<64; ++i) goodMask |= Long.MIN_VALUE >>> (i*i);
}
public boolean isSquare(long x) {
// This tests if the 6 least significant bits are right.
// Moving the to be tested bit to the highest position saves us masking.
if (goodMask << x >= 0) return false;
// Remove an even number of trailing zeros, leaving at most one.
x >>= (Long.numberOfTrailingZeros(x) & (-2);
// Repeat the test on the 6 least significant remaining bits.
if (goodMask << x >= 0 | x <= 0) return x == 0;
// Do it in the classical way.
// The correctness is not trivial as the conversion from long to double is lossy!
final long tst = (long) Math.sqrt(x);
return tst * tst == x;
}
It would be worth checking how omitting the first test,
if (goodMask << x >= 0) return false;
would affect performance.
For performance, you very often have to do some compromsies. Others have expressed various methods, however, you noted Carmack's hack was faster up to certain values of N. Then, you should check the "n" and if it is less than that number N, use Carmack's hack, else use some other method described in the answers here.
This is the fastest Java implementation I could come up with, using a combination of techniques suggested by others in this thread.
Mod-256 test
Inexact mod-3465 test (avoids integer division at the cost of some false positives)
Floating-point square root, round and compare with input value
I also experimented with these modifications but they did not help performance:
Additional mod-255 test
Dividing the input value by powers of 4
Fast Inverse Square Root (to work for high values of N it needs 3 iterations, enough to make it slower than the hardware square root function.)
public class SquareTester {
public static boolean isPerfectSquare(long n) {
if (n < 0) {
return false;
} else {
switch ((byte) n) {
case -128: case -127: case -124: case -119: case -112:
case -111: case -103: case -95: case -92: case -87:
case -79: case -71: case -64: case -63: case -60:
case -55: case -47: case -39: case -31: case -28:
case -23: case -15: case -7: case 0: case 1:
case 4: case 9: case 16: case 17: case 25:
case 33: case 36: case 41: case 49: case 57:
case 64: case 65: case 68: case 73: case 81:
case 89: case 97: case 100: case 105: case 113:
case 121:
long i = (n * INV3465) >>> 52;
if (! good3465[(int) i]) {
return false;
} else {
long r = round(Math.sqrt(n));
return r*r == n;
}
default:
return false;
}
}
}
private static int round(double x) {
return (int) Double.doubleToRawLongBits(x + (double) (1L << 52));
}
/** 3465<sup>-1</sup> modulo 2<sup>64</sup> */
private static final long INV3465 = 0x8ffed161732e78b9L;
private static final boolean[] good3465 =
new boolean[0x1000];
static {
for (int r = 0; r < 3465; ++ r) {
int i = (int) ((r * r * INV3465) >>> 52);
good3465[i] = good3465[i+1] = true;
}
}
}
You should get rid of the 2-power part of N right from the start.
2nd Edit
The magical expression for m below should be
m = N - (N & (N-1));
and not as written
End of 2nd edit
m = N & (N-1); // the lawest bit of N
N /= m;
byte = N & 0x0F;
if ((m % 2) || (byte !=1 && byte !=9))
return false;
1st Edit:
Minor improvement:
m = N & (N-1); // the lawest bit of N
N /= m;
if ((m % 2) || (N & 0x07 != 1))
return false;
End of 1st edit
Now continue as usual. This way, by the time you get to the floating point part, you already got rid of all the numbers whose 2-power part is odd (about half), and then you only consider 1/8 of whats left. I.e. you run the floating point part on 6% of the numbers.
Project Euler is mentioned in the tags and many of the problems in it require checking numbers >> 2^64. Most of the optimizations mentioned above don't work easily when you are working with an 80 byte buffer.
I used java BigInteger and a slightly modified version of Newton's method, one that works better with integers. The problem was that exact squares n^2 converged to (n-1) instead of n because n^2-1 = (n-1)(n+1) and the final error was just one step below the final divisor and the algorithm terminated. It was easy to fix by adding one to the original argument before computing the error. (Add two for cube roots, etc.)
One nice attribute of this algorithm is that you can immediately tell if the number is a perfect square - the final error (not correction) in Newton's method will be zero. A simple modification also lets you quickly calculate floor(sqrt(x)) instead of the closest integer. This is handy with several Euler problems.
The sqrt call is not perfectly accurate, as has been mentioned, but it's interesting and instructive that it doesn't blow away the other answers in terms of speed. After all, the sequence of assembly language instructions for a sqrt is tiny. Intel has a hardware instruction, which isn't used by Java I believe because it doesn't conform to IEEE.
So why is it slow? Because Java is actually calling a C routine through JNI, and it's actually slower to do so than to call a Java subroutine, which itself is slower than doing it inline. This is very annoying, and Java should have come up with a better solution, ie building in floating point library calls if necessary. Oh well.
In C++, I suspect all the complex alternatives would lose on speed, but I haven't checked them all.
