Generating series using Java,
1*3*5 + 2*5*8 + 3*7*11......
And show the sum.
I tried this way, but didn't work. Any better algorithm to generate this series?
public static void main(String[] args) {
int sum1 = 1;
int sum2 = 0;
int sum3 = 0;
int num = 0;;
for(int i=1; i<5; i++) {
for(int j=1; j<3; j++) {
for(int k=1; k <= i+1; k++) {
num++;
}
sum1 *= num;
}
sum2 += sum1;
}
}
Since you need to generate the sum of a series of N elements, you only need a single loop (no need for nested loops).
You should notice that the elements of the series can be computed as:
Element(1) = 1 * 3 * 5
...
Element(i) = i * j * k
Element(i+1) = (i+1) + (j+2) * (k+3)
Therefore, you can use 3 variables to calculate the current element to be added to the sum.
int sum = 0;
int j = 3;
int k = 5;
for(int i = 1; i <= N; i++) {
sum += i * j * k;
j+=2;
k+=3;
}
or
int sum = 0;
for(int i = 1, j = 3, k = 5; i <= N; i++, j+=2, k+=3) {
sum += i * j * k;
}
You can try the next simple code
public static void main(String[] args) {
// TODO Auto-generated method stub
int sum1 = 0;
int sum2 = 0;
int sum3 = 0;
int num = 0;
int series = 10;
int result = 0;
for(int i=1; i<series; i++){
sum1 = i;
sum2 = sum1+sum1+1;
sum3 = sum2+sum1+1;
System.out.print(sum1+"*"+sum2+"*"+sum3+"+");
result += sum1 * sum2 * 3;
}
System.out.print("Final result: "+result);
}
You should be able to do it in one loop like this
public static void main(String args[]){
int first = 1;
int second = 3;
int third = 5;
int n = 5;
int sum = 0;
for(int i=0;i<n;i++){
sum+=first*second*third;
first++;
second+=2;
third+=3;
}
}
for (i = 1; i <= limit; i++) {
sum += (i * (i+i+1) * (i+i+i+2))
}
I have assumed this logic :
1 : [1] * ([1] + 2) * (([1] + 2) + 2)
2 : [2] * ([2] + 3) * (([2] + 3) + 3)
3 : [3] * ([3] + 4) * (([3] + 4) + 4)
.
.
.
I'm trying to calculate the number of rCombinations for a project for school and I can't seem to get my method to return the correct values.
I talked to my professor and he recommended canceling the common factors in factorials. Such that
35!/32! = 35*34*33.
This is what I have so far.
public static long rCombinations(int n, int r) {
int q = n-r;
long x = 1;
for(int i = r; i <= r; i ++)
{
x = n*(n-i);
}
return x/factorial(r);
}
You can use this implementation for calculating large factorial of numbers without BigInteger as follows :
import java.util.Scanner;
public class N_Faktorial {
public static void main(String[] args) {
int u = 1, A[] = new int[9999999];
Scanner scan = new Scanner(System.in);
System.out.print("n=");
int n = scan.nextInt();
A[1] = 1;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
A[j] *= i;
}
for (int j = 1; j <= n; j++) {
if (A[j] > 9) {
A[j + 1] += A[j] / 10;
A[j] %= 10;
}
if (A[u + 1] != 0) {
u++;
}
}
}
for (int i = u; i >= 1; i--) {
System.out.print(A[i]);
}
//when n>=24 count of digit of n! is equal to n+1.
System.out.println("\n Result : " + n + " count of digit " + u);
}
}
After this you need some solution for doing division operation.
Hope it helps!.
For n!/m!, where n >= m
int out = 1;
for(int i = n; i <= m; i++)
out *= i;
For n!/m!, where n <= m
double out = 1;
for(int i = n; i <= m; i++)
out /= i;
In both cases, out = n!/m!
