My entities are:
#Entity
public class ReportSnapshot extends LightEntity {
#Id
#GeneratedValue
private long id;
#OneToOne(fetch = FetchType.LAZY, optional = false, mappedBy = "snapshot")
private ReportContents contents;
#Embedded
private WeekNumber week;
...
}
and
#Entity
public class ReportContents extends LightEntity {
#Id
private long id;
#MapsId
#OneToOne(optional = false)
private ReportSnapshot snapshot;
#Lob
#Column(nullable = false)
private String reportText = "";
...
}
here light entity class comes from gilead project and is intended for gwt serialization support - it shudn't affect the process. What i observe is: when I load ReportSnapshot by id from an entity manager, I automatically get the linked ReportContents despite the lazy association. According to what I've read that shudn't be hppening as I've set my relationship to be non-optional =(
Which provider are you using? Hibernate does not support lazy loading of OneToOne associations (at least not out of the box). That page documents some approaches you could try.
Related
I'm mapping a relationship that does not use the entity's primary key. Using "referencedColumnName" with a column different than the primary key causes hibernate to eagerly fetch the association, by issuing an extra select, even when it's tagged with FetchType.LAZY.
My goal is to make it behave like a regular mapping, meaning it wouldn't issue an extra query every time I need to query the main entity.
I have already tried using #LazyToOne(LazyToOneOption.NO_PROXY), which sorts out the problem, but it does not operate well with Jackson's (JSON parsing library) module "jackson-datatype-hibernate5", which skips hibernate lazy proxies when serializing the results.
Here is a scenario almost like the one I have that causes the problem:
Entities:
#Entity(name = "Book")
#Table(name = "book")
public class Book
implements Serializable {
#Id
#GeneratedValue
private Long id;
private String title;
private String author;
#NaturalId
private String isbn;
//Getters and setters omitted for brevity
}
#Entity(name = "Publication")
#Table(name = "publication")
public class Publication {
#Id
#GeneratedValue
private Long id;
private String publisher;
#ManyToOne(fetch = FetchType.LAZY)
#JoinColumn(
name = "isbn",
referencedColumnName = "isbn"
)
private Book book;
#Column(
name = "price_in_cents",
nullable = false
)
private Integer priceCents;
private String currency;
//Getters and setters omitted for brevity
}
Repository (Spring-Data, but you could try directly with the EntityManager):
#Repository
public interface PublicationRepository extends JpaReadRepository <Publication, Long>
{
#Query ("SELECT d FROM Publication d WHERE d.publisher = ?1 ")
Optional <Publication> findByPublisher (String isbn);
}
Thanks
The only way to achieve what you are looking for is by moving the annotatation #Id to the isbn property.
You can leave the #GeneratedValue on the autoincrement property.
Notes:
1 - Make sure that your equals/hc are following the OID(Object ID) on your domain case the "NaturalId" ISBN.
2 - It will be good to ensure if possible on DB level that your natural ID has unique contraint on it.
I have the following code:
public interface JSONInvoiceView {
public interface JSONInvoiceBasicView {
}
public interface JSONInvoiceWithLinesView extends JSONInvoiceBasicView {
}
}
#PersistenceUnit(unitName="ERP_PU")
#Entity
#Table(name="INVOICE")
public class Invoice extends FrameworkEntity {
#Id
#SequenceGenerator(name = "PK_INVOICE_GEN", sequenceName = "PK_INVOICE_GEN", allocationSize=1)
#GeneratedValue(strategy = GenerationType.SEQUENCE, generator = "PK_INVOICE_GEN")
#Column(name = "ID")
#JsonView(JSONInvoiceView.JSONInvoiceBasicView.class)
private Long id;
#OneToMany(mappedBy="invoiceLine", fetch = FetchType.LAZY, cascade = CascadeType.ALL)
#JsonView(JSONInvoiceView.JSONInvoiceWithLinesView.class)
#JsonManagedReference
private List<InvoiceLine> lines = new ArrayList<InvoiceLine>();
#Temporal(TemporalType.DATE)
#Column(name = "DATE")
#JsonView(JSONInvoiceView.JSONInvoiceBasicView.class)
private Date startDate;
//...