What I did, and what Java people will find usefull, is a simple hack, an extension of the special case testing suggested by A. Rex. Use a single long value as a bit array, which isn't bounds checked. That way, you have 64 bit boolean lookup.
typedef unsigned long long UVLONG
UVLONG pp1,pp2;
void init2() {
for (int i = 0; i < 64; i++) {
for (int j = 0; j < 64; j++)
if (isPerfectSquare(i * 64 + j)) {
pp1 |= (1 << j);
pp2 |= (1 << i);
break;
}
}
cout << "pp1=" << pp1 << "," << pp2 << "\n";
}
inline bool isPerfectSquare5(UVLONG x) {
return pp1 & (1 << (x & 0x3F)) ? isPerfectSquare(x) : false;
}
The routine isPerfectSquare5 runs in about 1/3 the time on my core2 duo machine. I suspect that further tweaks along the same lines could reduce the time further on average, but every time you check, you are trading off more testing for more eliminating, so you can't go too much farther on that road.
Certainly, rather than having a separate test for negative, you could check the high 6 bits the same way.
Note that all I'm doing is eliminating possible squares, but when I have a potential case I have to call the original, inlined isPerfectSquare.
The init2 routine is called once to initialize the static values of pp1 and pp2.
Note that in my implementation in C++, I'm using unsigned long long, so since you're signed, you'd have to use the >>> operator.
There is no intrinsic need to bounds check the array, but Java's optimizer has to figure this stuff out pretty quickly, so I don't blame them for that.
I like the idea to use an almost correct method on some of the input. Here is a version with a higher "offset". The code seems to work and passes my simple test case.
Just replace your:
if(n < 410881L){...}
code with this one:
if (n < 11043908100L) {
//John Carmack hack, converted to Java.
// See: http://www.codemaestro.com/reviews/9
int i;
float x2, y;
x2 = n * 0.5F;
y = n;
i = Float.floatToRawIntBits(y);
//using the magic number from
//http://www.lomont.org/Math/Papers/2003/InvSqrt.pdf
//since it more accurate
i = 0x5f375a86 - (i >> 1);
y = Float.intBitsToFloat(i);
y = y * (1.5F - (x2 * y * y));
y = y * (1.5F - (x2 * y * y)); //Newton iteration, more accurate
sqrt = Math.round(1.0F / y);
} else {
//Carmack hack gives incorrect answer for n >= 11043908100.
sqrt = (long) Math.sqrt(n);
}
Considering for general bit length (though I have used specific type here), I tried to design simplistic algo as below. Simple and obvious check for 0,1,2 or <0 is required initially.
Following is simple in sense that it doesn't try to use any existing maths functions. Most of the operator can be replaced with bit-wise operators. I haven't tested with any bench mark data though. I'm neither expert at maths or computer algorithm design in particular, I would love to see you pointing out problem. I know there is lots of improvement chances there.
int main()
{
unsigned int c1=0 ,c2 = 0;
unsigned int x = 0;
unsigned int p = 0;
int k1 = 0;
scanf("%d",&p);
if(p % 2 == 0) {
x = p/2;
}
else {
x = (p/2) +1;
}
while(x)
{
if((x*x) > p) {
c1 = x;
x = x/2;
}else {
c2 = x;
break;
}
}
if((p%2) != 0)
c2++;
while(c2 < c1)
{
if((c2 * c2 ) == p) {
k1 = 1;
break;
}
c2++;
}
if(k1)
printf("\n Perfect square for %d", c2);
else
printf("\n Not perfect but nearest to :%d :", c2);
return 0;
}
This a rework from decimal to binary of the old Marchant calculator algorithm (sorry, I don't have a reference), in Ruby, adapted specifically for this question:
def isexactsqrt(v)
value = v.abs
residue = value
root = 0
onebit = 1
onebit <<= 8 while (onebit < residue)
onebit >>= 2 while (onebit > residue)
while (onebit > 0)
x = root + onebit
if (residue >= x) then
residue -= x
root = x + onebit
end
root >>= 1
onebit >>= 2
end
return (residue == 0)
end
Here's a workup of something similar (there may be coding style/smells or clunky O/O - it's the algorithm that counts, and C++ is not my home language). In this case, we're looking for residue == 0:
#include <iostream>
using namespace std;
typedef unsigned long long int llint;
class ISqrt { // Integer Square Root
llint value; // Integer whose square root is required
llint root; // Result: floor(sqrt(value))
llint residue; // Result: value-root*root
llint onebit, x; // Working bit, working value
public:
ISqrt(llint v = 2) { // Constructor
Root(v); // Take the root
};
llint Root(llint r) { // Resets and calculates new square root
value = r; // Store input
residue = value; // Initialise for subtracting down
root = 0; // Clear root accumulator
onebit = 1; // Calculate start value of counter
onebit <<= (8*sizeof(llint)-2); // Set up counter bit as greatest odd power of 2
while (onebit > residue) {onebit >>= 2; }; // Shift down until just < value
while (onebit > 0) {
x = root ^ onebit; // Will check root+1bit (root bit corresponding to onebit is always zero)
if (residue >= x) { // Room to subtract?