Note that it's still easy to overflow an int, 55!/49! is too big
I tried to initialize factorials from 1 to 1000 to an biginteger array and calculating the sum of the digits. Why this code showing java.lang.NullPointerException? I think everything was initialized correctly.
class Main {
public static void main(String[] args) {
BigInteger[] b = new BigInteger[1010];
int[] ara = new int[1010];
BigInteger c;
b[0] = BigInteger.ONE;
b[1] = BigInteger.ONE;
ara[0] = ara[1] = 1;
String s;
int l, sum;
for (int i = 2; i <= 1001; i++) {
c = b[i - 1];
b[i] = b[i].multiply(c);
s = b[i].toString();
l = s.length();
sum = 0;
for (int j = 0; j < l; j++) {
sum += Character.getNumericValue(s.charAt(j));
}
ara[i] = sum;
}
Problem :
b[i] = b[i].multiply(c);
And look at your b array which you initialised
b[0] = BigInteger.ONE;
b[1] = BigInteger.ONE;
And now look at the for loop
for (int i = 2; i <= 1001; i++) {
c = b[i - 1];
b[i] = b[i].multiply(c);
You have only 0,1 indexes. It will throw NPE for index 2.
You are trying loop on 1001 elements and there are only 2 elements inside your array. Fill the b array with zeros first.
Solution :
Change your for loop as below and keep everything same. It works.
for (int i = 2; i <= 1001; i++) {
b[i] = BigInteger.ONE;
c = b[i - 1];
b[i] = b[i].multiply(c);
s = b[i].toString();
The algorithm for factorial is to take some value n and multiply that n by n - 1 until the value 1 is arrived at. Your algorithm doesn't appear to do that (it generates ones). I think you wanted something like
int len = 1010;
BigInteger[] b = new BigInteger[len];
int[] ara = new int[len];
for (int i = 0; i < len; i++) {
// calculate factorial.
b[i] = BigInteger.valueOf(i + 1);
for (int j = i; j > 1; j--) {
b[i] = b[i].multiply(BigInteger.valueOf(j));
}
// now sum digits.
for (char ch : b[i].toString().toCharArray()) {
ara[i] += Character.getNumericValue(ch);
}
}
I submitted a solution to Tape Equilibrium problem in Codility. [Codility training][1]
The problem is described as follows:
A non-empty zero-indexed array A consisting of N integers is given. Array A represents numbers on a tape.
Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1].
The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])|
In other words, it is the absolute difference between the sum of the first part and the sum of the second part.
The solution I submitted is:
class Solution {
public int solution(int[] A) {
long d = A[0] - A[A.length-1];
int l = 1;
int r = A.length -2;
while(l <= r) {
if (Math.abs(d + A[l]) < Math.abs(d - A[r])) {
d += A[l];
l++;
}
else {
d -= A[r];
r--;
}
}
return (int) Math.abs(d);
}
}
I achieved 85% accuracy but couldn't get to correct for some use case. Can someone help me to find what's wrong with this solution. Thanks
The following is my 100% solution:
class Solution {
public int solution(int[] A) {
// write your code in Java SE 8
// int idx = 0;
int sumPre = A[0];
int sumPost = 0;
for (int i = 1; i < A.length; i++) {
sumPost += A[i];
}
int difMin = Math.abs(sumPost - sumPre);
int tempSub = 0;
for (int i = 1; i < A.length - 1; i++) {
sumPre += A[i];
sumPost -= A[i];
tempSub = Math.abs(sumPost - sumPre);
if (tempSub < difMin) {
difMin = tempSub;
// idx = i+1;
}
}
return difMin;
}
}
I can not find their test input, but I find a weird thing is that when "for(int i = 1; i < A.length - 1; i++) " is changed to " for(int i = 1; i < A.length; i++)", then it will trigger two wrong runs...So it still must be a border value issue.
If any one find a test input can break the validity, please share with us, thanks.
Caution: {1,-1} indeed triggered the problem, since P < N, so at least one element should be left in the right part. -> {1,-1},{} is not a valid solution according to the problem definition.
Problem solved.
