ApplicationContext and beans retrieval - java

I'm reading Spring documentation and I stumbled across a piece of text that made me ponder a bit.
You use getBean() to retrieve instances of your beans. The ApplicationContext interface has a few other methods for retrieving beans, but ideally your application code should never use them. Indeed, your application code should have no calls to the getBean() method at all, and thus no dependency on Spring APIs at all.
Well, I configured beans in my xml file. But I still need retrieve them when in need. How can I do that without getBean() method? The more detailed explanation, the better.

You need some way to retrieve Spring beans when you want to access them from classes that were not created by Spring, e.g. the main class in a command line program, and you use the getBean methods for that.
But Spring beans themselves do seldom need this feature, because it is Spring's responsibility to provide the other beans that are required, via constructor arguments or setter methods (this is the basic idea behind dependency injection).

The basic idea is "don't call us, we'll call you", meaning that your code doesn't ask Spring IOC (Inversion of Control)-container for the beans, but rather the container injects the beans into your code. The injections are configured either using xml-configuration file(s) or via annotations. For more details, see for example this and this. Also I'd recommend reading the whole chapter 3 from the reference manual (as you probably are doing).
The ApplicationContext-interface still makes it possible to ask for beans programmatically, which might be needed in some special cases, for example when integrating with some other framework or such.

Some time ago I wrote some generic parser that could handle different input file formats.
class XmlFormat extends Format {
// format stuff
// ...
}
class Parser {
Format format;
public Parser(Format format) {
this.format = format;
}
// parsing goes here
// ...
}
Next I told Spring which format description was to use.
(Disclaimer: Your Spring config may have a very different style.)
<bean id="forma1" class="com.mycompany.XmlFormat" />
<bean id="parser" class="com.mycompany.Parser">
<constructor-arg ref="format1">
</bean>
So now when I wanted Spring to give me a Parser, it injected the XmlFormat into the constructor for me.

Related

Understanding an Axon library's Java Idiom involving Interface method and Lambda expression for configuration of TokenStore

I have a question on Java Syntax on lambda expressions and the java.util.function.Function Object. Also probably Spring Dependency Injection. It is an idiom that I don't know and I hope somebody can explain it to me. I know (probably only the basics) about that idiom of generic#FunctionalInterface(s) and "implementations" through lambda expressions. This use-case seems similar, but still different.
In the example, the Function<T,R>-Object is the Type of a parameter of a method of a configuration class with a parameter name. The argument is the lambda expression config -> tokenStore.
But please look at the information provided below. Here are my questions.
What config is passed as the argument? There is no "config" symbol there. So I guess it is injected by the Spring IoC Container.
And what it obviously returns is the symbol tokenStore that is bound to an org.axonframework.eventhandling.tokenstore.TokenStore Instance created by theJpaTokenStore#build method. There is no connection to the config argument. Or is there?
To sum it up: Just "Why?" Why are you passing a lambda expression where there is no obvious (to me) connection between the argument and the return value and why are you passing a Function-placeholder to an Interface-method - how do you call it... the head of the method? Ultimately: What is that doing because to someone like me who obviously doesn't know the idiom it looks like the answer is: nothing ?
So, there is this example on how to configure a TokenStore from the Axon Framework and I would like to understand how it works:
public class AxonConfig {
// ...
public void registerTokenStore(EventProcessingConfigurer processingConfigurer) {
TokenStore tokenStore = JpaTokenStore.builder()
// …
.build();
processingConfigurer.registerTokenStore(config -> tokenStore);
}
}
source: https://docs.axoniq.io/reference-guide/axon-framework/events/event-processors/streaming#token-store
And here is the source code for the EventProcessingConfigurer#registerTokenStore (GitHub) method.
public interface EventProcessingConfigurer {
// ...
EventProcessingConfigurer registerTokenStore(Function<Configuration, TokenStore> tokenStore);
// ...
}
Incidentally, can I pass in an argument for the code block to tell the forum software which language it is?
Let me provide you some insights here, #vonSpots!
Question 1
The config symbol stands for the input parameter of the Function. You can name it whatever you like. Note the type of the configuration method, which expects a Function<Configuration, TokenStore>. The first generic in there describes the input parameter of the Function, thus a Configuration instance. The second generic describes the return value of the Function, which should be a TokenStore instance.
By using Java's lambda notation of [input] -> [output], ending up with something called config seems feasible given the input type. The component in charge of providing that config instance, is the framework itself.
You can see this within Axon Framework's configuration module. Lastly, it's worthwhile to note that Axon Framework does not necessitate the use of Spring at all. So, setting the config instance is not originating from Spring.
Question 2
In the provided sample, there's no connection between the input and the output. However, Axon Framework defaults to providing the entire Configuration object so that the user is able to retrieve Axon components from it to construct other infrastructure components.
An example of where this would be useful with the JpaTokenStore, is when you need to set the Serializer. Axon Framework will set the Serializer up within the Configuration. Hence, you can retrieve it from Axon's configuration to construct your component.
Question 3
Because Axon Framework does its own wiring of all components. You can integrate it with Spring if you like, but it does not rely on it at all. Thus, in the face of a "pure" Java configuration, you need to have some collecting component, the Configuration, to retrieve everything from. You could almost see it as the Application Context from Spring.
Furthermore, Axon Framework chooses to have users register lambdas instead of concrete objects to ensure components are constructed and wired in the right order.
Axon Framework has many moving components, with objects like the CommandBus, EventProcessors, TokenStores, and DeadlineManager, not forgetting to mention the Message Handling Components users wire into it themselves. By having end users provide a lambda, the framework can decide when to invoke the lambda.
This allows the framework to ensure all required components are in place before a, in your sample, TrackingEventProcessor can utilize the TokenStore.