residue -= x; // Yes - deduct from residue
root = x + onebit; // and step root
};
root >>= 1;
onebit >>= 2;
};
return root;
};
llint Residue() { // Returns residue from last calculation
return residue;
};
};
int main() {
llint big, i, q, r, v, delta;
big = 0; big = (big-1); // Kludge for "big number"
ISqrt b; // Make q sqrt generator
for ( i = big; i > 0 ; i /= 7 ) { // for several numbers
q = b.Root(i); // Get the square root
r = b.Residue(); // Get the residue
v = q*q+r; // Recalc original value
delta = v-i; // And diff, hopefully 0
cout << i << ": " << q << " ++ " << r << " V: " << v << " Delta: " << delta << "\n";
};
return 0;
};
I checked all of the possible results when the last n bits of a square is observed. By successively examining more bits, up to 5/6th of inputs can be eliminated. I actually designed this to implement Fermat's Factorization algorithm, and it is very fast there.
public static boolean isSquare(final long val) {
if ((val & 2) == 2 || (val & 7) == 5) {
return false;
}
if ((val & 11) == 8 || (val & 31) == 20) {
return false;
}
if ((val & 47) == 32 || (val & 127) == 80) {
return false;
}
if ((val & 191) == 128 || (val & 511) == 320) {
return false;
}
// if((val & a == b) || (val & c == d){
// return false;
// }
if (!modSq[(int) (val % modSq.length)]) {
return false;
}
final long root = (long) Math.sqrt(val);
return root * root == val;
}
The last bit of pseudocode can be used to extend the tests to eliminate more values. The tests above are for k = 0, 1, 2, 3
a is of the form (3 << 2k) - 1
b is of the form (2 << 2k)
c is of the form (2 << 2k + 2) - 1
d is of the form (2 << 2k - 1) * 10
It first tests whether it has a square residual with moduli of power of two, then it tests based on a final modulus, then it uses the Math.sqrt to do a final test. I came up with the idea from the top post, and attempted to extend upon it. I appreciate any comments or suggestions.
Update: Using the test by a modulus, (modSq) and a modulus base of 44352, my test runs in 96% of the time of the one in the OP's update for numbers up to 1,000,000,000.
Here is a divide and conquer solution.
If the square root of a natural number (number) is a natural number (solution), you can easily determine a range for solution based on the number of digits of number:
number has 1 digit: solution in range = 1 - 4
number has 2 digits: solution in range = 3 - 10
number has 3 digits: solution in range = 10 - 40
number has 4 digits: solution in range = 30 - 100
number has 5 digits: solution in range = 100 - 400
Notice the repetition?
You can use this range in a binary search approach to see if there is a solution for which:
number == solution * solution
Here is the code
Here is my class SquareRootChecker
public class SquareRootChecker {
private long number;
private long initialLow;
private long initialHigh;
public SquareRootChecker(long number) {
this.number = number;
initialLow = 1;
initialHigh = 4;
if (Long.toString(number).length() % 2 == 0) {
initialLow = 3;
initialHigh = 10;
}
for (long i = 0; i < Long.toString(number).length() / 2; i++) {
initialLow *= 10;
initialHigh *= 10;
}
if (Long.toString(number).length() % 2 == 0) {
initialLow /= 10;
initialHigh /=10;
}
}
public boolean checkSquareRoot() {
return findSquareRoot(initialLow, initialHigh, number);
}
private boolean findSquareRoot(long low, long high, long number) {
long check = low + (high - low) / 2;
if (high >= low) {
if (number == check * check) {
return true;
}
else if (number < check * check) {
high = check - 1;
return findSquareRoot(low, high, number);
}
else {
low = check + 1;
return findSquareRoot(low, high, number);
}
}
return false;
}
}
And here is an example on how to use it.
long number = 1234567;
long square = number * number;
SquareRootChecker squareRootChecker = new SquareRootChecker(square);
System.out.println(square + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677489: true"
long notSquare = square + 1;
squareRootChecker = new SquareRootChecker(notSquare);
System.out.println(notSquare + ": " + squareRootChecker.checkSquareRoot()); //Prints "1524155677490: false"
Newton's Method with integer arithmetic
If you wish to avoid non-integer operations you could use the method below. It basically uses Newton's Method modified for integer arithmetic.
/**
* Test if the given number is a perfect square.
* #param n Must be greater than 0 and less
* than Long.MAX_VALUE.
* #return <code>true</code> if n is a perfect
* square, or <code>false</code> otherwise.
*/
public static boolean isSquare(long n)
{
long x1 = n;
long x2 = 1L;
while (x1 > x2)
{
x1 = (x1 + x2) / 2L;
x2 = n / x1;
}
return x1 == x2 && n % x1 == 0L;
}
This implementation can not compete with solutions that use Math.sqrt. However, its performance can be improved by using the filtering mechanisms described in some of the other posts.
Square Root of a number, given that the number is a perfect square.
The complexity is log(n)
/**
* Calculate square root if the given number is a perfect square.
*
* Approach: Sum of n odd numbers is equals to the square root of n*n, given
* that n is a perfect square.
