Lets say we have method to test in class A that calls method from class B. To test it we created mock for B and then verify if it was called. Is verify(...) enough for unit test or I need assert actual result of tested method?
Below is simplified example to clarify my concern:
public class StringWriterATest {
StringWriterB b = mock(StringWriterB.class);
#Test
public void stringWriterATest() {
StringBuffer sb = new StringBuffer();
StringWriterA a = new StringWriterA();
a.stringWriterB=b;
a.append(sb);
ArgumentCaptor<StringBuffer> argument = ArgumentCaptor.forClass(StringBuffer.class);
verify(b).append(argument.capture());
assertEquals("StringWriterA", ((StringBuffer)argument.getValue()).toString());
//do we really need this or above is enough for proper unit test of method a.append(sb);
//assertEquals("StringWriterA_StringWriterB", sb);
}
}
public class StringWriterA {
public StringWriterB stringWriterB;
public void append(StringBuffer sb) {
sb.append("StringWriterA");
stringWriterB.append(sb);
}
}
class StringWriterB {
public void append(StringBuffer sb) {
sb.append("StringWriterB");
}
}
Regards,
Max
There is never a need to mock a return value and verify an object at the same time.
Consider this:
StringWriterA is the class under test. Therefore you'll definitely want to use assertions to verify the behavior of this class. In order to do this, you mock out a dependency, StringWriterB.
You do not want to test StringWriterB in your test of StringWriterA, therefore any assertions of StringWriterB interactions in your test are in the wrong place.
You must assume that StringWriterB is behaving as expected. You either want to verify that StringWriterA called StringWriterB correctly (using verify()) or you want to mock its expected behavior and mock the return values.
If you mock, then the verify is implicit since the mocked return value will not be returned if the method is not called.
In your case, StringWriterA.append() does not return any value, so only a verify is even possible. That StringWriterB.append() also works should have a similar verify test in a stringWriterBTest of its own.
Note: It's nice to be explicit with tests. Since test methods are never called outside of a framework, there is never a need to type them out, so you can have much longer method names than in production code methods. A nice convention is:
<underTest>Should<Expected>[When]<Condition>()
i.e.
stringWriterAShouldAppendConstantAndDelegateToStringWriterB()
stringWriterAShouldThrowNullPointerExceptionWhenNullArgument()
When you have test failures in your build (continuous integration), then you don't have to hunt down what went wrong, the method name appears right by the failure and you can read it to know exactly what behavior must be fixed.
In your example, StringWriterB stores no state and the append method could easily be static. In that case then the call is purely a side effect and does not need to be tested.
However, I suspect your real code is much more complex. If there is a of another object accessing StringWriterB then you maye want to mock it out in case there are unexpected calls to it. You also may want to add the verify of B if you expect it to be expanded in the future -- possibly storing state from the append call and having accessors.
One thing to consider is what the purpose of the call to StringWriterA.append() is. If it's job is to append the string StringWriterAStringWriterB then that is what you should be testing and a mock is not necessary. How StringWriterA accomplishes that task is immaterial. If, however, part of its job is to also call the StringWriterB.append() method then a mock may will be necessary unless you want to test StringWriterB in A's test.
My rule of thumb WRT mocks is to use real objects until the wiring for the objects I'm not directly testing gets too hairy or too brittle. If I feel like a good portion of my tests are in actuality testing other objects then mocks would be a good idea.
First of all try to show somebody the test you wrote. It is hard to read in my opinion. You can't really tell from it what behaviour you are testing. A brief intro for you how to make it a bit more readable can be found here How to Write Clean, Testable Code .
Using argument captors is also a smell. Some examples how to avoid it can be found on this tdd blog.
To answer you question, verify is used to verify interactions between classes. It is used to drive the design of your code. The result (if needed) should be specified by a when or given at the beginning of your test.
Further information how to drive your design with mocks (when, given, verify, ...) and how mocks are different to stubs can be found here: Mocks are not stubs. That example uses JMock not Mockito for defining mocks, but it is very similar (it is about the concepts, not the details of implementation and libraries you use).