Why is Spring's ApplicationContext.getBean with Interface considered bad? [duplicate]

I asked a general Spring question: Auto-cast Spring Beans and had multiple people respond that calling Spring's ApplicationContext.getBean() should be avoided as much as possible. Why is that?
How else should I gain access to the beans I configured Spring to create?
I'm using Spring in a non-web application and had planned on accessing a shared ApplicationContext object as described by LiorH.
Amendment
I accept the answer below, but here's an alternate take by Martin Fowler who discusses the merits of Dependency Injection vs. using a Service Locator (which is essentially the same as calling a wrapped ApplicationContext.getBean()).
In part, Fowler states, "With service locator the application class asks for it [the service] explicitly by a message to the locator. With injection there is no explicit request, the service appears in the application class - hence the inversion of control.
Inversion of control is a common feature of frameworks, but it's something that comes at a price. It tends to be hard to understand and leads to problems when you are trying to debug. So on the whole I prefer to avoid it [Inversion of Control] unless I need it. This isn't to say it's a bad thing, just that I think it needs to justify itself over the more straightforward alternative."
I mentioned this in a comment on the other question, but the whole idea of Inversion of Control is to have none of your classes know or care how they get the objects they depend on. This makes it easy to change what type of implementation of a given dependency you use at any time. It also makes the classes easy to test, as you can provide mock implementations of dependencies. Finally, it makes the classes simpler and more focused on their core responsibility.
Calling ApplicationContext.getBean() is not Inversion of Control! While it's still easy to change what implemenation is configured for the given bean name, the class now relies directly on Spring to provide that dependency and can't get it any other way. You can't just make your own mock implementation in a test class and pass that to it yourself. This basically defeats Spring's purpose as a dependency injection container.
Everywhere you want to say:
MyClass myClass = applicationContext.getBean("myClass");
you should instead, for example, declare a method:
public void setMyClass(MyClass myClass) {
this.myClass = myClass;
}
And then in your configuration:
<bean id="myClass" class="MyClass">...</bean>
<bean id="myOtherClass" class="MyOtherClass">
<property name="myClass" ref="myClass"/>
</bean>
Spring will then automatically inject myClass into myOtherClass.
Declare everything in this way, and at the root of it all have something like:
<bean id="myApplication" class="MyApplication">
<property name="myCentralClass" ref="myCentralClass"/>
<property name="myOtherCentralClass" ref="myOtherCentralClass"/>
</bean>
MyApplication is the most central class, and depends at least indirectly on every other service in your program. When bootstrapping, in your main method, you can call applicationContext.getBean("myApplication") but you should not need to call getBean() anywhere else!
Reasons to prefer Service Locator over Inversion of Control (IoC) are:
Service Locator is much, much easier for other people to following in your code. IoC is 'magic' but maintenance programmers must understand your convoluted Spring configurations and all the myriad of locations to figure out how you wired your objects.
IoC is terrible for debugging configuration problems. In certain classes of applications the application will not start when misconfigured and you may not get a chance to step through what is going on with a debugger.
IoC is primarily XML based (Annotations improve things but there is still a lot of XML out there). That means developers can't work on your program unless they know all the magic tags defined by Spring. It is not good enough to know Java anymore. This hinders less experience programmers (ie. it is actually poor design to use a more complicated solution when a simpler solution, such as Service Locator, will fulfill the same requirements). Plus, support for diagnosing XML problems is far weaker than support for Java problems.
Dependency injection is more suited to larger programs. Most of the time the additional complexity is not worth it.
Often Spring is used in case you "might want to change the implementation later". There are other ways of achieving this without the complexity of Spring IoC.
For web applications (Java EE WARs) the Spring context is effectively bound at compile time (unless you want operators to grub around the context in the exploded war). You can make Spring use property files, but with servlets property files will need to be at a pre-determined location, which means you can't deploy multiple servlets of the same time on the same box. You can use Spring with JNDI to change properties at servlet startup time, but if you are using JNDI for administrator-modifiable parameters the need for Spring itself lessens (since JNDI is effectively a Service Locator).