*
* #param number
* #return squareRoot
*/
public static int calculateSquareRoot(int number) {
int sum=1;
int count =1;
int squareRoot=1;
while(sum<number) {
count+=2;
sum+=count;
squareRoot++;
}
return squareRoot;
}
Here is the simplest and most concise way, although I do not know how it compares in terms of CPU cycles. This works great if you only wish to know if the root is a whole number. If you really care if it is an integer, you can also figure that out. Here is a simple (and pure) function:
private static final MathContext precision = new MathContext(20);
private static final Function<Long, Boolean> isRootWhole = (n) -> {
long digit = n % 10;
if (digit == 2 || digit == 3 || digit == 7 || digit == 8) {
return false;
}
return new BigDecimal(n).sqrt(precision).scale() == 0;
};
If you do not need micro-optimization, this answer is better in terms of simplicity and maintainability. If you will be calculating negative numbers, you will need to handle that accordingly, and send the absolute value into the function. I have included a minor optimization because no perfect squares have a tens digit of 2, 3, 7, or 8 due to quadratic residues mod 10.
On my CPU, a run of this algorithm on 0 - 10,000,000 took an average of 1000 - 1100 nanoseconds per calculation.
If you are performing a lesser number of calculations, the earlier calculations take a bit longer.
I had a negative comment that my previous edit did not work for large numbers. The OP mentioned Longs, and the largest perfect square that is a Long is 9223372030926249001, so this method works for all Longs.
This question got me wondering, so I did some simple coding and I'm presenting it here because I think it's interesting, relevant, but I don't know how useful. There's a simple algorithm
a_n+1 = (a_n + x/a_n)/2
for calculating square roots, but it's meant to be used for decimals. I wondered what would happen if I just coded the same algorithm using integer maths. Would it even converge on the right answer? I didn't know, so I wrote a program...
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <math.h>
_Bool isperfectsquare(uint64_t x, uint64_t *isqrtx) {
// NOTE: isqrtx approximate for non-squares. (benchmarked at 162ns 3GHz i5)
uint32_t i;
uint64_t ai;
ai = 1 + ((x & 0xffff000000000000) >> 32) + ((x & 0xffff00000000) >> 24) + ((x & 0xffff0000) >> 16);
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = (ai + x/ai)/2;
ai = ai & 0xffffffff;
if (isqrtx != NULL) isqrtx[0] = ai;
return ai*ai == x;
}
void main() {
uint64_t x, isqrtx;
uint64_t i;
for (i=1; i<0x100000000; i++) {
if (!isperfectsquare(i*i, &isqrtx)) {
printf("Failed at %li", i);
exit(1);
}
}
printf("All OK.\n");
}
So, it turns out that 12 iterations of the formula is enough to give correct results for all 64 bit unsigned longs that are perfect squares, and of course, non-squares will return false.
simon#simon-Inspiron-N5040:~$ time ./isqrt.bin
All OK.
real 11m37.096s
user 11m35.053s
sys 0m0.272s
So 697s/2^32 is approx 162ns. As it is, the function will have the same runtime for all inputs. Some of the measures detailed elsewhere in the discussion could speed it up for non-squares by checking the last four bits etc. Hope someone finds this interesting as I did.
If speed is a concern, why not partition off the most commonly used set of inputs and their values to a lookup table and then do whatever optimized magic algorithm you have come up with for the exceptional cases?
"I'm looking for the fastest way to determine if a long value is a perfect square (i.e. its square root is another integer)."
The answers are impressive, but I failed to see a simple check :
check whether the first number on the right of the long it a member of the set (0,1,4,5,6,9) . If it is not, then it cannot possibly be a 'perfect square' .
eg.
4567 - cannot be a perfect square.
It ought to be possible to pack the 'cannot be a perfect square if the last X digits are N' much more efficiently than that! I'll use java 32 bit ints, and produce enough data to check the last 16 bits of the number - that's 2048 hexadecimal int values.
...
Ok. Either I have run into some number theory that is a little beyond me, or there is a bug in my code. In any case, here is the code:
public static void main(String[] args) {
final int BITS = 16;
BitSet foo = new BitSet();
for(int i = 0; i< (1<<BITS); i++) {
int sq = (i*i);
sq = sq & ((1<<BITS)-1);
foo.set(sq);
}
System.out.println("int[] mayBeASquare = {");
for(int i = 0; i< 1<<(BITS-5); i++) {
int kk = 0;
for(int j = 0; j<32; j++) {
if(foo.get((i << 5) | j)) {
kk |= 1<<j;
}
}
System.out.print("0x" + Integer.toHexString(kk) + ", ");
if(i%8 == 7) System.out.println();
}
System.out.println("};");
}
and here are the results:
(ed: elided for poor performance in prettify.js; view revision history to see.)

Recursive method for x^n optimised for when n is even

I need to write a recursive method using Java called power that takes a double x and an integer n and that returns x^n. Here is what I have so far.
public static double power(double x, int n) {
if (n == 0)
return 1;
if (n == 1)
return x;
else
return x * (power(x, n-1));
}
This code works as expected. However, I am trying to go the extra mile and perform the following optional exercise:
"Optional challenge: you can make this method more efficient, when n is even, using x^n = (x^(n/2))^2."