C# and Linq version for 100% as of May 2021:
public int solution(int[] A)
{
int left = A[0];
int right = A.Skip(1).Aggregate((c,x)=> c+=x);
int min = Math.Abs(left-right);
for(int i=1; i < A.Length-1; i++)
{
left+=A[i];
right-=A[i];
min = Math.Min(min,Math.Abs(left-right));
}
return min;
}
I also tried and got only 83%. My solution:
class Solution {
public int solution(int[] A) {
int[] leftSums = new int[A.length];
for (int i = 0; i < leftSums.length; i++) {
leftSums[i] = 0;
}
int sum = 0;
for (int i = 0; i < A.length; i++) {
sum += A[i];
leftSums[i] = sum;
}
/*
for (int i = 0; i < leftSums.length; i++) {
if (i == 0) {
System.out.print("Left Sums Array is : [");
}
if (i == leftSums.length - 1) {
System.out.println(leftSums[i] + "]");
}
System.out.print(leftSums[i] + ", ");
}
*/
final int total = sum;
//System.out.println("Total is " + total);
int minDiff = Integer.MAX_VALUE;
int currDiff = 0;
for (int i = 0; i < leftSums.length; i++) {
currDiff = Math.abs(leftSums[i] - (total - leftSums[i]));
if (currDiff < minDiff) {
minDiff = currDiff;
}
}
return minDiff;
}
}
Below are those which failed for correctness.
double
two elements 1.280 s WRONG ANSWER
got 0 expected 2000
small
small elements 1.304 s WRONG ANSWER
got 0 expected 20
I tested myself for 2 elements and it worked for me.
I share my 100% score Java solution:
class Solution {
public int solution(int[] A) {
final int size = A.length;
long sumMin = (int)A[0];
long sumMax = 0;
for (int i = 1; i < size; i++) {
sumMax += (int)A[i];
}
int minDif = (int)Math.abs(sumMax - sumMin);
for (int i = 1; i < size; i++) {
int dif = (int)Math.abs(sumMax - sumMin);
if (dif < minDif) {
minDif = dif;
}
sumMin += A[i];
sumMax -= A[i];
}
return minDif;
}
}
The trick is that looping the array twice your complexity is 2N, which is O(N).
Addition results should be 'long' in order not to have problems with big extremes.
For %83 results, the problem is it says "splits this tape into two non-empty parts". So if you split for A[0], your first array will be empty. So you should start with A[1].
Ruby 100%
def solution(a)
left = a.inject(:+)
right = 0
a[0...-1].inject(Float::INFINITY) do |min, el|
left -=el
right += el
candidate = (right-left).abs
min < candidate ? min : candidate
end
end
You can actually do that, with one loop in C#.
Add Linq:
public int solution(int[] A)
{
// write your code in C# 6.0 with .NET 4.5 (Mono)
long sum = A.Sum(p => (long)p);
int val1 = Convert.ToInt32(A.GetValue(0));
int val2 = Convert.ToInt32(sum - val1);
int result = Math.Abs(val1 - val2);
for (int i = 1; i < A.Length-1; i++)
{
val1 += Convert.ToInt32(A.GetValue(i));
val2 -= Convert.ToInt32(A.GetValue(i));
if (result > Math.Abs(val1 - val2))
{
result = Math.Abs(val1 - val2);
}
}
return result;
}
Counterexample for user699681: A = {0, 1, 2, -5, 2},
and for Ism: A = {1, -1}.
TapeEquilibrium in C
int solution(int A[], int N) {
// write your code in C90
long int s_r=0,s_l=A[0],sum=A[0];
int i,min=11111111,r;
for(i=1;i<N;i++)
sum+=A[i];
for(i=1;i<N;i++)
{
s_r=sum-s_l;
r=(int)(s_l-s_r);
if(r<0) r=-r;
if(min>r)min=r;
if(min==0)break;
s_l=sum-s_r+A[i];
}
return min;
}
.. Or even a bit shorter to get 100%
public int solution(int[] A) {
int sumMin = A[0];
int sumMax = 0;
for (int i = 1; i < A.length; i++) {
sumMax += A[i];
}
int minDif = Math.abs(sumMin - sumMax);
for (int i = 1; i < A.length - 1; i++) {
sumMin += A[i];
sumMax -= A[i];
minDif = Math.min(minDif, Math.abs(sumMin - sumMax));
}
return minDif;
}
Here's my implementation using Java 8 IntStream to simplify the sum process...
