The basic idea is that I have a native function I want to call in a background thread with a user selected value and the thread cannot be interrupted when started. If the user decides to change the value used to perform the task while the thread is running (they can do this from a GUI), the thread should finish its task with the previous value and then restart with the new value. When the task is done and the value hasn't changed, the thread should end and call a callback function.
This is what my current code looks like for the thread starting part:
volatile int taskValue;
volatile boolean taskShouldRestart;
void setTaskValue(int value)
{
taskValue = value;
synchronized (threadShouldRestart)
{
if task thread is already running
threadShouldRestart = true
else
{
threadShouldRestart = false
create and start new thread
}
}
}
And the actual work thread looks like this:
while (true)
{
nativeFunctionCall(taskValue);
synchronized (threadShouldRestart)
{
if (!threadShouldRestart)
{
invokeTaskCompletedCallbackFunction();
return;
}
}
}
I'm locking on the "threadShouldRestart" part because e.g. I don't want this changing to true just as the thread decides it's done which means the thread wouldn't restart when it was meant to.
Are there any cleaner ways to do this or Java utility classes I could be using?
You could design your run() method as follows:
public void run() {
int currentTaskValue;
do {
currentTaskValue = taskValue;
// perform the work...
} while (currentTaskValue != taskValue);
}
I think the volatile declaration on taskValue is enough for this, since reads and writes of primitives no larger than 32 bits are atomic.
Have you considered a ThreadPoolExecutor? It seems to lend itself well to your problem as you mentioned you have no need to restart or stop a thread which has already started.
http://download.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/ThreadPoolExecutor.html
A user could submit as many tasks as they like to a task queue, tasks will be processed concurrently by some number of worker threads you define in the ThreadPoolExecutor constructor.
Related
Let's say I have two threads running like this:
Thread A which performs computation while updating pixels of a shared image
Thread B periodically reads the image and copies it to the screen
Thread A performs work quickly, say 1 million updates per second, so I suspect it would be a bad idea to lock and unlock on a lock/mutex/monitor that often. But if there is no lock and no way of establishing a happens-before relation from thread A to thread B, then by the Java memory model (JMM spec) thread B is not guaranteed at all to see any of A's updates to the image.
So I was thinking that the minimum solution is for threads A and B to both synchronize periodically on the same shared lock, but not actually perform any work while inside the synchronized block - this is what makes the pattern non-standard and dubious. To illustrate in half-real half-pseudo code:
class ComputationCanvas extends java.awt.Canvas {
private Object lock = new Object();
private int[] pixels = new int[1000000];
public ComputationCanvas() {
new Thread(this::runThreadA).start();
new Thread(this::runThreadB).start();
}
private void runThreadA() {
while (true) {
for (1000 steps) {
update pixels directly
without synchornization
}
synchronized(lock) {} // Blank
}
}
private void runThreadB() {
while (true) {
Thread.sleep(100);
synchronized(lock) {} // Blank
this.repaint();
}
}
#Override
public void paint(Graphics g) {
g.drawImage(pixels, 0, 0);
}
}
Does adding empty synchronization blocks in this way correctly achieve the effect of transferring data from thread A to thread B? Or is there some other solution I failed to imagine?
Yes it works. But it works horribly.
Happens before only works when the release of the writer happens before the acquire of the reader. Your implementation assumes that whatever you're writing will complete before the subsequent reading/updating from ThreadB. Causing your data to be flushed all the time by synchronized will cause performance problems, although to what extent I cannot say for sure. Sure, you've made your synchronization finer grained, have you tested it yet?
A better solution might use a singleton/transfer SPSC (single producer/single consumer) queue to store the current snapshot of the writing thread and use that whenever you update.
int[] data = ...
Queue<int[]> queue = new ...
// Thread A
while (true) {
for (1000 iterations or so) {
...
}
queue.add(data);
}
// Thread B
while (true) {
int[] snapshot = queue.take();
this.repaint();
}
The advantage of this is that you don't need to busywait, you can just wait for the queue to block or until the next write. You can skip writes that you don't have time to update. You don't need to depend on the arbitrary thread scheduler to plan data flushes for you.
Remember that thread-safe data structures are great for passing data between threads.