I am not sure how to implement that last formula when n is even. I do not think I can use recursion for that. I have tried to implement the following, but it also does not work because I cannot take a double to the power of an int.
if (n%2 == 0)
return (x^(n/2))^2;
Can somebody point me in the right direction? I feel like I am missing something obvious. All help appreciated.
It's exactly the same principle as for x^n == x*(x^(n-1)): Insert your recursive function for x^(n/2) and (...)^2, but make sure you don't enter an infinite recursion for n == 2 (as 2 is even, too):
if (n % 2 == 0 && n > 2)
return power(power(x, n / 2), 2);
}
Alternatively, you could just use an intermediate variable:
if (n % 2 == 0) {
double s = power(x, n / 2);
return s * s;
}
I'd probably just handle 2 as a special case, too -- and avoid the "and"-condition and extra variable:
public static double power(double x, int n) {
if (n == 0) return 1;
if (n == 1) return x;
if (n == 2) return x * x;
if (n % 2 == 0) return power(power(x, n / 2), 2);
return x * (power(x, n - 1));
}
P.S. I think this should work, too :)
public static double power(double x, int n) {
if (n == 0) return 1;
if (n == 1) return x;
if (n == 2) return x * x;
return power(x, n % 2) * power(power(x, n / 2), 2);
}
When n is even, the formula is exactly what you wrote: divide n by two, call power recursively, and square the result.
When n is odd, the formula is a little more complex: subtract 1 from n, make a recursive call for n/2, square the result, and multiply by x.
if (n%2 == 0)
return (x^(n/2))^2;
else
return x*(x^(n/2))^2;
n/2 truncates the result, so subtraction of 1 is not done explicitly. Here is an implementation in Java:
public static double power(double x, int n) {
if (n == 0) return 1;
if (n == 1) return x;
double pHalf = power(x, n/2);
if (n%2 == 0) {
return pHalf*pHalf;
} else {
return x*pHalf*pHalf;
}
}
Demo.
Hint: The ^ operation won't perform exponentiation in Java, but the function you wrote, power will.
Also, don't forget squaring a number is the same as just multiplying it by itself. No function call needed.
Making a small change to your function, it will reduce the number of recursive calls made:
public static double power(double x, int n) {
if (n == 0) {
return 1;
}
if (n == 1) {
return x;
}
if (n % 2 == 0) {
double temp = power(x, n / 2);
return temp * temp;
} else {
return x * (power(x, n - 1));
}
}
Since
x^(2n) = (x^n)^2
you can add this rule to your method, either using the power function you wrote, as Stefan Haustein suggested, or using the regular multiplication operator, since it seems you are allowed to do that.
Note that there is no need for both the base cases n=1 and n=0, one of them suffices (prefferably use the base case n=0, since otherwise your method would not be defined for n=0).
public static double power(double x, int n) {
if (n == 0)
return 1;
else if (n % 2 == 0)
double val = power(x, n/2);
return val * val;
else
return x * (power(x, n-1));
}
There is no need to check that n>2 in any of the cases.
This just reminds me more optimisation could be done
and this following code.
class Solution:
# #param x, a float
# #param n, a integer
# #return a float
def pow(self, x, n):
if n<0:
return 1.0/self.pow(x,-n)
elif n==0:
return 1.0
elif n==1:
return x
else:
m = n & (-n)
if( m==n ):
r1 = self.pow(x,n>>1)
return r1*r1
else:
return self.pow(x,m)*self.pow(x,n-m)
what is more intermediate result could be memorised and avoid redundant computation.

Recursion and multiplication

Is this possible guys? This is homework I have, and my teacher obviously believes it is, but it seems to me that it's impossible not to use addition or multiplication outside of the short-multiplication method.
Write (and provide a tester for) a recursive algorithm:
int multiply(int x, int y)
to multiply two positive integers together without using the *
operator. Do not just add x to itself y times!!!
(Hint: Write a recursive method that will multiply an integer by a
value in the range 0 .. 10. Then write a second recursive method to
implement the multiplication algorithm you learned to multiply
multi-digit numbers in elementary school.)
My issue is that once you break down any multi digit number and starting adding those together you have to use multiplication of numbers greater than 10, i.e 22 * 6 is 2 * 6 + 20 * 6 ... so am I totally missing something?
EDIT
I guess I should have added this is the code I have,
public int mult(int x, int y){
return x == 0 ? 0 : (mult(x-1, y) + y);
}
which is perfect, but as far as I understand the instructions, that's breaking do not just add x to itself y times. I personally believe it isn't, but my teacher hasn't been very clear, and I'd like to know if there's some other way that I havn't thought of, sorry for the confusion.
Yes, it's possible. Yes, I think you're missing something. Try writing down the steps you'd follow to manually multiply two numbers, the way you learned in elementary school.
Then turn those steps into code.
My interpretation of the assignment is that the teacher would like the student to implement a recursive algorithm to perform Grid method multiplication (the kind we learn in elementary school).
For example, multiplying 34 x 13 would be done like so...