With Spring you can lose program Control if Spring is dispatching to your methods. This is convenient and works for many types of applications, but not all. You may need to control program flow when you need to create tasks (threads etc) during initialization or need modifiable resources that Spring didn't know about when the content was bound to your WAR.
Spring is very good for transaction management and has some advantages. It is just that IoC can be over-engineering in many situations and introduce unwarranted complexity for maintainers. Do not automatically use IoC without thinking of ways of not using it first.
It's true that including the class in application-context.xml avoids the need to use getBean. However, even that is actually unnecessary. If you are writing a standalone application and you DON'T want to include your driver class in application-context.xml, you can use the following code to have Spring autowire the driver's dependencies:
public class AutowireThisDriver {
private MySpringBean mySpringBean;
public static void main(String[] args) {
AutowireThisDriver atd = new AutowireThisDriver(); //get instance
ClassPathXmlApplicationContext ctx = new ClassPathXmlApplicationContext(
"/WEB-INF/applicationContext.xml"); //get Spring context
//the magic: auto-wire the instance with all its dependencies:
ctx.getAutowireCapableBeanFactory().autowireBeanProperties(atd,
AutowireCapableBeanFactory.AUTOWIRE_BY_TYPE, true);
// code that uses mySpringBean ...
mySpringBean.doStuff() // no need to instantiate - thanks to Spring
}
public void setMySpringBean(MySpringBean bean) {
this.mySpringBean = bean;
}
}
I've needed to do this a couple of times when I have some sort of standalone class that needs to use some aspect of my app (eg for testing) but I don't want to include it in application-context because it is not actually part of the app. Note also that this avoids the need to look up the bean using a String name, which I've always thought was ugly.
One of the coolest benefits of using something like Spring is that you don't have to wire your objects together. Zeus's head splits open and your classes appear, fully formed with all of their dependencies created and wired-in, as needed. It's magical and fantastic.
The more you say ClassINeed classINeed = (ClassINeed)ApplicationContext.getBean("classINeed");, the less magic you're getting. Less code is almost always better. If your class really needed a ClassINeed bean, why didn't you just wire it in?
That said, something obviously needs to create the first object. There's nothing wrong with your main method acquiring a bean or two via getBean(), but you should avoid it because whenever you're using it, you're not really using all of the magic of Spring.
The motivation is to write code that doesn't depend explicitly on Spring. That way, if you choose to switch containers, you don't have to rewrite any code.
Think of the container as something is invisible to your code, magically providing for its needs, without being asked.
Dependency injection is a counterpoint to the "service locator" pattern. If you are going to lookup dependencies by name, you might as well get rid of the DI container and use something like JNDI.
Using #Autowired or ApplicationContext.getBean() is really the same thing. In both ways you get the bean that is configured in your context and in both ways your code depends on spring.
The only thing you should avoid is instantiating your ApplicationContext. Do this only once! In other words, a line like
ApplicationContext context = new ClassPathXmlApplicationContext("AppContext.xml");
should only be used once in your application.
One of Spring premises is avoid coupling. Define and use Interfaces, DI, AOP and avoid using ApplicationContext.getBean() :-)
One of the reasons is testability. Say you have this class:
interface HttpLoader {
String load(String url);
}
interface StringOutput {
void print(String txt);
}
#Component
class MyBean {
#Autowired
MyBean(HttpLoader loader, StringOutput out) {
out.print(loader.load("http://stackoverflow.com"));
}
}
How can you test this bean? E.g. like this:
class MyBeanTest {
public void creatingMyBean_writesStackoverflowPageToOutput() {
// setup
String stackOverflowHtml = "dummy";
StringBuilder result = new StringBuilder();
// execution
new MyBean(Collections.singletonMap("https://stackoverflow.com", stackOverflowHtml)::get, result::append);
// evaluation
assertEquals(result.toString(), stackOverflowHtml);
}
}
Easy, right?