}
#PersistenceUnit(unitName="ERP_PU")
#Entity
#Table(name="INVOICE_LINE")
public class InvoiceLine extends FrameworkEntity {
#Id
#Column(name = "ID")
#JsonView(JSONInvoiceView.JSONInvoiceWithLinesView.class)
private Long id;
#ManyToOne(fetch = FetchType.LAZY, cascade = CascadeType.PERSIST)
#JoinColumn(name="FK_INVOICE")
#JsonBackReference
private Invoice invoice;
#Column(name = "AMOUNT")
#JsonView(JSONInvoiceView.JSONInvoiceWithLinesView.class)
private BigDecimal amount;
#ManyToOne(fetch = FetchType.LAZY, cascade = CascadeType.PERSIST)
#JoinColumn(name="FK_GOOD")
private Good good;
//...
}
#PersistenceUnit(unitName="ERP_PU")
#Entity
#Table(name="GOOD")
public class Good extends FrameworkEntity {
#Id
#Column(name = "ID")
private Long id;
#Column(name = "DESCRIPTION", length=200)
private String description;
//...
}
So – one Invoice can have multiple InvoiceLines and each line has reference to Good. I need to get two JSON views: Inovice-only view and Invoice+InvoiceLine-only view. My domain is far richer than these 3 classes – the whole entity graph involves tens of classes and I need careful control how much of this graph I am loading in my entities. But I need to control also how much of loaded graph the JSON serialization facility should try to serialize. And I have the problem with this second control.
entityList is list of Invoices which has loaded InvoiceLines (with touch, e.g. invoiceLines.size();) but InvoiceLines have not further loaded Goods (invoiceLine.good is not touched during lazy load). So, entityList if Invoice+InvoiceLines.
I use the following code for Invoice-only view and this code works:
jsonString = objectMapper.writerWithView(JSONInvoiceView.JSONInvoiceBasicView.class).writeValueAsString(entityList);
Code for retrieving JSON view with Invoice+InvoiceLine-only data:
jsonString = objectMapper.writerWithView(JSONInvoiceView.JSONInvoiceWithLinesView.class).writeValueAsString(entityList);
And this code does not work, it raises error message:
org.codehaus.jackson.map.JsonMappingException: could not initialize proxy - no Session (through reference chain: java.util.ArrayList[0]->mycom.entities.Invoice["invoiceLines"]->org.hibernate.collection.internal.PersistentBag[0]-> mycom.entities.Good["good"]-> mycom.entities.Good_$$_jvst4f9_c["id"])
at org.codehaus.jackson.map.JsonMappingException.wrapWithPath(JsonMappingException.java:218)
at org.codehaus.jackson.map.JsonMappingException.wrapWithPath(JsonMappingException.java:183)
at org.codehaus.jackson.map.ser.std.SerializerBase.wrapAndThrow(SerializerBase.java:140)
at org.codehaus.jackson.map.ser.std.BeanSerializerBase.serializeFields(BeanSerializerBase.java:158)
at org.codehaus.jackson.map.ser.BeanSerializer.serialize(BeanSerializer.java:112)
Caused by: org.hibernate.LazyInitializationException: could not initialize proxy - no Session
at org.hibernate.proxy.AbstractLazyInitializer.initialize(AbstractLazyInitializer.java:165)
at org.hibernate.proxy.AbstractLazyInitializer.getImplementation(AbstractLazyInitializer.java:286)
So, the question is – what Jackson views/annotations should I apply to serialized Invoice+InvoiceLine only parts of entity graph which has loaded only Invoice+InvoiceLine data? How should I indicate that Jackson should not try to go further along association chain and Jackson should not try to serialize 3rd, 4th and so order associations, Jackson should not try to serialize good entities?
p.s. Ignore annotations (or any similar global annotation on entities) is not applicable in my case, because there will be cases when I need only Invoice data and then there will be cases when I will need Invoice+InvoiceLine+Good data and further I will need data Invoice+InvoiceLine+Good+GoodSupplier, etc.