Edit: oops, forgot to say that depending on how your updates go, you might want to use an array copy to prevent your data from being garbled from random writes that aren't cached.
I've written following multi thread program. I want to cancel the all the thread if one of the thread sends back false as return. However though I'm canceling the thread by canceling individual task. Its not working. What changes I need to make inorder to cancel the thread?
I've written following multi thread program. I want to cancel the all the thread if one of the thread sends back false as return. However though I'm canceling the thread by canceling individual task. Its not working. What changes I need to make inorder to cancel the thread?
import java.util.Iterator;
import java.util.List;
import java.util.concurrent.Callable;
public class BeamWorkerThread implements Callable<Boolean> {
private List<BeamData> beamData;
private String threadId;
public BeamScallopingWorkerThread(
List<BeamData> beamData, String threadId) {
super();
this.beamData = beamData;
this.threadId = threadId;
}
#Override
public Boolean call() throws Exception {
Boolean result = true;
DataValidator validator = new DataValidator();
Iterator<BeamScallopingData> it = beamData.iterator();
BeamData data = null;
while(it.hasNext()){
data = it.next();
if(!validator.validateDensity(data.getBin_ll_lat(), data.getBin_ll_lon(), data.getBin_ur_lat(), data.getBin_ur_lon())){
result = false;
break;
}
}
return result;
}
}
ExecutorService threadPool = Executors.newFixedThreadPool(100);
List<Future<Boolean>> results = new ArrayList<Future<Boolean>>();
long count = 0;
final long RowLimt = 10000;
long threadCount = 1;
while ((beamData = csvReader.read(
BeamData.class, headers1, processors)) != null) {
if (count == 0) {
beamDataList = new ArrayList<BeamData>();
}
beamDataList.add(beamData);
count++;
if (count == RowLimt) {
results.add(threadPool
.submit(new BeamWorkerThread(
beamDataList, "thread:"
+ (threadCount++))));
count = 0;
}
}
results.add(threadPool.submit(new BeamWorkerThread(
beamDataList, "thread:" + (threadCount++))));
System.out.println("Number of threads" + threadCount);
for (Future<Boolean> fs : results)
try {
if(fs.get() == false){
System.out.println("Thread is false");
for(Future<Boolean> fs1 : results){
fs1.cancel(true);
}
}
} catch(CancellationException e){
} catch (InterruptedException e) {
} catch (ExecutionException e) {
} finally {
threadPool.shutdownNow();
}
}
My comments
Thanks all for your input I'm overwhelmed by the response. I do know that, well implemented thread takes an app to highs and mean time it a bad implementation brings the app to knees. I agree I'm having fancy idea but I don't have other option. I've a 10 million plus record hence I will have memory constraint and time constraint. I need to tackle both. Hence rather than swallowing whole data I'm breaking it into chunks and also if one data is invalid i don't want to waste time in processing remaining million data. I find #Mark Peters suggestion is an option. Made the changes accordingly I mean added flag to interrupt the task and I'm pretty confused how the future list works. what I understand is that looping through each field of future list starts once all the thread returns its value. In that case, there is no way to cancel all the task in half way from main list. I need to pass on the reference of object to each thread. and if one thread finds invalid data using the thread refernce call the cancel mathod of each thread to set the interrupt flag.
while(it.hasNext() && !cancelled) {
if(!validate){
// loop through each thread reference and call Cancel method
}
}
Whatever attempt you make to cancel all the remaining tasks, it will fail if your code is not carefully written to be interruptible. What that exactly entails is beyond just one StackOverflow answer. Some guidelines:
do not swallow InterruptedException. Make its occurrence break the task;
if your code does not spend much time within interruptible methods, you must insert explicit Thread.interrupted() checks and react appropriately.
Writing interruptible code is in general not beginner's stuff, so take care.
Cancelling the Future will not interrupt running code. It primarily serves to prevent the task from being run in the first place.
While you can provide a true as a parameter, which will interrupt the thread running the task, that only has an effect if the thread is blocked in code that throws an InterruptedException. Other than that, nothing implicitly checks the interrupted status of the thread.
In your case, there is no blocking; it's busy work that is taking time. One option would be to have a volatile boolean that you check at each stage of your loop:
public class BeamWorkerThread implements Callable<Boolean> {
private volatile boolean cancelled = false;
#Override
public Boolean call() throws Exception {
//...
while(it.hasNext() && !cancelled) {
//...
