Java Servlet Context and Session level variables - java

I have experimented the inconsistency when multiple threads access/modify context variables but could not produce the same behaviour at session level. For example calling session.setAttribute("something") method within the service method does not cause race-condition when two requests (which means two threads) for same sessionid come in. Is it because Tomcat provides thread safety for session variables or I have got in completely wrong?

Servlet spec ver 3.0 explicitly states that access to session keys is thread-safe, in section 7.7.1.
However, access to elements stored under these keys isn't thread-safe. Thread safety in this case must be ensured by application developer.
7.7.1 Threading Issues
Multiple servlets executing request threads may have active access to the same
session object at the same time. The container must ensure that manipulation of
internal data structures representing the session attributes is performed in a thread
safe manner. The Developer has the responsibility for thread safe access to the
attribute objects themselves. This will protect the attribute collection inside the
HttpSession object from concurrent access, eliminating the opportunity for an
application to cause that collection to become corrupted.
Sample code to illustrate this:
HttpSession session;
List items;
session.put("cart", items); // thread1 writes cart reference to session, this is thread-safe
...
items = session.get("cart"); // thread1 reads cart reference from session, this is thread-safe
items.get(0); // access to elements of application collection is *not* thread-safe, you must use explicit synchronization here.
I believe what is meant here by "thread safe manner" is that HttpSession access methods are guaranteed to be thread-safe, but all access to elements stored in session by methods of these elements is not guaranteed to be thread-safe.

After a reading a bit (amongst others this bug fix) I do get the strong impression that sessions are thread-safe, or should be.

you know all context variables are thread unsafe, except local, so if you are trying to access/modify this context variables use locks, in java it is synchronized objects, for more info read Head First Servlets & JSP - Chapter 5. Good luck!

Related

Should all members shared between WebSocket sessions be synchronized?

In my WebSocket application I have Sets containing data that I share between sessions - each session can access all the data in the set. I do this by simply making the Sets static.
My understanding from reading around the web is that WebSockets (in my case running on Tomcat 8) follow the Single Thread Model, in that there is an individual thread for each session. So...
My question is; should I make the shared members synchronized, as they can be accessed by any WebSocket thread?
Or does WebSockets take care of this for me?
I'm assuming that I should synchronize everything shared, but just confirming! Thanks.
If you have multiple threads reading from a shared Set (or any non thread safe variable) that may be written(updated) at the same time then you need to synchronize them. Java 8 adds a new synchronizedSet method to Collections (see Collections.synchronizedSet). Prior to Java 8 you provide your own synchronization. More on creating a Java 8 synchronizedSet can be found in this documentation.
Even with Websockets the synchronization is needed because you have defined static data (a Set) that can be accessed by multiple websocket sessions simultaneously. Instance data (non-static variables) do not need synchronization because the single thread model guarantees that no two methods on your class (in the same session) can execute simultaneously. Information on the one thread per Websocket session can be found in this Oracle documentation. Specifically it says:
As opposed to servlets, WebSocket endpoints are instantiated multiple times. The container creates one instance of an endpoint for each connection to its deployment URI. Each instance is associated with one and only one connection. This behavior facilitates keeping user state for each connection and simplifies development because only one thread is executing the code of an endpoint instance at any given time.
So per instance variables (non-static) need no special synchronization. Websockets guarantees thread safety in the Single Thread Model. However this doesn't apply to shared data (static variables) between those instances. Because they can potentially operate in their own threads you need to provide synchronization where appropriate.

Thread safety in java web application?

What does someone mean when I am asked that whether my web application is thread safe or not , considering that I have not used Multiple threads in my webapplication.
In a normal web-application Servlet treats as Singleton class, it means if you are using instance variable in Servlet that is not thread safe in that case it will create an issue for multiple request that is served simultaneously.
A Java servlet container / web server is typically multithreaded. That means, that multiple requests to the same servlet may be executed at the same time. Therefore, you need to take concurrency into consideration when you implement your servlet.
Read more...
What does someone mean when I am asked that whether my web application is thread safe or not
You have to make sure that all the Servlet/JSP are thread-safe. Do it for all server side classes that is treated as Singleton.
I have not used Multiple threads in my webapplication.
Container/web server starts a new thread for each request.
The servlet specification requires a web application to be thread safe, because the servlet container may (and usually does) process requests concurrently. That is, even if you do not start any threads of your own, the servlet container will, and you must ensure your code is still correct in that case.
That involves protecting any objects shared by several threads (such as the contents of the HttpSession, or any singleton objects) from concurrent access.
An excellent answer to a similar question is witten by BalusC here. Also have a look at Tomasz's answer
Generally, instance variables or state can be shared across threads (threads created by application or the container). So any class(object) that exposes its state for modification, can be considered unsafe. So if your service layer calls some data access object method and the dao is an instance variable inside the service class, the question to ask is this - can this dao or the state of that dao itself be changed by some other client?
You can make your objects immutable. Your custom objects, dates and collections can be mutable. Some of the examples where even getter methods can be dangerous are collections, dates, etc. Use something like ConcurrentHashMap or return a list something like Collections.unmodifiablelist
Another example, instead of returning this.someDate, you should write
public Date getSomeDate() {
return new Date(someDate.getTime());
}
This way some other thread (which may have been spawned by container for another request from another user) holding a reference to the variable someDate will not be able to mess up with this thread.
If you cannot make the state of an object immutable because you want to allow its clients to change its state, you can make all the clients of that object agree to share the state. So if one thread changes the state of a shared object and another thread is ok with the state changed by the first thread, then such monostate object can be ok to have in your application.
As other answers have mentioned the container spawns threads even if your application does not. I have focused here mainly on the topics not directly covered in the answers here so as to avoid duplication. Hope this helps.