I have found solution - Jackson perceives fields without #JsonView annotation as the fields belonging to every view. Therefor I should introduce additional view:
public interface JSONInvoiceView {
public interface JSONInvoiceBasicView {
}
public interface JSONInvoiceWithLinesView extends JSONInvoiceBasicView {
}
public interface JSONInvoiceWithLinesViewExt extends JSONInvoiceWithLinesView {
}
}
And apply new interace to the Good field:
#ManyToOne(fetch = FetchType.LAZY, cascade = CascadeType.PERSIST)
#JoinColumn(name="FK_GOOD")
#JsonView(JSONInvoiceView.JSONInvoiceWithLinesExtView.class)
private Good good;
So - I should define new JSON view interfeice for each level of associations for my entities. After appling #JsonView all works like a charm.
I want to have hibernate generate some tables with foreign keys and so on. Ill give you an example of the query i want hibernate to generate:
create table RealtimeCost(id INTEGER not null primary key Autoincrement,
mnemonic varchar(50)not null references Exchange(mnemonic),
sid int not null references License(sid),
price numeric(10,2) not null)
so this query should be generated by hibernate via Annotations. The corresponding class to this is:
#Entity
#Table
public class RealtimeCost {
#Id
#GeneratedValue(strategy = GenerationType.IDENTITY)
private Integer id;
#MapsId("mnemonic")
#JoinColumn(referencedColumnName="sid")
private String mnemonic;
#MapsId("sid")
#JoinColumn(referencedColumnName="sid")
private Integer sid;
#Column
private Double price;
Example for what the mnemonic in RealtimeCost should be mapped to (each mnemonic in RealtimeCost has exactly 1 value in Exchange):
#Entity
#Table
public class Exchange {
#Id
#Column(name="mnemonic")
private String exchange;
#Column
private String description;
As you can see I've tried a bit with the help of the docs, but I was not able to have the foreign keys be generated by hibernate. It would be really kind, if anyone could tell me the needed annotations and values for this class, so i can do it myself for the other classes as well. Also please tell me if i need to change anything in the Exchange class for the mapping to work. Thanks in advance
#ManyToOne(fetch = FetchType.EAGER)
#JoinColumn(name = "accommodation_type", unique = true, nullable = false)
private AccommodationType accommodationType;
#ManyToOne()creates a relationship according to #JoinColumn()
name in #JoinColumn() is the table name that you want to make a connection.
Then when you create a class that is going to be connected to main class, you first need to give it a table name below #Entity e.g #Table(name="accommodation_types")
Then you create your variable.
//bi-directional many-to-one association to Accommodation
#OneToMany(mappedBy="accommodationType", fetch=FetchType.EAGER)
private List<Accommodation> accommodations;
value of mappedByis the variable name in main class.
I'm not an expert but we let hibernate do all the work with the javax.persistence annotations for joining entities.
#javax.persistence.ManyToOne( fetch = javax.persistence.FetchType.EAGER, optional = true )
#javax.persistence.JoinColumn( name = "VIEWTYPE_ID", nullable = true, unique = false, insertable = true, updatable = true )
private com.company.other.subproject.ViewType viewType;
Maybe this is what you need. Since this let's hibernate care about the tables that have to be created or not and the foreignKeys get created automatically with the dialect of the database you communicate with.