}
}
public void cancel() {
cancelled = true;
}
}
Then you would keep references to your BeamWorkerThread objects and call cancel() on it to preempt its execution.
Why don't I like interrupts?
Marko mentioned that the cancelled flag above is essentially reinventing Thread.interrupted(). It's a valid criticism. Here's why I prefer not to use interrupts in this scenario.
1. It's dependent on certain threading configurations.
If your task represents a cancellable piece of code that can be submitted to an executor, or called directly, using Thread.interrupt() to cancel execution in the general case assumes that the code receiving the interrupt will be the code that should know how to cleanly cancel the task.
That might be true in this case, but we only know so because we know how both the cancel and the task work internally. But imagine we had something like this:
Task does piece of work
Listeners are notified on-thread for that first piece of work
First listener decides to cancel the task using Thread.interrupt()
Second listener does some interruptible piece of work, and is interrupted. It logs but otherwise ignores the interrupt.
Task does not receive interrupt, and task is not cancelled.
In other words, I feel that interrupt() is too global of a mechanism. Like any shared global state, it makes assumptions about all of the actors. That's what I mean by saying that using interrupt() exposes/couples to details about the run context. By encapsulating it in a cancel() method applicable only for that task instance, you eliminate that global state.
2. It's not always an option.
The classic example here is an InputStream. If you have a task that blocks on reading from an InputStream, interrupt() will do nothing to unblock it. The only way to unblock it is to manually close the stream, and that's something best done in a cancel() method for the task itself. Having one way to cancel a task (e.g. Cancellable), regardless of its implementation, seems ideal to me.
Use the ExecutorService.shutdownNow() method. It will stop the executor from accepting more submissions and returns with the Future objects of the ongoing tasks that you can call cancel(true) on to interrupt the execution. Of course, you will have to discard this executor as it cannot be restarted.
The cancel() method may not terminate the execution immediately if the Thread is not waiting on a monitor (not blocked interruptibly), and also if you swallow the InterruptedException that will be raised in this case.
I have a thread that updates it's state from time to time and I want a second thread to be able to wait for the first thread to be done. Something like this:
Thread 1:
while(true) {
...do something...
foo.notifyAll()
...wait for some condition that might never happen...
...
}
Thread 2:
...
foo.wait();
...
Now this looks nice and all unless Thread 1's notifyAll() runs before Thread 2's wait(), in which case Thread 2 waits until Thread 1 notifies again (which might never happen).
My possible solutions:
a) I could use a CountDownLatch or a Future, but both have the problem that they inherently only run once. That is, in Thread 1's while loop, I would need to create a new foo to wait for each time and Thread 2 would need to ask which foo to wait for. I have a bad feeling about simply writing
while(true) {
foo = new FutureTask();
...
foo.set(...);
...wait for a condition that might never be set...
...
}
as I fear that at foo = new FutureTask(), what happens when someone waited for the old foo (for "some reason", set was not called, e.g. a bug in the exception handling)?
b) Or I could use a semaphore:
class Event {
Semaphore sem;
Event() { sem = new Semaphore(1); sem . }
void signal() { sem.release(); }
void reset() { sem.acquire(1); }
void wait() { if (sem.tryAcquire(1)) { sem.release(); } }
}
But I fear that there is some race condition, if multiple threads are wait()ing for it while another one signal()s and reset()s.
Question:
Is there nothing in the Java API that resembles the Windows Event behaviour? Or, if you despise Windows, something like golang's WaitGroup (i.e. a CountDownLatch that allows countUp())? Anything?
How to do it manually:
Thread 2 cannot simply wait because of spurious wakeup and in Java there is no way to know why Object.wait() returned. So I need a condition variable that stores whether the event is signalled or not. Thread 2:
synchronized(foo) {
while(!condition) {
foo.wait();
}
}
And Thread 1 of course sets condition to true in a synchronized block. Thanks to weekens for the hint!
Is there an existing class that wraps that behaviour?
Or do I need to copy and paste the code all over?
