How to create a server that distributes workunits to clients? - java

I need a java application that should manage a database to distribute work units to its clients.
Effectively it's a grid application: the database is filled with input parameters for clients and all it's tuples must be distributed to clients that request for. After clients send their results and the server modify the database accordingly (for example marking the tuples computed).
Now let's suppose that I have a database (SQLite or MySQL) filled with tuples and that clients do a request for a group of input tuples: I want that a group of workunits are sent exclusively to a unique client, so I need to mark them "already requested by another client".
If I query the db for the first (for example 5) queries and meanwhile another client makes the same request (in a multi-threaded server architecture and without any synchronization) I think there is a possibility that both clients receive the same work-units.
I imagined that solutions could be:
1) make a single-threaded server architecture ( ServerSocket.accept() is called again only after the previous client request has been served, so that the server is effectively accessed by only a client at time)
2) in a multi-threaded architecture, make the query and tuples-lock operations synchronized, so that I obtain a kind of atomicity (effectively serializing operations over the database)
3) use atomic query operations to the database server (or file, in the case of SQLite), but in this case I need help because I don't know how things really goes...
However I hope that you understood my problem: it's very similar to seti#home that distributes it's work-units but the intersection over all distributed units to its multitude of clients is null (theoretically).
My non-functional needs are that the language is java and that database is SQLite or MySQL.

Some feedback for each of your potential solutions ...
1) make a single-threaded server
architecture ( ServerSocket.accept()
is called again only after the
previous client request has been
served, so that the server is
effectively accessed by only a client
at time)
ServerSocket.accept() will not allow you to do that, you might need some other type of synchronization to allow only one thread to be in situation of getting tuples. This basically leads you to your solutions (2).
2) in a multi-threaded architecture,
make the query and tuples-lock
operations synchronized, so that I
obtain a kind of atomicity
(effectively serializing operations
over the database)
Feasible, easy to implement and a common way to approach the problem. Only issue is how much you care about performance, latency and throughput because if you have many of those clients and the work units time span is very short then the clients might end up 90% of time locked in wait to get the "token".
Possible solution to that issue. Use a hashed based distribution for work units. Let's say you have 500 work units to be shared between 50 clients. You give IDs to you work units in such a way that you which clients will get certain work units. In the end, you can assign nodes with a simple module operation:
assigned_node_id = work_unit_id % number_of_working_nodes
This technique, called pre-allocation, doesn't work for all type of problems so it depends on your application. Use this approach if you have many short running processes.
3) use atomic query operations to the
database server (or file, in the case
of SQLite), but in this case I need
help because I don't know how things
really goes...
It's in essence same as (2) but in case you are able to do this, which I doubt you can with just SQL, you would end up tied up to some specific features of your RDBMS. Most likely you would have to some non-standard SQL procedures to achieve this solutions. And, it doesn't fix the issues you would find with solution 2.
Summary
Solution 2 is more likely to work in 90% of the cases, the longer the tasks are the better for this solution. If the tasks are very short in time definitely go for a pre-allocation based algorithm.
With solution 3 you give up portability and flexibility.
DRY: try some other Open Source systems ...
There are few Open Source java projects that already deal with this kind of issue, they might be an overkill for you but I think it's worth mentioning them ...
http://www.gridgain.com/
http://www.jppf.org/

I advice you to read some articles like this one, to see how DB can do the synchronization job for you.

Related

Searching strategy to efficiently load data from service or server?