Does a session-scoped backing bean have to be implemented thread-safe?

Is it possible, that a session-scoped backing bean is accessed by multiple threads at the same time?
The servlet spec says, it is possible:
Multiple servlets executing request threads may have active access to the same
session object at the same time. The container must ensure that manipulation of
internal data structures representing the session attributes is performed in a thread
safe manner. The Developer has the responsibility for thread safe access to the
attribute objects themselves. This will protect the attribute collection inside the
HttpSession object from concurrent access, eliminating the opportunity for an
application to cause that collection to become corrupted.
However I could not make the server (JBoss) use different threads for the same session. When I opened multiple tabs and started a long running request in one tab, and then started a request in another tab, the second tab had to wait for a response until the action started in the first tab was completed.
I also verified this by blocking the thread with a breakpoint in the backing bean. It was not possible to do anything in other tabs of the same session until I resumed the thread.
Despite this we have some strange exceptions in the production log and so far the only possible explanation we have is, that multiple threads concurrently access the same session-scoped backing bean.
Yes, A Servlet session is thread safe. But, if you are putting mutable object in the session. The application should take care of the synchronization.
In your case, if your Bean is Mutable i.e, has state. Yes it has to be thread safe.
And about your test case, it depends on the browser you are using. Most browsers support upto 6 connections in parallel for every server. But, Not sure if they use parallel connections if there have cookies.

Should volatile be used for attributes of domain model classes in Java web apps?