It is standard practice to change some state when performing notifyAll and to check some state when performing wait().
e.g.
boolean ready = false;
// thread 1
synchronized(lock) {
ready = true;
lock.notifyAll();
}
// thread 2
synchronized(lock) {
while(!ready)
lock.wait();
}
With this approach, it doesn't matter if thread 1 or thread 2 acquires the lock first.
Some coding analysis tools will give you a warning if you use notify or wait without setting a value or checking a value.
You could use a wait() with timeout, in which case you are not risking to wait forever. Also note that wait() may return even if there was no notify() at all, so, you'll need to wrap your wait inside some conditioned loop. That's the standard way of waiting in Java.
synchronized(syncObject) {
while(condition.isTrue()) {
syncObject.wait(WAIT_TIMEOUT);
}
}
(in your Thread 2)
Edit: Moved synchronized outside the loop.
The simplest way is just to say
firstThread.join();
This will be blocking until the first thread is terminated.
But you can implement the same using wait/notify. Unfortunately you have not posted your real code fragments but I guess that if wait does not exit when you call notify it happens because you did not put both into synchronized block. Pay attention that the "argument" of synchronized block must be the same for wait/notify pair.
I'd use a BlockingQueue between the two threads. Using wait and notify is so 5 minutes ago ;)
enum Event {
Event,
Stop;
}
BlockingQueue<Event> queue = new LinkedBlockingQueue<Event>();
// Thread 1
try {
while(true) {
...do something...
queue.put(Event.Event);
...wait for some condition that might never happen...
...
}
} finally {
// Tell other thread we've finished.
queue.put(Event.Stop};
}
// Thread 2
...
switch ( queue.take() ) {
case Event:
...
break;
default:
...
break;
}
Seems there is only ugly solutions. I solve it using AtomicBoolean as flag and some sleep to prevent high cpu usage and timeout for unexpected lost event...
Here my code:
somewhere in thread class:
private static final int WAIT_DELAY_MS_HACK = 5000; //ms
private static final AtomicBoolean NeedToExecute = new AtomicBoolean(false);
In working thread, that need to send wake signal:
public static final void SendSignalToExecute(){
synchronized(NeedToExecute){
NeedToExecute.set(true);
NeedToExecute.notify();
}
}
In the thread that must wait signal:
//To prevent infinite delay when notify was already lost I use WAIT_DELAY_MS_HACK in wait().
//To prevent false interruption on unknown reason of JM I use while and check of AtomicBoolean by NeedToExecute.get() in it.
//To prevent high CPU usage in for unknown persistant interruption in wait I use additional sleep():
while (!NeedToExecute.get()){
synchronized(NeedToExecute){
try {
NeedToExecute.wait(WAIT_DELAY_MS_HACK); //if notify() was sent before we go into wait() but after check in while() it will lost forever... note that NeedToExecute.wait() releases the synchronized lock for other thread and re-acquires it before returning
} catch (InterruptedException ex) { //here also may be sleep or break and return
}
}
sleep(100); //if wait() will not wait - must be outside synchronized block or it may cause freeze thread with SendSignalToExecute()... :(
}
NeedToExecute.set(false); //revert back to reenter check in next iteration, but I use it for one waited thread it cycle "do ... wait" if you use multiple thread you need to synchronise somehow this revert
I'm trying to find a less clunky solution to a Java concurrency problem.
The gist of the problem is that I need a shutdown call to block while there are still worker threads active, but the crucial aspect is that the worker tasks are each spawned and completed asynchronously so the hold and release must be done by different threads. I need them to somehow send a signal to the shutdown thread once their work has completed. Just to make things more interesting, the worker threads cannot block each other so I'm unsure about the application of a Semaphore in this particular instance.
I have a solution which I think safely does the job, but my unfamiliarity with the Java concurrency utils leads me to think that there might be a much easier or more elegant pattern. Any help in this regard would be greatly appreciated.
Here's what I have so far, fairly sparse except for the comments:
final private ReentrantReadWriteLock shutdownLock = new ReentrantReadWriteLock();
volatile private int activeWorkerThreads;
private boolean isShutdown;
private void workerTask()
{
try
{
// Point A: Worker tasks mustn't block each other.
shutdownLock.readLock().lock();
// Point B: I only want worker tasks to continue if the shutdown signal
// hasn't already been received.
if (isShutdown)
return;
activeWorkerThreads ++;
// Point C: This async method call returns immediately, soon after which
// we release our lock. The shutdown thread may then acquire the write lock
// but we want it to continue blocking until all of the asynchronous tasks
// have completed.
executeAsynchronously(new Runnable()
{
#Override
final public void run()
{
try
{
// Do stuff.