While you still depend on Spring (due to the annotations) you can remove you dependency on spring without changing any code (only the annotation definitions) and the test developer does not need to know anything about how spring works (maybe he should anyway, but it allows to review and test the code separately from what spring does).
It is still possible to do the same when using the ApplicationContext. However then you need to mock ApplicationContext which is a huge interface. You either need a dummy implementation or you can use a mocking framework such as Mockito:
#Component
class MyBean {
#Autowired
MyBean(ApplicationContext context) {
HttpLoader loader = context.getBean(HttpLoader.class);
StringOutput out = context.getBean(StringOutput.class);
out.print(loader.load("http://stackoverflow.com"));
}
}
class MyBeanTest {
public void creatingMyBean_writesStackoverflowPageToOutput() {
// setup
String stackOverflowHtml = "dummy";
StringBuilder result = new StringBuilder();
ApplicationContext context = Mockito.mock(ApplicationContext.class);
Mockito.when(context.getBean(HttpLoader.class))
.thenReturn(Collections.singletonMap("https://stackoverflow.com", stackOverflowHtml)::get);
Mockito.when(context.getBean(StringOutput.class)).thenReturn(result::append);
// execution
new MyBean(context);
// evaluation
assertEquals(result.toString(), stackOverflowHtml);
}
}
This is quite a possibility, but I think most people would agree that the first option is more elegant and makes the test simpler.
The only option that is really a problem is this one:
#Component
class MyBean {
#Autowired
MyBean(StringOutput out) {
out.print(new HttpLoader().load("http://stackoverflow.com"));
}
}
Testing this requires huge efforts or your bean is going to attempt to connect to stackoverflow on each test. And as soon as you have a network failure (or the admins at stackoverflow block you due to excessive access rate) you will have randomly failing tests.
So as a conclusion I would not say that using the ApplicationContext directly is automatically wrong and should be avoided at all costs. However if there are better options (and there are in most cases), then use the better options.
The idea is that you rely on dependency injection (inversion of control, or IoC). That is, your components are configured with the components they need. These dependencies are injected (via the constructor or setters) - you don't get then yourself.
ApplicationContext.getBean() requires you to name a bean explicitly within your component. Instead, by using IoC, your configuration can determine what component will be used.
This allows you to rewire your application with different component implementations easily, or configure objects for testing in a straightforward fashion by providing mocked variants (e.g. a mocked DAO so you don't hit a database during testing)
Others have pointed to the general problem (and are valid answers), but I'll just offer one additional comment: it's not that you should NEVER do it, but rather that do it as little as possible.
Usually this means that it is done exactly once: during bootstrapping. And then it's just to access the "root" bean, through which other dependencies can be resolved. This can be reusable code, like base servlet (if developing web apps).
There is another time when using getBean makes sense. If you're reconfiguring a system that already exists, where the dependencies are not explicitly called out in spring context files. You can start the process by putting in calls to getBean, so that you don't have to wire it all up at once. This way you can slowly build up your spring configuration putting each piece in place over time and getting the bits lined up properly. The calls to getBean will eventually be replaced, but as you understand the structure of the code, or lack there of, you can start the process of wiring more and more beans and using fewer and fewer calls to getBean.
I've only found two situations where getBean() was required:
Others have mentioned using getBean() in main() to fetch the "main" bean for a standalone program.
Another use I have made of getBean() are in situations where an interactive user configuration determines the bean makeup for a particular situation. So that, for instance, part of the boot system loops through a database table using getBean() with a scope='prototype' bean definition and then setting additional properties. Presumably, there is a UI that adjusts the database table that would be friendlier than attempting to (re)write the application context XML.
however, there are still cases where you need the service locator pattern.
for example, i have a controller bean, this controller might have some default service beans, which can be dependency injected by configuration.
while there could also be many additional or new services this controller can invoke now or later, which then need the service locator to retrieve the service beans.
You should to use: ConfigurableApplicationContext instead of for ApplicationContext