100% Correct, 100% Performance.
import java.util.stream.IntStream;
public class TapeEquilibrium {
public static int diffIndex( int[] A ) {
long lower = 0, diff = 0, higher = IntStream.of( A ).asLongStream().sum(), minDiff = Integer.MAX_VALUE;
for(int i = 0; i < A.length-1; i++) {
lower += A[i];
higher -= A[i];
diff = Math.abs( higher - lower);
if( diff < minDiff ) {
minDiff = diff;
}
}
return (int) minDiff;
}
public static void main( String[] args ) {
int[] A = { 3, 1, 2, 4, 3 };
System.out.println( diffIndex( A ) );
}
}
here is my Solution with 100% correctness & performance
int solution(int A[], int N)
{
int sum,i;
sum=0;
for(i=0;i<N;i++)
{
sum+=A[i];
A[i]=sum;
}
int min_diff=abs(sum-A[0]*2);
for(i=0;i<N-1;i++)
{
int tmp;
tmp=abs(sum-A[i]*2);
if(tmp<min_diff)
min_diff=tmp;
}
return min_diff;
}
Try this one:
Class Solution {
public int solution(int[] A) {
int sum1 = 0;
int sum2 = 0;
int sum3 = 0;
int len = A.length;
int min = 1 ;
for(int i=0; i<len; i++){
sum2 += A[i];
}
for(int i=0; i< len-1 ; i++){
sum1 += A[i];
sum3 = sum2-sum1;
if( min > Math.abs(sum1- sum3)){
min = Math.abs( sum1 - sum3);
}
}
return min;
}
}
Here is 100% in scala.
def solution(A: Array[Int]): Int = {
//get the whole sum
val allSum = A.sum
//calculate left and right sum
var sumLeft = A(0)
var sumRight = allSum - sumLeft
//set initial diff for P=1
var minDiff = math.abs(sumLeft-sumRight) //difference
// loop for all P after the initial P position
for(p <- 1 to A.length-2){
//recalculate values
sumLeft += A(p)
sumRight -= A(p)
if(math.abs(sumLeft-sumRight) < minDiff){
// if difference is smaller then save new min diff
minDiff = math.abs(sumLeft-sumRight)
}
}
minDiff
}
Performance: https://codility.com/demo/results/trainingZNZCZN-AGC/
long sumofall = 0, leftsideSum = A[0], rightsidesum=0;
int x,LR = 0;
ArrayList listResult = new ArrayList();
for(x=0;x<A.Length;x++)
{
sumofall+= A[x];
}
for(x=1;x<A.Length;x++)
{
rightsidesum = sumofall-leftsideSum;
LR = (int)(rightsidesum - leftsideSum);
if(LR < 0)
{
LR=-LR;
}
listResult.Add(LR);
leftsideSum+=A[x];
}
listResult.Sort();
return Convert.ToInt32(listResult[0].ToString());
}
I share my 100% solution using Java 8.
public class TapeEquilibrium {
public int tapeEquilibrium(int[] A) {
final int N = A.length;
long minimalSum = (int) A[0];
int[] rightSide = Arrays.copyOfRange(A, 1, N);
long maximalSum = IntStream.of(rightSide).sum();
int minimalDifference = (int) Math.abs(maximalSum - minimalSum);
for (int i = 1; i < N; i++) {
int difference = (int) Math.abs(maximalSum - minimalSum);
minimalDifference = difference < minimalDifference ? difference : minimalDifference;
minimalSum += A[i];
maximalSum -= A[i];
}
return minimalDifference;
}
}
Here is my C# solution. Score 100%
if (A == null || A.Length == 0)
{
return 0;
}
int d1 = 0;
int d2 = A.Sum();
int p = 1;
int x = int.MaxValue;
// Replaced using A.sum();
//for (int i=0; i < A.Length; i++)
//{
// d2 += A[i];
//}
for (int j = 0; j < A.Length; j++)
{
if (j < p)
{
d1 += A[j];
}
int ad = Math.Abs(d1 - (d2 - d1));
x = Math.Min(x, ad);
if (p == A.Length -1) { break; }
p++;
}
return x;
Below is my solution which got 100% . As most of you guys did I first got the sum of the array then go through it while adding up left and right parts and then getting the absolutes of them and putting the results into a map then checking the map for the minimum value .