}
finally
{
// Point D: Release of shutdown thread loop, if there are no other
// active worker tasks.
activeWorkerThreads --;
}
}
});
}
finally
{
shutdownLock.readLock().unlock();
}
}
final public void shutdown()
{
try
{
// Point E: Shutdown thread must block while any worker threads
// have breached Point A.
shutdownLock.writeLock().lock();
isShutdown = true;
// Point F: Is there a better way to wait for this signal?
while (activeWorkerThreads > 0)
;
// Do shutdown operation.
}
finally
{
shutdownLock.writeLock().unlock();
}
}
Thanks in advance for any help!
Russ
Declaring activeWorkerThreads as volatile doesn't allow you to do activeWorkerThreads++, as ++ is just shorthand for,
activeWorkerThreads = activeWorkerThreads + 1;
Which isn't atomic. Use AtomicInteger instead.
Does executeAsynchronously() send jobs to a ExecutorService? If so you can just use the awaitTermination method, so your shutdown hook will be,
executor.shutdown();
executor.awaitTermination(1, TimeUnit.Minutes);
You can use a semaphore in this scenario and not require a busy wait for the shutdown() call. The way to think of it is as a set of tickets that are handed out to workers to indicate that they are in-flight. If the shutdown() method can acquire all of the tickets then it knows that it has drained all workers and there is no activity. Because #acquire() is a blocking call the shutdown() won't spin. I've used this approach for a distributed master-worker library and its easy extend it to handle timeouts and retrials.
Executor executor = // ...
final int permits = // ...
final Semaphore semaphore = new Semaphore(permits);
void schedule(final Runnable task) {
semaphore.acquire();
try {
executor.execute(new Runnable() {
#Override public run() {
try {
task.run();
} finally {
semaphore.release();
}
}
});
} catch (RejectedExecutionException e) {
semaphore.release();
throw e;
}
}
void shutDown() {
semaphore.acquireUninterruptibly(permits);
// do stuff
}
ExecutorService should be a preferred solution as sbridges mentioned.
As an alternative, if the number of worker threads is fixed, then you can use CountDownLatch:
final CountDownLatch latch = new CountDownLatch(numberOfWorkers);
Pass the latch to every worker thread and call latch.countDown() when task is done.
Call latch.await() from the main thread to wait for all tasks to complete.
Whoa nelly. Never do this:
// Point F: Is there a better way to wait for this signal?
while (activeWorkerThreads > 0)
;
You're spinning and consuming CPU. Use a proper notification:
First: synchronize on an object, then check activeWorkerThreads, and wait() on the object if it's still > 0:
synchronized (mutexObject) {
while (activeWorkerThreads > 0) {
mutexObject.wait();
}
}
Second: Have the workers notify() the object after they decrement the activeWorkerThreads count. You must synchronize on the object before calling notify.
synchronized (mutexObject) {
activeWorkerThreads--;
mutexObject.notify();
}
Third: Seeing as you are (after implementing 1 & 2) synchronizing on an object whenever you touch activeWorkerThreads, use it as protection; there is no need for the variable to be volatile.
Then: the same object you use as a mutex for controlling access to activeWorkerThreads could also be used to control access to isShutdown. Example:
synchronized (mutexObject) {
if (isShutdown) {
return;
}
}
This won't cause workers to block each other except for immeasurably small amounts of time (which you likely do not avoid by using a read-write lock anyway).
This is more like a comment to sbridges answer, but it was a bit too long to submit as a comment.
Anyways, just 1 comment.
When you shutdown the executor, submitting new task to the executor will result in unchecked RejectedExecutionException if you use the default implementations (like Executors.newSingleThreadExecutor()). So in your case you probably want to use the following code.
code:
new ThreadPoolExecutor(1,
1,
1,
TimeUnit.HOURS,
new LinkedBlockingQueue<Runnable>(),
new ThreadPoolExecutor.DiscardPolicy());
This way, the tasks that were submitted to the executor after shutdown() was called, are simply ignored. The parameter above (1,1... etc) should produce an executor that basically is a single-thread executor, but doesn't throw the runtime exception.