Get application components without #Autowired

How would you extract something prior 2.5 version from .xml config? It bothers me because if #Autowired is removed from my arsenal I would not really know what to do.
Say I want to use some DAO implementation.
In service class I usually write:
#Autowired
someDaoInterface generalDao;
Then I typically call
generalDao.someInterfaceMethod(someParam param);
How would I extract implementation from config in Spring 2.0 to use this method?
Is it as dumb as just: new ApplicationContext(pathToXml) and then use .getBean or there is other way?
Why do I ask for taking bean out from configuration file?
Because in Spring MVC how can you perform your logic without getting beans out from the application context.
If you have #Controller handler then you need to make calls to the service classes' methods? So they should be somehow retrieved from the context and the only way so far is using #Autowired? Then I would also want to populate Service classes as I stated in previous example with DAO classes and they also need to be retrieved from the application context, so I would be able to write logic for service classes themself. How would people do it in the past?
I see the #Autowired as the only mean of taking something out, not because it is convenient to wire automatically - I am perfectly ok with XML.
You still have option to wire it explicitely via property or constructor parameter. (Anyway, autowired is not going to work if there is ambiguity in your container )
Of course, you can use application context and getBean() in your java code, but it violates DI pattern and makes all the spring stuff useless. Purpose of DI is to decouple your business loginc from implementation details - it's not business logic it's how and where it dependencies come from. Dependencies are just there.
By using ApplicationContext.getBean() you are breaking this pattern, and introduce dependency to:
spring itself
your configuration names
After you done this, you can as well drop use of DI and spring because you just voided all the advandages DI is providing to you. (BTW, #Autowired also introduces dependency to spring, and violates DI pattern, it also implies that there is only one instance available)
Also, answer is: in ideal case there shall be no reference to spring in your code at all.
No imports, no annotations - just interfaces of collaborating entities.