This question is not very a language-specific question, it's some kind of pattern-related question, but I would like to tag it with some popular languages that I can understand here.
I've not been very experienced with the requirement of efficiently loading data in combination with searching data (especially for mobile environment).
My strategy used before is load everything into local memory and search from there (such as using LINQ in C#).
One more strategy is reload the data every time a new search is executed. Doing something like this is of course not efficient, also we may need to do some more complicated things to sync the newly loaded data with the existing data (already loaded into local memory).
The last strategy I can think of is the hardest one to implement, that is lazily load the data together with the searching execution. That is when the search is executed, the return result should be cached locally. The search should look in the local memory first before fetching new result from the service/server. So the result of each search is a combination of the local search and the server search. The purpose here is to reduce the amount of data being reloaded from server every time a search is run.
Here is what I can think of to implement this kind of strategy:
When a search is run, look in the local memory first. Finishing this step gives out the local result.
Now before sending request to search on the server side, we need to somehow pass what are already put in the result (locally) to exclude them from the result when searching on the server side. So the searching method may include a list of arguments containing all the item IDs found by the fisrt step.
With that searching request, we can exclude the found result and return only new items to the client.
The last step is merge the 2 results: from local and server to have the final search result before showing on the UI to the user.
I'm not sure if this is the right approach but what I feel not really good here is at the step 2. Because we need to send a list of item IDs found on the step 1 to the server, so what if we have hundreds or thousands of such IDs, sending them in that case to the server may not be very efficient. Also the query to exclude such a large amount of items may not be also efficient (even using direct SQL or LINQ). I'm still confused at this point.
Finally if you have any better idea and importantly implemented in some production project, please share with me. I don't need any concrete example code, I just need some idea or steps to implement.
Too long for a comment....
Concerning step 2, you know you can run into many problems:
Amount of data
Over time, you may accumulate a huge amount of data so that even the set their id's gets bigger than the normal server answer. In the end, you could need to cache not only previous server's answers on the client, but also client's state on the server. What you're doing is sort of synchronization, so look at rsync for inspiration; it's an old but smart Unix tool. Also git push might be inspiring.
Basically, by organizing your IDs into a tree, you can easily synchronize the information (about what the client already knows) between the server and the client. The price may be increasing latency as multiple steps may be needed.
Using the knowledge
It's quite possible that excluding the already known objects from the SQL result could be more expensive than not, especially when you can't easily determine if a to-be-excluded object would be a part of the full answer. Still, you can save bandwidth by post-filtering the data.
Being up to date
If your data change or get deleted, your may find your client keeping obsolete data. The client subscribing for relevant changes is one possibility; associating a (logical) timestamp to your IDs is another one.
Summary
It can get pretty complicated and you should measure before you even try. You may find out that the problem itself is hard enough and that achieving these savings is even harder and the gain limited. You know the root of all evil, right?
I would approach the problem by thinking local and remote are two different data sources,
When a search is triggered, the search is initiated against both data sources (local - in memory and server)
Most likely local search will result in results first, so display them to the user.
When results returned from the server, you can append non duplicate results.
Optional - in case server data has changed and some results remove/ or changed, update/remove local results and update the view.

How to publish to KDB Ticker Plant from Java effectively

We have market data handlers which publish quotes to KDB Ticker Plant. We use exxeleron q java libary for this purpose. Unfortunately latency is quite high: hundreds milliseconds when we try to insert a batch of records. May you suggest some latency tips for KDB + Java binding, as we need to publish quite fast.
There's not enough information in this message to give a fully qualified response, but having done the same with Java+KDB it really comes down to eliminating the possibilities. This is common sense, really, nothing super technical.
make sure you're inserting asynchronously
Verify it's exxeleron q java that is causing the latency. I don't think there's 100's of millis overhead there.
Verify the CPU that your tickerplant is on isn't overloaded. Consider re-nicing, core binding, etc
Analyse your network latencies. Also, if you're using Linux, there's a few tcp tweaks you can try, e.g. TCP_QUICKACK
As you're using Java, be smarter about garbage collection. It's highly configurable, although not directly controllable.
if you find out the tickerplant is the source of latency, you could either recode it to not write to disk - or get a faster local disk.
There's so many more suggestions, but the question is a bit too ambiguous.
EDIT
Back in 2007, with old(ish) servers and a very old version of KDB+ we were managing an insertion rate of 90k rows per second using the vanilla c.java. That was after many rounds of the above points. I'm sure you can achieve way more now, it's a matter of finding where the bottlenecks are and fixing them one by one.
Make sure the data publish to ticket plant are is batch, like wait for a little bit to insert say few rows of data in batch, but not insert row by row once any new records coming