You should set up the association in one entity and use the mappedBy in the other. You don't need #MapsId because you are not using embedded entities (read the docs). Take a look at the #OneToMany and #ManyToOne relationships:
#Entity
#Table
public class RealtimeCost {
#Id
#GeneratedValue(strategy = GenerationType.IDENTITY)
private Integer id;
#OneToMany
#JoinColumn(name="mnemonic")
private Exchange exchange;
...
}
#Entity
#Table
public class Exchange {
#Id
#Column(name="mnemonic")
private String mnemonic;
#Column
private String description;
#ManyToOne(mappedBy="exchange")
private RealtimeCost realtimeCost;
...
}
Every answer posted here got an upvote from me, because everyone was kinda right, but it was not 100% what i was searching for, yet it helped me solving my problem by myself. For the example i posted, the solution i was seeking is as follows (i also added not nullable):
#Entity
#Table
public class RealtimeCost {
#Id
#GeneratedValue(strategy = GenerationType.IDENTITY)
private Integer id;
#ManyToOne
#JoinColumn(name = "mnemonic",nullable=false)
private Exchange exchange;
#ManyToOne
#JoinColumn(name = "sid",nullable=false)
private License license;
#Column(nullable=false)
private Double price;
these are the annotations i was seeking for RealtimeCost class. I did not need any special annotations in Exchange class. #Nico answer was closest to what i need, therefore his answer will be accepted
This question is very similar to: JPA (Hibernate, EclipseLink) mapping: why doesn't this code work (chain of 2 relationships using JPA 2.0, #EmbeddedId composite PK-FK)?
Actually my only (from meaningful that I spotted) difference is that I use #IdClass and that I most probably won't be able to switch to a different provider than hibernate.
but anyway here is the code (removed parts that where unimportant):
PermissionContextType.java:
#Entity
#IdClass(PermissionContextTypePk.class)
public class PermissionContextType{
#Id
private String id;
#Id
#JoinColumn (name = "PROJECT", referencedColumnName = "ID")
#ManyToOne ()
private Project project;
public static class PermissionContextTypePk implements Serializable{
public String project;
public String id;
// ... eq and hashCode here ...
}
}
PermissionContext.java:
#Entity
#IdClass(PermissionContextPk.class)
public class PermissionContext{
#Id
private String id;
#Id
#JoinColumns ({
#JoinColumn (name = "PROJECT", referencedColumnName = "PROJECT"),
#JoinColumn (name = "PERMISSIONCONTEXTTYPE", referencedColumnName = "ID")
})
#ManyToOne
private PermissionContextType permissionContextType;
public static class PermissionContextPk implements Serializable{
public String id;
public PermissionContextTypePk permissionContextType;
// ... eq and hashCode here ...
}
}
Permission.java:
#Entity
#IdClass(PermissionPk.class)
public class Permission{
#Id
private String id;
#Id
#JoinColumns ({
#JoinColumn (name = "PROJECT", referencedColumnName = "PROJECT"),
#JoinColumn (name = "PERMISSIONCONTEXTTYPE", referencedColumnName = "PERMISSIONCONTEXTTYPE"),
#JoinColumn (name = "PERMISSIONCONTEXT", referencedColumnName = "ID")
})
#ManyToOne
private PermissionContext permissionContext;
public static class PermissionPk implements Serializable{
public String id;
public PermissionContextPk permissionContext;
// ... eq and hashCode here ...
}
}
and what I get is:
org.hibernate.AssertionFailure: Unexpected nested component on the referenced entity when mapping a #MapsId: PermissionContext
Caused by: org.hibernate.AssertionFailure: org.hibernate.AssertionFailure: Unexpected nested component on the referenced entity when mapping a #MapsId: PermissionContext
does anybody know if this is a hibernate bug and I should post it on their issue tracking system (and pray that I would be able to update to given hibernate version) or is there something fundamentally wrong with my way of binding the entities?
I've checked it with the hibernate implementation on EAP 6.1 (4.2.0) as well as on wildfly (don't really know which one.)