ApplicationContext.xml bean execution - How?

I've applicationContext.xml which contains below line:
<bean id="myclass" class="com.abc.myclassinfo" >
</bean>
And, myclassinfo.java has below code:
public class myclassinfo {
public myclassinfo() {
// Here I'm initializing Jersey client
}
}
Now, what happens when spring loads the applicationContext.xml? Does it invoke this constructor?
Also, if I want to insitialize the Jersey client some other way without applicationContext.xml, how do I do that?
Thanks!
First, it calls the constructor (the no-arg one by default, or another one if annotated)
Then it calls a #PostConstruct / init-method
Then it calls postprocessors that can manipulate the object further
IF you want to use the class outside spring, you just instantiate it (using the constructor), and manually invoke the init method (if such exists). Note that you lose the automatic proxies that spring creates around your objects for transactions, scheduling, caching, etc.
Try to use init-method or #Postconstruct annotation for init some logic.
Seems like a log statement would have cleared up the first question pretty quickly.
Your second question isn't totally clear to me. You can use annotations, and skip at least most XML. I'm not aware that the Jersey client stuff has a hard dependency on Spring, however.
If you want to use Spring without a config file and without annotations, you can build a context programmatically, although I'm not sure why you'd want to do this, except possible for testing. Even then, it's easier to just extend an existing context, IMO.