Writing hundreds of data objects to a Mongo database

I am working on a Minecraft network which has several servers manipulating 'user-objects', which is just a Mongo document. After a user object is modified it need to be written to the database immediately, otherwise it may be overwritten in other servers (which have an older version of the user object), but sometimes hundreds of objects need to be written away in a short amount of time.. (in a few seconds). My question is: How can I easily write objects to a MongoDB database without really overload the database..
I have been thinking up an idea but I have no idea if it is relevant:
- Create some sort of queue in another thread, everytime an data object gets need to be saved into the database it gets in the queue and then in the 'queue thread' the objects will be saved one by one with some sort of interval..
Thanks in advance
btw Im using Morphia as framework in Java
"hundreds of objects [...] in a few seconds" doesn't sound that much. How much can you do at the moment?
The setting most important for the speed of write operations is the WriteConcern. What are you using at the moment and is this the right setting for your project (data safety vs speed)?
If you need to do many write operations at once, you can probably speed up things with bulk operations. They have been added in MongoDB 2.6 and Morphia supports them as well — see this unit test.
I would be very cautious with a queue:
Do you really need it? Depending on your hardware and configuration you should be able to do hundreds or even thousands of write operations per second.
Is async really the best approach for you? The producer of the write operation / message can only assume his change has been applied, but it probably has not and is still waiting in the queue to be written. Is this the intended behaviour?
Does it make your life easier? You need to know another piece of software, which adds many new and most likely unforeseen problems.
If you need to scale your writes, why not use sharding? No additional technology and your code will behave the same with and without it.
You might want to read the following blogpost on why you probably want to avoid queues for this kind of operation in general: http://widgetsandshit.com/teddziuba/2011/02/the-case-against-queues.html

Cache update with db changes

We have a java based product which keeps Calculation object in database as blob. During runtime we keep this in memory for fast performance. Now there is another process which updates this Calculation object in database at regular interval. Now, what could be the best strategy to implement so that when this object get updated in database, the cache removes the stored object and fetch it again from database.
I won't prefer any caching framework until it is must to use.
I appreciate response on this.
It is very difficult to give you good answer to your question without any knowledge of your system architecture, design constraints, your IT strategy etc.
Personally I would use Messaging pattern to solve this issue. A few advantages of that pattern are as follows:
Your system components (Calculation process, update process) can be loosely coupled
Depending on implementation of Messaging pattern you can "connect" many Calculation processes (out-scaling) and many update processes (with master-slave approach).
However, implementing Messaging pattern might be very challenging task and I would recommend taking one of the existing frameworks or products.
I hope that will help at least a bit.
I did some work similar to your scenario before, generally there are 2 ways.
One, the cache holder poll the database regularly, fetch the data it needs and keep it in the memory. The data can be stored in a HashMap or some other collections. This approach is simple and easy to implement, no extra framework or library needed. But users will have to endure dirty data from time to time. Besides, polling will cause a lot of pressure on DB if the number of pollers is huge or the query is not fast enough. However, it is generally not a bad one if your requirement for real-time is not that high and the scale of your system is relatively small.
The other approach is that the cache holder subscribes the notification of the data updater and update its data after being notified. It provides better user experience, but this will bring more complexity to your system because you have to get some MS infrastructure, such as JMS, involved. Developing and tuning is more time-consuming.
I know I am quite late resonding this but it might help somebody searching for the same issue.
Here was my problem, I was storing requestPerMinute information in a Hashmap in a Java filter which gets loaded during the start of the application. The problem if somebody updates the DB with new information ,the map doesn't know about this.
Solution: I took one variable updateTime in my Java filter which just stored when was my hashmap last got updated and with every request it checks if the current time is time more than 24 hours , if yes then it updates the hashmap from the database.So every 24 hours it just refreshes the whole hashmap.
Although my usecase was not to update at real time so it fits the use case.

which NOSQL database tool is better to choose for my application?