I'm new to Java so I have a simple question that I don't know where to start from -
I need to write a function that accepts an Action, at a multi-threads program , and only the first thread that enter the function do the action, and all the other threads wait for him to finish, and then return from the function without doing anything.
As I said - I don't know where to begin because,
first - there isn't a static var at the function (static like as in c / c++ ) so how do I make it that only the first thread would start the action, and the others do nothing ?
second - for the threads to wait, should I use
public synchronized void lala(Action doThis)
{....}
or should i write something like that inside the function
synchronized (this)
{
...
notify();
}
Thanks !
If you want all threads arriving at a method to wait for the first, then they must synchronize on a common object. It could be the same instance (this) on which the methods are invoked, or it could be any other object (an explicit lock object).
If you want to ensure that the first thread is the only one that will perform the action, then you must store this fact somewhere, for all other threads to read, for they will execute the same instructions.
Going by the previous two points, one could lock on this 'fact' variable to achieve the desired outcome
static final AtomicBoolean flag = new AtomicBoolean(false); // synchronize on this, and also store the fact. It is static so that if this is in a Runnable instance will not appear to reset the fact. Don't use the Boolean wrapper, for the value of the flag might be different in certain cases.
public void lala(Action doThis)
{
synchronized (flag) // synchronize on the flag so that other threads arriving here, will be forced to wait
{
if(!flag.get()) // This condition is true only for the first thread.
{
doX();
flag.set(true); //set the flag so that other threads will not invoke doX.
}
}
...
doCommonWork();
...
}
If you're doing threading in any recent version of Java, you really should be using the java.util.concurrent package instead of using Threads directly.
Here's one way you could do it:
private final ExecutorService executor = Executors.newCachedThreadPool();
private final Map<Runnable, Future<?>> submitted
= new HashMap<Runnable, Future<?>>();
public void executeOnlyOnce(Runnable action) {
Future<?> future = null;
// NOTE: I was tempted to use a ConcurrentHashMap here, but we don't want to
// get into a possible race with two threads both seeing that a value hasn't
// been computed yet and both starting a computation, so the synchronized
// block ensures that no other thread can be submitting the runnable to the
// executor while we are checking the map. If, on the other hand, it's not
// a problem for two threads to both create the same value (that is, this
// behavior is only intended for caching performance, not for correctness),
// then it should be safe to use a ConcurrentHashMap and use its
// putIfAbsent() method instead.
synchronized(submitted) {
future = submitted.get(action);
if(future == null) {
future = executor.submit(action);
submitted.put(action, future);
}
}
future.get(); // ignore return value because the runnable returns void
}
Note that this assumes that your Action class (I'm assuming you don't mean javax.swing.Action, right?) implements Runnable and also has a reasonable implementation of equals() and hashCode(). Otherwise, you may need to use a different Map implementation (for example, IdentityHashMap).
Also, this assumes that you may have multiple different actions that you want to execute only once. If that's not the case, then you can drop the Map entirely and do something like this:
private final ExecutorService executor = Executors.newCachedThreadPool();
private final Object lock = new Object();
private volatile Runnable action;
private volatile Future<?> future = null;
public void executeOnlyOnce(Runnable action) {
synchronized(lock) {
if(this.action == null) {
this.action = action;
this.future = executor.submit(action);
} else if(!this.action.equals(action)) {
throw new IllegalArgumentException("Unexpected action");
}
}
future.get();
}
public synchronized void foo()
{
...
}
is equivalent to
public void foo()
{
synchronized(this)
{
...
}
}
so either of the two options should work. I personally like the synchronized method option.
Synchronizing the whole method can sometimes be overkill if there is only a certain part of the code that deals with shared data (for example, a common variable that each thread is updating).
Best approach for performance is to only use the synchronized keyword just around the shared data. If you synchronized the whole method when it is not entirely necessarily then a lot of threads will be waiting when they can still do work within their own local scope.
When a thread enters the synchronize it acquires a lock (if you use the this object it locks on the object itself), the other will wait till the lock-acquiring thread has exited. You actually don't need a notify statement in this situation as the threads will release the lock when they exit the synchronize statement.