34
* 13
====
12
90
40
+300
====
442
I didn't have easy access to a Java development environment, so I wrote the code in C# but the algorithm should be simple enough to convert into Java.
public int Multiply(int x, int y)
{
if (x < 0) throw new ArgumentException("must be positive integer", "x");
if (y < 0) throw new ArgumentException("must be positive integer", "y");
if (x == 0 || y == 0) return 0; // obvious quick-exit condition
// integer division
int xDivBy10 = x / 10;
int yDivBy10 = y / 10;
bool xIsSingleDigit = xDivBy10 == 0;
bool yIsSingleDigit = yDivBy10 == 0;
// base case
if (xIsSingleDigit && yIsSingleDigit)
{
return MultiplySingleDigits(x, y);
}
// otherwise, use grid multiplication recursively
// http://en.wikipedia.org/wiki/Grid_method_multiplication
if (xIsSingleDigit) // y must not be a single digit
{
return (Multiply(x, yDivBy10) * 10) + Multiply(x, y % 10);
}
if (yIsSingleDigit) // x must not be a single digit
{
return (Multiply(xDivBy10, y) * 10) + Multiply(x % 10, y);
}
// else - x and y are both numbers which are not single digits
return (Multiply(x, yDivBy10) * 10) + Multiply(x, y % 10); // the same code as the "if (xIsSingleDigit)" case
}
// technically, this algorith can multiply any positive integers
// but I have restricted it to only single digits as per the assignment's requirements/hint
private int MultiplySingleDigits(int x, int y)
{
if (x < 0 || x > 9) throw new ArgumentException("must be in range 0 - 9 (inclusive)", "x");
if (y < 0 || y > 9) throw new ArgumentException("must be in range 0 - 9 (inclusive)", "y");
if (x == 0 || y == 0) return 0; // base case
return x + MultiplySingleDigits(x, y - 1);
}
NOTES:
This approach still uses the * operator but not for actually multiplying x and y, it is used to increase other sub-products by multiples of 10
Many parts of this code could be simplified/refactored but I specifically left them expanded to make the steps more obvious
Of course you can do it.
First of all, think about the condition. If some number is 0, then the result is? Right.. zero.
So.. You'll have if x is zero or y is zero return 0
Now.. saying X * Y is like saying "X, Y times", which is like writing: X + .... + X (Y times).
So, you'll have something like:
x + multiply(x, y - 1);
You'll have to consider the case in which one of the numbers is negative (But if you understand the basic, I believe you can easily do it).
This solution will work for both when y>=0 and y<0
public int multiply(final int x, final int y) {
if (y != 0 && x != 0) {
if (y > 0) {
return multiply(x, y - 1) + x;
} else {
return multiply(x, y + 1) - x;
}
}
return 0;
}
Easily possible.
int multiply(int x, int y) {
if(y == 0) {
return 0;
}
return x + multiply(x, y - 1);
}
The above fails to take into account the case where y is negative, but you wouldn't want me to do all your work for you . . .
static int Multiply(int x, int y)
{
if (y > 0 && x > 0)
return (x + Multiply(x, y - 1));
if (y < 0 && x > 0)
return -Multiply(x, -y);
if (x < 0 && y > 0)
return -Multiply(-x, y);
if (x < 0 && y < 0)
return Multiply(-x, -y);
return 0;
}

Reducing recursive calls on pow recursion method?

Had a question on how to reduce the amount of recursive calls on a self implementation of the pow method. Here is what I wrote, can this be improved?
public static int pow(double a, int b) {
boolean isNegative = false;
if(b < 0) {
isNegative = true;
}
if(b == 0) {
return 1;
}
else if(b == 1) {
return (isNegative ? (1 / b) : b);
}
return (isNegative ? ((1 / b) * (1 / b) * pow(a, b + 2)) : (b * b * pow(a, b - 2)));
}
Yes, it can be improved.
Think about it this way:
If b is even, then a^b = a^(b/2) * a^(b/2).
If b is odd, then a^b = a^(b/2) * a^(b/2) * a (where / means integer division).
Code (brain-compiled, coffee hasn't kicked in yet, etc.):
public static double pow(double a, int b) {
if (b < 0)
return 1 / pow(a, -b);
if (b == 0)
return 1;
double halfPow = pow(a, b/2);
if (b % 2 == 0)
return halfPow * halfPow;
else
return halfPow * halfPow * a;
}
This gives you O(log b) recursive calls, as opposed to O(n) in your solution.
Have a look at memoization.
EDIT: Fundamentally, you've got three problems:
The code doesn't work (as of the edit, it now completely ignores a)
The code is too complicated
The code is recursing more than you want it to
Trying to fix the third of these without fixing the first is pointless.
Your first port of call should be some unit tests. They will prove very quickly that your code is currently broken, and give you some confidence that when you've fixed it, you can then change it and know whether or not you've broken anything.
Then you should aim to simplify it. For example, you could easily start your method with:
if (b < 0)
{
return 1 / pow(a, -b);
}
... then you don't need to worry about negative values of b any more.