I am planning to develop some application like connecting with friends of friends of friends. It may look like as Facebook or Twitter but initially i am planning to implement that to learn more about NOSQL databases.
There are number of database tools in NOSQL. I have gone through many database types like document store, key-value store, column type, graph databases. And finally i come up with two database tools which are cassandra & Neo4J. Is it right to choose any one, if not correct me & provide me some your valuable opinions.
One more thing is the language binding which i choose is JAVA.
My question is,
Which database tool suits for my application?
Awaiting for your valuable opinions. Thanks for spending your valuable time.
Tim, you really should have posted your question separately, rather than as an answer to the OP, which it wasn't.
But to answer, first, go read Ben Black's slides at http://www.slideshare.net/benjaminblack/introduction-to-cassandra-replication-and-consistency.
Done? Okay, now for the specific questions:
"How would differences in [replica] data-state be reconciled on a subsequent read?"
The highest timestamp wins.
"Do all zones work off the same system clock?"
Timestamps are provided by clients (i.e., your app server). They should be synchronized with e.g. ntpd (which is good practice anyway), but high precision is not required because if ordering matters you should be avoiding conflict either by using unique column names or by using external locking.
For example: if you have a list of users following you in a Twitter clone, you should give each follower its own column and there will be no way to lose data no matter how out of sync the clocks are.
If you have an admin tool for your website and two admins upload a new favicon "simultaneously," one update is going to win and it doesn't really matter which. Here, you do want your clocks synchronized but "within a few ms" is close enough.
If you are managing user registration and you want to allow creating account "jbellis" only if it doesn't already exist, you need a lock manager no matter how closely synchronzied your clocks are.
"Would stale data get returned?"
A node (a better unit to think about than a "zone") will not have data it missed during its downtime until it is sent that data by read repair, hinted handoff, or anti-entropy repair. In the meantime, it will reply to read requests with stale data; if you use a high enough consistencylevel read requests will wait for enough other replies to make sure you always see the most recent version anyway, which may mean not being able to fulfil requests if enough other replicas are down.
Otherwise, a low consistencylevel (e.g. ONE) implicitly means "I understand that the higher availability and lower latency I get with this lower consistencylevel means I'm okay with seeing stale data temporarily after downtime."
I'm not sure I understand all of the implications of the Cassandata consistency model with respect to data-agreement across multiple availability zones.
Given multiple zones, and given that the coordinator node in Cassandra has used a consistency level that does not require all zones to report back, but only a quorum, how would differences in zone data-state be reconciled on a subsequent read?
Do all zones work off the same system clock? Or does each zone have its own clock? If they don't work off the same clock, how are they synchronized so that timestamps can be compared during the "healing" process when differences are reconciled?
Let's say that a zone that does have accurate, up-to-date data is now offline, and a zone that was offline during a previous write (so it didn't get updated and contains stale data) is now back online. Would stale data get returned? Would the coordinator have any way to know the data were stale?
If you don't need to scale in the short term I'd go with Neo4j because it is designed to store networks like the one you described. (If you eventually do need to scale, maybe you can throw Gizzard in front of it or something. Good luck!)
Have you looked on Riak database? It has the same background as Cassandra, but you don't need to care about timestamp synchronization (they involve different method for resolving data status).
My first application was build on a Cassandra database. But I am now trying Riak because it is more suitable. It is not only the difference in keys (keys - values / super column - keys - values) but goes further with the document store feature.
It has a method to create complex queries using MapReduce. Cassandra does have this option using Hadoop, but it sounds difficult.
Further more it uses a well known and defined access protocol in http/s so it's easy to manage the server when you have a lot of traffic.
The only bad point is that is slower than Cassandra. But usually you will read records more than write (and Cassandra is optimised on writes, not reads) so the end result should be ok.

Categories

Resources