int totalLeft = 0;
int totalRight = 0;
int total = 0;
int result = 0;
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
for (int i = 0; i < A.length; i++) {
total += A[i];
}
for (int i = 0; i < A.length - 1; i++) {
totalRight = total - (A[i] + totalLeft);
totalLeft += A[i];
result = Math.abs(totalLeft - totalRight);
map.put(i, result);
}
return Collections.min(map.values());
TapeEquilibrium in Swift 4
public func solution(_ A : inout [Int]) -> Int {
let P = 1
var splitIndex = P
var firstPartSum = A[splitIndex - 1]
var secondPartSum = Array(A[splitIndex..<A.count]).reduce(0, +)
var minimalDifference = abs(firstPartSum - secondPartSum)
if minimalDifference == 0 {
return minimalDifference
}
splitIndex += 1
while splitIndex < A.count {
firstPartSum += A[splitIndex - 1]
secondPartSum -= A[splitIndex - 1]
let dif = abs(firstPartSum - secondPartSum)
if dif == 0 {
return dif
}
if dif < minimalDifference {
minimalDifference = dif
}
splitIndex += 1
}
return minimalDifference
}
No one posted Javascript solution yet so here is mine with comments:
// you can write to stdout for debugging purposes, e.g.
// console.log('this is a debug message');
function solution(A) {
// write your code in JavaScript (Node.js 8.9.4)
// Making it shorter.
let len = A.length;
// Definitely need to store, and initialise first value.
let left = new Array(len);
left[0] = A[0];
// Same as above, but initialise for last value.
let right = new Array(len);
right[len - 1] = A[len - 1];
let trackLowest = Number.MAX_SAFE_INTEGER;
// One shot calculate for both at any element (from 'outwards' 'in').
// Note there is 2 elements at least, and we already preset the first
// element, so we start and build from index 1.
for (let i = 1; i < len; ++i) {
left[i] = left[i - 1] + A[i];
right[len - 1 - i] = right[len - i] + A[len - 1 - i];
}
// Once the above is done, it's time to calculate the difference.
// If I am at index 0, then I want sum of index 0 AND left, and sum of index
// 1 and right (note not index 0 also).
// We stop before len - 1 because that's the rules and the sum of right will
// have been out of bounds if we want difference for last index, isn't it?
for (let i = 0; i < len - 1; ++i) {
let smallestDiff = Math.abs(left[i] - right[i + 1]);
if (smallestDiff < trackLowest) {
trackLowest = smallestDiff;
}
}
return trackLowest;
}
Basically sum up as you walk the loop simultaneously for the left and right side.
Once done, just get the difference, that's it. O(n) complexity.
My 100% JavaScript solution with O(N) time complexity (should be pretty self-explanatory):
function solution(A) {
let left = 0;
let right = A.reduce((sum, cur) => sum + cur, 0);
let min = Infinity;
for (let p = 0, len = A.length - 1; p < len; p++) {
left += A[p];
right -= A[p];
min = Math.min(min, Math.abs(left - right));
}
return min;
}
100% in Swift 4 for correctness & performance
Detected Time Complexity: 0(n)
var sumMin = A[0]
var sumMax = 0
for i in 1..<A.count {
sumMax += A[i]
}
var diff = abs(sumMin - sumMax)
for i in 1..<A.count-1 {
sumMin += A[i]
sumMax -= A[i]
diff = min(diff, abs(sumMin - sumMax));
}
return diff
Here mine in Java,
// got 91% because "int totalRight = (Arrays.stream(A).sum() - A[0]);" take too long to load
int totalLeft = A[0];
int totalRight = (Arrays.stream(A).sum() - A[0]);
//int afterMinus = 0;
int min = 0;
min = Math.abs(totalLeft - totalRight);
for(int i=1; i<(A.length-1); i++) {
//for(int j=A.length; j>0; j--) {
totalLeft += A[i];
totalRight -= A[i];
//System.out.println("totalLeft = "+ totalLeft);
//System.out.println("totalRight = "+ totalRight);
if(Math.abs(totalLeft - totalRight) < min) {
//System.out.println("min = "+ min);
min = Math.abs(totalLeft - totalRight);
}
}
return min;
// got 100% because change "int totalRight = (Arrays.stream(A).sum() - A[0]);" into for loop
//int totalSum = Arrays.stream(A).sum();
int totalLeft = A[0];
int totalRight = 0;
//int afterMinus = 0;
int min = 0;
for(int i=1; i<A.length; i++) {
totalRight += A[i];
}
min = Math.abs(totalLeft - totalRight);
for(int i=1; i<(A.length-1); i++) {
//for(int j=A.length; j>0; j--) {
totalLeft += A[i];
totalRight -= A[i];
//System.out.println("totalLeft = "+ totalLeft);
//System.out.println("totalRight = "+ totalRight);
if(Math.abs(totalLeft - totalRight) < min) {
//System.out.println("min = "+ min);
min = Math.abs(totalLeft - totalRight);
}
}
return min;
Well, from 91% to 100%, thanks to #sebadagostino after surfing for almost 2 hours for the logic and hints.