Here's my thinking:
Even though a HTTP request cycle is essentially handled by a 'single thread', each time a HTTP request is processed for that same session it is likely to be processed by a different thread from the thread pool.
Without the volatile keyword being used on a domain model object, whose lifecycle extends across multiple HTTP requests for the same session, then, according to my understanding, isn't it possible that the attribute could be thread local cached (an optimization by the compiler) in the thread that serviced the first HTTP request? If the second HTTP request is serviced by another thread then that second thread may not see the changes in that attribute that were made by the first thread.
Does this spell "Danger Will Robinson"? Or am I missing a vital plot point about the use (or not) of the volatile keyword?
I think you are forgetting that the threads handling the HTTP request first need to retrieve the instance of the domain model object from the HttpSession provided by your application server. The thread handling request 2 in the scenario you describe does not already have an instance of this domain model - it has to retrieve it from the session implementation at the start of handling each and every request.
I think it is completely reasonable to assume that the session-handling implementation in your application server is handling session data in such a way that memory model visibility issues are avoided. Apache Tomcat's default (non-clustered) HttpSession implementation, for example, stores the session attributes in a ConcurrentHashMap.
Adding volatile seems completely unnecessary to me. I have never seen this done for domain model objects handled by HTTP requests in a Servlet environment in any project I have worked in.
This would be a different story if thread-1 and thread-2 had references to the same object instance simulatenously while processing two different requests, and you were concerned about changes in one thread being visible to the other as each are processing the request, but this does not sound like what you are asking about.
Yes, if you are sharing an object between different threads, you may have race conditions. Without a happens before relationship, writes made by one thread may not be seen by a read in another thread.
Doing a volatile write in one thread and doing a volatile read of the same field in another thread establishes a happens before relationship between the two threads, and ensures visibility of the write.
This is a complicated problem, simply using a volatile keyword is probably not a good solution.
I think your understanding of it is correct. Given your description I would say it should be used. If its something more than a primitive type I would rather synchronize.
Good information on volatile:
http://www.javamex.com/tutorials/synchronization_volatile_when.shtml
If you have a mutable object in session, that is trouble. But usually the solution is not to guard individual fields; rather the entire object should be swapped.
Say you have the user object in the session. Most requests simply retrieve it, read it and display it.
There is a request that can modify user information. It would be a really bad idea to retrieve the user object, modify it. It's better to create complete new user object, and insert it into session.
In that case, fields in User don't need any protection; thread safety is guaranteed by session setAttribute() - getAttribute()
If you have concurrency issues, just adding 'volatile' probably won't help you.
As for keeping the object as an attribute of Session, I'd recommend you to keep just the object's ID, and use it to retrieve a 'live' instance when you need it (if you use Hibernate, successive retrieves will return the same object, so this shouldn't cause performance problems). Encapsulate all modification logic to this specific object into a single façade, and do the control concurrency there, using dababase locking.
Or, if you really, really, really want to use memory-based locking, and are really sure that you'll never have two instances of the application running in a cluster, make sure that your façade logic is synchronized at the right level. If your synchronization is too fine grained (low-level operations, such as volatile variables), it probably won't be enough to make your code thread-safe. For example, java.util.Hashtable is fully synchronized, but it doesn't mean anything if you have logic like this:
01 if (!hashtable.containsKey(key)) {
02 hashtable.put(key, calculate(key));
03 }
If two threads, say, t1 and t2, hit this block at the same time, t1 may execute line 01, then t2 may also execute 01, and then 02, and t1 then will execute 02, overwriting what t2 had done. The operations containsKey() and put() are atomic individually, but what should be atomic is the whole block.
Sometimes recalculating a value doesn't matter, but sometimes it does, and it will break.
When it comes to concurrency, there's no magic. I mean, seam some crappy frameworks try to sell you the idea that they solve this problem for you. They don't. Even if it works 99% of the time, it will break spectacularly when you go to production and start to get heavy traffic. Or (much, much) worse, it will silently generate wrong results.
Concurrency is one of the most complex problems in programming. And the only way to handle it is to avoid it. All this functional programming trend is not about dealing with concurrency, is about avoiding it altogether.
It turns out that volatile was not needed in the end. The problem that "appeared" to be fixed with volatile was actually a very subtle timing sensitive bug that was fixed in a much more elegant and proper way ;)
So sbrigdes was correct when he said "simply using a volatile keyword is probably not a good solution."

threadlocal variables in a servlet

Are the threadlocals variables global to all the requests made to the servlet that owns the variables?
I am using resin for the server.
Thanks for awnser.
I think I can make my self more clear.
The specific Case:
I want to:
initialize a static variable when the request starts the execution.
be able to query the value of the variable in the further executions of methods called from the servlet in a thread safety way until the request ends the execution
Short answer: Yes.
A bit longer one: This is how Spring does its magic. See RequestContextHolder (via DocJar).
Caution is needed though - you have to know when to invalidate the ThreadLocal, how to defer to other threads and how (not) to get tangled with a non-threadlocal context.
Or you could just use Spring...
I think they are global to all requests made with that specific thread only. Other threads get other copies of the thread-local data. This is the key point of thread-local storage:
http://en.wikipedia.org/wiki/Thread-local_storage#Java.
Unless you check the appropriate option in the servlets config, the servlet container will use your servlet with multiple threads to handle requests in parallel. So effectively you would have separate data for each thread that's up serving clients.
If your WebApplication isn't distributed (runs on multiple Java Virtual Machines), you can use the ServletContext object to store shared data across requests and threads (be sure to do proper locking then).
Like Adiel says, the proper way to do this is probably to use the request context (i.e. HttpServletRequest), not to create a ThreadLocal. While it's certainly possible to use a ThreadLocal here, you have to be careful to clean up your thread if you do that, since otherwise the next request that gets the thread will see the value associated with the previous request. (When the first request is done with the thread, the thread will go back into the pool and so the next request will see it.) No reason to have to manage that kind of thing when the request context exists for precisely this purpose.
Using ThreadLocal to store request scoped information has the potential to break if you use Servlet 3.0 Suspendable requests (or Jetty Continuations)
Using those API's multiple threads process a single request.
Threadlocal variables are always defined to be accessed globally, since the point is to transparently pass information around a system that can be accessed anywhere. The value of the variable is bound to the thread on which it is set, so even though the variable is global, it can have different values depending on the thread from which it is accessed.
A simple example would be to assign a user identity string to a thread in a thread local variable when the request is received in the servlet. Anywhere along the processing chain of that request (assuming it is on the same thread in the same VM), the identity can be retrieved by accessing this global variable. It would also be important to remove this value when the request is processed, since the thread will be put back in a thread pool.

Categories

Resources