Finally you can look at what you've got left and try to turn a recursive solution into an iterative solution.

Binary Search to Compute Square root (Java)

I need help writing a program that uses binary search to recursively compute a square root (rounded down to the nearest integer) of an input non-negative integer.
This is what I have so far:
import java.util.Scanner;
public class Sqrt {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("Enter A Valid Integer: ");
int value = console.nextInt();
calculateSquareRoot(value);
}
public static int calculateSquareRoot(int value) {
while (value > 0) {
double sqrt = (int) Math.sqrt(value);
System.out.println(sqrt);
}
return -1;
}
}
The fact that it has to use binary search to compute the square root is the part that is confusing me. If anyone has any suggestions on how to do this, it would be greatly appreciated. Thank you
Teh codez:
def sqrt(n):
low = 0
high = n+1
while high-low > 1:
mid = (low+high) / 2
if mid*mid <= n:
low = mid
else:
high = mid
return low
To understand it, just think of the loop invariant, namely:
lowlow <= n < highhigh
If you understand this code, writing a recursive version should be trivial.
You can use this java method (Iterative)
public class Solution {
// basic idea is using binary search
public int sqrt(int x) {
if(x == 0 || x == 1) {
return x;
}
int start = 1, end = x / 2;
while(start <= end) {
int mid = start + (end - start) / 2;
if(mid == x / mid) {
return mid;
}
if(mid < x / mid) {
start = mid + 1;
} else {
end = mid - 1;
}
}
return start - 1;
}
}
You can drive your own recursive method
Essentially the idea is that you can use binary search to get closer to the answer.
For example, say you are given 14 as an input. Then, you are sure that the square root of 14 is between 0 and 14. So, 0 and 14 are your current "boundaries". You bisect these two end points and obtain the mid point: 7. Then you try 7 as a candidate - If the square of 7 is greater than 14, then you have a new boundary (0,7); otherwise you would have a new boundary (7,14).
You keep repeating this bisection until you are "close enough" to the answer, for example you have a number square of which is within 14-0.01 and 14+0.01 - then you declare that as the answer.
OK, that much hint should be good enough for HW. Don't forget to cite StackOverflow.
I'm assuming this is homework so I'm only going to give a hint.
To conduct a binary search, you pick a point as close as possible the median of possible correct values. So the question becomes what is a typical median value for a square root, that is either constant or can be computed via multiplication. Obviously using an arbitrary constant will not work for most inputs, so you need to arrive at your guess by multiplying the input by a constant.
As for what that constant C to multiply by should be, that should be chosen based on what values you expect as input. For example, if you expect your inputs to be around 250,000, then:
C * 250,000 ~= sqrt(250,000)
C = sqrt(250,000) / 250,000
C = 500 / 250,000
C = 1 / 500
I see two important computing concepts in your question. The first is binary search, the second is recursion. Since this is homework, here is a contribution towards understanding a binary search, recursion and how to think about them.
Think of binary search as dividing the solution "space" in half, keeping the half the solution is in and doing that in succession so that the process converges on the solution. The key concepts for doing this are that you need to engineer a solution "space" that has the following properties:
1) can be subdivided, usually in half or at least two pieces
2) of the two pieces after subdivision, there is a way to determine which half has the solution so that the process can be repeated on only one half.
Recursion involves a function (method in O-O speak) invoking itself. Recursion works really well for a process that converges to a conclusion. It either recurses forever or until you run out of some resource, usually memory, and it fatally stops. The two key concepts for recursion are:
1) convergence through some invariance (more on invariance below).
2) termination condition (one that recognizes sufficient convergence).
Now, for your square root routine. The requirements for the routine are:
1) Integer input.
2) Integer square-root approximation that gives the floor integer closest to the actual square root.
3) Use recursion.
4) Use binary search.
It helps to know some mathematics about square roots for this. Elementary calculus and analytical geometry concepts are helpful too. Lets do some reasoning.
We have an arbitrary positive integer x. We want its root y. If we choose some test value for y, we can see if it is the root of x if y * y = x. If y is too big, y * y > x. if y is too small, y * y < x. We also know that 0 <= root <= x and that square-roots of 0 and 1 are trivially zero and 1. Since we are looking for largest integer where y * y <= x (i.e. a floor value) we'll have to account for that too.
Here is some mathematical reasoning to help. We know that x = y * y where y is the square root of x. That means: y = x/y.
Hmmm... what happens if y is to large to be the square root of x? Then: x < y * y and: x/y < y which means x/y is also too small to be the square root of x. So we know that, for y too large, x/y < square-root of x < y. So, lets find a new y, say y1, between x/y and y as a new test value. The average of x/y and y will do. y1 = (x/y0 + y0)/2 will give a y1 that is closer to the square root of x than y0 if y0 is too large.
Does this converge? Well, in mathematics using positive real numbers, the average will always be above the value but getting closer each iteration. This satisfies the condition that we successively divide the solution "space" into two parts and know which of the two to keep. In this case, we successively calculate new values below previous ones and below which the answer still lies, allowing us to discard all values above the new one. We stop when we reach a condition where no more new values above the answer exist. Using computers, however, results in binary approximations of real numbers. With integers, there is truncation in division. This may affect the convergence beneficially or adversely. In addition, your answer is supposed to be the largest integer smaller than or equal to the square root. It's wise to take a look at the kind of convergence we will get.