I asked a question on helping me with this question about a week ago
Java permutations
, with a problem in the print permutation method. I have tidied up my code and have a working example that now works although if 5 is in the 5th position in the array it doesn't print it. Any help would be really appreciated.
package permutation;
public class Permutation {
static int DEFAULT = 100;
public static void main(String[] args) {
int n = DEFAULT;
if (args.length > 0)
n = Integer.parseInt(args[0]);
int[] OA = new int[n];
for (int i = 0; i < n; i++)
OA[i] = i + 1;
System.out.println("The original array is:");
for (int i = 0; i < OA.length; i++)
System.out.print(OA[i] + " ");
System.out.println();
System.out.println("A permutation of the original array is:");
OA = generateRandomPermutation(n);
printArray(OA);
printPermutation(OA);
}
static int[] generateRandomPermutation(int n)// (a)
{
int[] A = new int[n];
for (int i = 0; i < n; i++)
A[i] = i + 1;
for (int i = 0; i < n; i++) {
int r = (int) (Math.random() * (n));
int swap = A[r];
A[r] = A[i];
A[i] = swap;
}
return A;
}
static void printArray(int A[]) {
for (int i = 0; i < A.length; i++)
System.out.print(A[i] + " ");
System.out.println();
}
static void printPermutation(int[] p)
{
int n = p.length-1;
int j = 0;
int m;
int f = 0;
System.out.print("(");
while (f < n) {
m = p[j];
if (m == 0) {
do
f++;
while (p[f] == 0 && f < n);
j = f;
if (f != n)
System.out.print(")(");
}
else {
System.out.print(" " + m);
p[j] = 0;
j = m - 1;
}
}
System.out.print(" )");
}
}
I'm not too crazy about
int n = p.length-1;
followed by
while (f < n) {
So if p is 5 units long, and f starts at 0, then the loop will be from 0 to 3. That would seem to exclude the last element in the array.
You can use the shuffle method of the Collections class
Integer[] arr = new Integer[] { 1, 2, 3, 4, 5 };
List<Integer> arrList = Arrays.asList(arr);
Collections.shuffle(arrList);
System.out.println(arrList);
I don't think swapping each element with a random other element will give a uniform distribution of permutations. Better to select uniformly from the remaining values:
Random rand = new Random();
ArrayList<Integer> remainingValues = new ArrayList<Integer>(n);
for(int i = 0; i < n; i++)
remainingValues.add(i);
for(int i = 0; i < n; i++) {
int next = rand.nextInt(remainingValues.size());
result[i] = remainingValues.remove(next);
}
Note that if order of running-time is a concern, using an ArrayList in this capacity is n-squared time. There are data-structures which could handle this task in n log n time but they are very non-trivial.
This does not answer the problem you have identified.
Rather i think it identifies a mistake with your generateRandomPermutation(int n) proc.
If you add a print out of the random numbers generated (as i did below) and run the proc a few times it allows us to check if all the elements in the ARRAY TO BE permed are being randomly selected.
static int[] generateRandomPermutation(int n)
{
int[] A = new int[n];
for (int i = 0; i < n; i++)
A[i] = i + 1;
System.out.println("random nums generated are: ");
for (int i = 0; i < n; i++) {
int r = (int) (Math.random() * (n));
System.out.print(r + " ");
Run the proc several times.
Do you see what i see?
Jerry.