Ok, so this is what I found so far :
Thanks fr my friend : https://hibernate.atlassian.net/browse/HHH-5764 which most probably is the reason for this behaviour.
And I found a workaround :
Permission.java:
#Entity
#IdClass(PermissionPk.class)
public class Permission{
#Id
private String id;
// for the next 3 fields there are no public acessors, so the public API of the class was not changed !
#Id
#Column(name = "PROJECT")
private String projectId;
#Id
#Column(name = "PERMISSIONCONTEXTTYPE")
private String permissionContextTypeId;
#Id
#Column(name = "PERMISSIONCONTEXT")
private String permissionContextId;
#JoinColumns ({
#JoinColumn (name = "PROJECT", referencedColumnName = "PROJECT", updatable = false, insertable = false),
#JoinColumn (name = "PERMISSIONCONTEXTTYPE", referencedColumnName = "PERMISSIONCONTEXTTYPE", updatable = false, insertable = false),
#JoinColumn (name = "PERMISSIONCONTEXT", referencedColumnName = "ID", updatable = false, insertable = false)
})
#ManyToOne
private PermissionContext permissionContext;
public static class PermissionPk implements Serializable{
// previously they where private as well, but removed public constructor for the sake of simplicity of the question - so no changes where necesary in public API of the class !
private String id;
private String projectId;
private String permissionContextTypeId;
private String permissionContextId;
public PermissionPk () {}
public PermissionPk (String aId, PermissionContextPk aPermissionContext) {
this.id = aId;
permissionContextId = aPermissionContext.id;
permissionContextTypeId = aPermissionContext.permissionContextType.id;
projectId = aPermissionContext.permissionContextType.project;
}
... eq and hashCode here ...
}
}
The good thing about this workaround is that it does not change the public API of the class in any way
(the only change was that I needed to make fields in Pk's of context and contexttype visible to the PermissionPk - they where private before with only a public constructor [but again simplified for the question]), nor did it change the jpql queries, and at the same time workaround is scalable (to any tier amount - as long as every even pk does not contain another pk), so if the bug will be resolved it will be easy to remove the workaround.
I would still gladly accept any comments on either my workaround or the question in itself.
Today I found another workaround :)
You can omit #IdClass entirely and use hibernate specific ability to create composite keys on the fly as apparently it is not affected by this bug.
The drawback here is that:
it is entirely Hibernate specific not covered by JPA at all.
you cannot do em.find(ClassName.class,new ClassPk(args...)) as there is no ClassPk at all.
But if you could use anything else than hibernate you could just as well use something without this bug - so probably 1 is not a problem really. and there is a possibility that you don't really need the em.find for this entity (or can live with creating it thru session or jpql query).
I have the following mapping:
#Entity
public class Satellite implements Serializable, Comparable<Satellite> {
#NotNull #Id
private long id;
.....
#OrderColumn
#OneToMany(mappedBy = "satellite", cascade = CascadeType.ALL, fetch = FetchType.EAGER)
private List<DataModel> dataModel;
}
and a child entity:
#Entity #IdClass(value=DataModelPK.class)
public class DataModel implements Serializable, Comparable<DataModel> {
private static final long serialVersionUID = -3416403014857250990L;
#Id
private int orbit; // related to reference orbit file
private int dataPerOrbit; // in Gbit
#ManyToOne #Id
private Satellite satellite;
}
originally, DataModel was an embeddable entity, but for a better control over the primary key and the underlying structure of the db, I switched to a more traditional model.
The point is, during the loading of the entity now it generate a stack overflow!! I think there is some cyclic loading between those two entities and it got stuck!
I'm thinking to revert everything back to what it was, but I wish to understand why it gives me this error.
You have #IdClass for DataModel specified to be DataModelPK.class but your #Id annotation is on an int field.
This is a problem, it may be causing you stackoverflow but I am not certain.
Update I now see the second #Id annotation so I stand corrected, I will investigate furtuer.