Because of integer division turncation, y1 = (x/y0 + y0)/2 will converge until successive iterations reach an integer root or a floor value for (i.e. the largest integer less than) the root. This is ideal. If we start with a proposed value for the root that has to be larger than the root, say x itself, the first value for yn where yn * yn <= x is the desired result.
The simple answer is that, when we start with y0 > y, the first new yn that is less than or equal to y, then y - yn < 1. That is, yn is now the floor value for which we've been looking and we now have a termination condition that exactly satisfies the conditions for the required answer.
Here are basic iterative and recursive solutions. The solutions don't incude safety features to ensure negative values are not input for x. The one major concern is to avoid dividing by zero in case someone wants to find the square root of 0. Since that is a trivial answer, both the recursive and iterative methods return 0 before division by zero can take place. Both the recursive and iterative solutions work with the trivial cases for finding the square roots of 0 and of 1.
There is another analysis that always has to be done with int and long arithmetic in Java. A major concern is integer overflow since Java does nothing about int or long overflow. Overflow results in twos-complement values (look that up elsewhere) that can lead to bogus results and Java does not throw exceptions with int or long overflow.
In this case, it is easy to avoid arithmetic that could result in an internal overflow with large values of x. If we create a termination condition such as y0 * y0 < x we risk overflow if x is greater than the square root of Integer.MAX_VALUE since y0 * y0, an intermediate value, will immediately exceed the maximum int value. However, we can rearrange the termination condition to y0 < x / y0. We still have a problem with the calculations: ((x / y0) + y0) / 2) if x and y0 are Integer.MAX_VALUE since it wll attempt Integer.MAX_VALUE + 1. However, we can always start with a value less than x that is guaranteed to be > y. x / 2 works for all values of x > 1. Since the square root of x where x is either 0 or 1 is simply x, we can easily test for those values and simply return the correct and trivial value. You can construct code to prevent using values < 0 or values > Integer.MAX_VALUE. The same can be applied if we use long instead of int. Welcome to computing in the real world!
public static int intSqRootRecursive (int x) {
// square roots of 0 and 1 are trivial and x / 2 for
// the y0 parameter will cause a divide-by-zero exception
if (x == 0 || x == 1) {
return x;
}
// starting with x / 2 avoids overflow issues
return intSqRootRecursive (x, x / 2);
} // end intSqRootRecursive
private static int intSqRootRecursive(int x, int y0) {
// square roots of 0 and 1 are trivial
// y0 == 0 will cause a divide-by-zero exception
if (x == 0 || x == 1) {
return x;
} // end if
if (y0 > x / y0) {
int y1 = ((x / y0) + y0) / 2;
return intSqRootRecursive(x, y1);
} else {
return y0;
} // end if...else
} // end intSqRootRecursive
public static int intSqRootIterative(int x) {
// square roots of 0 and 1 are trivial and
// y == 0 will cause a divide-by-zero exception
if (x == 0 || x == 1) {
return x;
} // end if
int y;
// starting with y = x / 2 avoids overflow issues
for (y = x / 2; y > x / y; y = ((x / y) + y) / 2);
return y;
} // end intSqRootIterative
You can test the recursive solution to find out how many instances will result on the frame stack, but you will see that it converges very fast. It's interesting to see that the iterative solution is much smaller and faster than the recursive one, something that is often not the case and is why recursion gets used where it can be predicted that stack resources are sufficient for the recursion depth.
Here is the recursive solution in Java using binary search :
public class FindSquareRoot {
public static void main(String[] args) {
int inputNumber = 50;
System.out.println(findSquareRoot(1, inputNumber, inputNumber));
}
public static int findSquareRoot(int left, int right, int inputNumber){
// base condition
if (inputNumber ==0 || inputNumber == 1){
return inputNumber;
}
int mid = (left + right)/2;
// if square of mid value is less or equal to input value and
// square of mid+1 is less than input value. We found the answer.
if (mid*mid <= inputNumber && (mid+1)*(mid+1) > inputNumber){
return mid;
}
// if input number is greater than square of mid, we need
// to find in right hand side of mid else in left hand side.
if (mid*mid < inputNumber){
return findSquareRoot(mid+1, right, inputNumber);
}
else{
return findSquareRoot(left, mid-1, inputNumber);
}
}
}
Iterative binary solution:
public static double sqrt(int n) {
double low = 0;
double high = n;
double mid = (high - low) / 2;
while (Math.abs((mid * mid) - n) > 0.000000000001) {
if ((mid * mid) > n) {
high = mid;
mid = (high - low) / 2;
} else{
low = mid;
mid = mid + ((high - low) / 2);
}
}
return mid;
}
edst solution is good, but there is a mistake in line 11:
mid = (high - low) / 2;
should be
mid = low + (high - low) / 2;

Categories

Resources