spring and interfaces

I read all over the place about how Spring encourages you to use interfaces in your code. I don't see it. There is no notion of interface in your spring xml configuration. What part of Spring actually encourages you to use interfaces (other than the docs)?
The Dependency Inversion Principle explains this well. In particular, figure 4.
A. High level modules should not depend on low level modules. Both should depend upon abstractions.
B. Abstraction should not depend upon details. Details should depend upon abstractions.
Translating the examples from the link above into java:
public class Copy {
private Keyboard keyboard = new Keyboard(); // concrete dependency
private Printer printer = new Printer(); // concrete dependency
public void copy() {
for (int c = keyboard.read(); c != KeyBoard.EOF) {
printer.print(c);
}
}
}
Now with dependency inversion:
public class Copy {
private Reader reader; // any dependency satisfying the reader interface will work
private Writer writer; // any dependency satisfying the writer interface will work
public void copy() {
for (int c = reader.read(); c != Reader.EOF) {
writer.write(c);
}
}
public Copy(Reader reader, Writer writer) {
this.reader = reader;
this.writer = writer;
}
}
Now Copy supports more than just copying from a keyboard to a printer.
It is capable of copying from any Reader to any Writer without requiring any modifications to its code.
And now with Spring:
<bean id="copy" class="Copy">
<constructor-arg ref="reader" />
<constructor-arg ref="writer" />
</bean>
<bean id="reader" class="KeyboardReader" />
<bean id="writer" class="PrinterWriter" />
or perhaps:
<bean id="reader" class="RemoteDeviceReader" />
<bean id="writer" class="DatabaseWriter" />
When you define an interface for your classes, it helps with dependency injection. Your Spring configuration files don't have anything about interfaces in them themselves -- you just put in the name of the class.
But if you want to inject another class that offers "equivalent" functionality, using an interface really helps.
For example, saying you've got a class that analyzes a website's content, and you're injecting it with Spring. If the classes you're injecting it into know what the actual class is, then in order to change it out you'll have to change a whole lot of code to use a different concrete class. But if you created an Analyzer interface, you could just as easily inject your original DefaultAnalyzer as you could a mocked up DummyAnalyzer or even another one that does essentially the same thing, like a PageByPageAnalyzer or anything else. In order to use one of those, you just have to change the classname you're injecting in your Spring config files, rather than go through your code changing classes around.
It took me about a project and a half before I really started to see the usefulness. Like most things (in enterprise languages) that end up being useful, it seems like a pointless addition of work at first, until your project starts to grow and then you discover how much time you saved by doing a little bit more work up front.
Most of the answers here are some form of "You can easily swap out implementations", but what I think they fail to answer is the why? part. To that I think the answer is almost definitively testability. Regardless of whether or not you use Spring or any other IOC framework, using Dependency Injection makes your code easier to test. In the case of say a writer rather than a PrinterWriter, you can Mock the Writer interface in a Unit test, and ensure that your code is calling it the way you expect it to. If you depend directly on the class implementation, your only option is to walk to the printer and check it, which isn't very automated. Furthermore, if you depend upon the result of a call to a class, not being able to Mock it may prevent you from being able to reach all code paths in your test, thus reducing their quality (potentially) Simply put, you should decouple Object graph creation from application logic. Doing so makes your code easier to test.
No one has mention yet that in many occasions won't be necessary to create an interface so that the implementing class can be switched quickly because simply there won't be more than one implementing class.
When interfaces are created without need, classes will be created by pairs (interface plus implementation), adding unnecessary boilerplate interfaces and creating potential dependency confusions because, on XML configuration files, components will be sometimes referenced by its interface and sometimes by its implementation, with no consequences at runtime but being incoherent regarding code conventions.
You may probably want to try using it for yourself to be better able to see this, it may not be clear from the docs how Spring encourages interface use.
Here are a couple of examples:
Say you're writing a class that needs to read from a resource (e.g., file) that may be referenced in several ways (e.g., in classpath, absolute file path, as a URL etc). You'd want to define a org.springframework.core.io.Resource (interface) property on your class. Then in your Spring configuration file, you simply select the actual implementation class (e.g., org.springframework.core.io.ClassPathResource, org.springframework.core.io.FileSystemResource, org.springframework.core.io.UrlResource etc). Spring is basically functioning as an extremely generic factory.
If you want to take advantage of Spring's AOP integration (for adding transaction interceptors for instance), you'll pretty much need to define interfaces. You define the interception points in your Spring configuration file, and Spring generates a proxy for you, based on your interface.
These are examples I personally have experience with. I'm sure there are much more out there.
it's easy to generate proxies from interfaces.
if you look at any spring app, you'll see service and persistence interfaces. making that the spring idiom certainly does encourage the use of interfaces. it doesn't get any more explicit than that.
Writing separate interfaces adds complexity and boilerplate code that's normally unnecessary. It also makes debugging harder because when you click a method call in your IDE, it shows the interface instead of the implementation. Unless you're swapping implementations at runtime, there's no need to go down that path.
Tools like Mockito make it very easy to test code using dependency injection without piling on interfaces.
Spring won't force you to use interfaces anywhere, it's just good practice. If you have a bean that has a some properties that are interfaces instead of concrete classes, then you can simply switch out some objects with mockups that implement the same interface, which is useful for certain test cases.
If you use for example the Hibernate support clases, you can define an interface for your DAO, then implement it separately; the advantage of having the interface is that you will be able to configure it using the Spring interceptors, which will allow you to simplify your code; you won't have to write any code cathing HibernateExceptions and closing the session in a finally segment, and you won't have to define any transactions programmatically either, you just configure all that stuff declaratively with Spring.
When you're writing quick and dirty apps, you can implement some simple DAO using JDBC or some simple framework which you won't end up using in the final version; you will be able to easily switch those components out if they implement some common interfaces.
If you don't use interfaces you risk an autowiring failure:
Sometime Spring creates a Proxy class for a Bean. This Proxy class is not a child class of the service implementation but it re-implements all of its interfaces.
Spring will try to autowire instances of this Bean, however this Proxy class is incompatible with the Bean class. So declaring a field with Bean class can lead to "unsafe field assignement" exceptions.
You cannot reasonably know when Spring is going to Proxy a service (nor should you), so to protect yourself against those surprises, your best move is to declare an interface and use this interface when declaring autowired fields.

Categories

Resources