Related
I want to test a function in my code. This function calls another function in the same class but in my test I don't want to call it (I don't need it). Somehow, my test always goes into that inner function and makes errors. Is there any means to "skip" the call to that inner function ?
Here's an example :
void function1() {
if(condition == true) {
variable1 = function2()
}
}
Object function2() {
//Do something
return Object;
}
Is there a way to avoid calling function 2 ?
Thank you.
First you should consider fixing those errors thrown from function2().
If however you want to test the function1() isolated then the behavior you are describing is called Test Doubles. One kind of those test doubles is Mocking where you can drive the behavior of a class or a method.
There are frameworks doing this such as Mockito, but of course you can solve that problem on your own not depending on frameworks.
For example if you use Mockito you should end up mocking the function2() method like this
YouClassName mockedClass = mock(YouClassName.class);
when(mockedClass.function2()).thenReturn(new Object()); //you can of course return anything here
Its pretty common to test functions in isolation but in times where are dependencies between objects. If there are no dependencies you should probably consider not using test doubles (unless you are sure what you are doing).
Frameworks such as Mockito offer concepts such as spies. Using a Mockito spy, you can gain full control over which methods get invoked.
But: you only do that for very specific cases.
When you have a hard time testing your production code, then most likely: because you have written hard to test code.
Thus: you could try to use a spy here, but I would rather advice to step back and re-think what exactly you intend to do here.
I am writing unit tests and meet a problem with builder:
Here is the class to be test:
public class ToBeTest() {
public void enact(SomeInput input){
Session s = Session.builder().attributeA(input.getA()).build();
s.attributeB("someValue");
}
}
How can I write a test to verify whether Session S set field A and also B successfully? Thanks!
Basically there are two things you can verify on:
input.getA(): mock that instance of SomeInput you provide to your code under test, then you can verify that mocked object later on!
Session.builder() is most likely a static call, so use static mocking to provide a mocked builder object, which you can verify later on, too. See the official documentation for the steps required to do that.
Having said that: your real problem is that you wrote "hard to test code". Surprise, that makes it hard to test. You see, what is the point of having a "method local" Sessions variable in the first place. If that method would return that s, you could then check if it has certain properties. Or if s would be a field of that class, you could then maybe do other checking, to ensure that a correctly configured Session was build.
Long story short: PowerMock(ito) offers the things you need to this code. Read some good tutorials and you shouldn't have much issues. But it would be worthwhile to also invest into improving your code under test to make it easier to test. My rule of thumb is: when you need PowerMock(ito) to test your code, then your production code should be improved.
I have some mock objects that are probably going to get passed around a bit and might end up being fairly complex.
I'd like to either have Mockito output a log for each call made to a mock or I'd like it to fail whenever an unexpected call is made so I can iterate through those calls and set up appropriate responses.
How can I accomplish this?
The most-idiomatic way of doing this is with verifyNoMoreInteractions, as in Mockito docs #8:
//interactions
mock.doSomething();
mock.doSomethingUnexpected();
//verification
verify(mock).doSomething();
//following will fail because 'doSomethingUnexpected()' is unexpected
verifyNoMoreInteractions(mock);
I say "most-idiomatic" above because that method has its own warning label, which links to the blog post "Should I worry about the unexpected?" by Mockito originator Szczepan Faber.
verifyNoMoreInteractions() is not recommended to use in every test method. verifyNoMoreInteractions() is a handy assertion from the interaction testing toolkit. Use it only when it's relevant. Abusing it leads to overspecified, less maintainable tests.
In short, you should have a very clear reason to check what your dependency is not doing or what your system-under-test is not calling, as opposed to what they are doing and calling. You might use verifyNoMoreInteractions for an RPC object, if you want to avoid unnecessary RPC calls, but not (say) a calculator with no side effects. Even better is to specify your exact requirements with never() or times(int) as parameters to verify.
That said, there are two even-less-idiomatic ways of doing this:
You can take an overall log of calls made using mockingDetails(Object) and iterating through getInvocations(). That should reflectively give you a whole list of the invocations. I have a hard time imagining how this would be useful in a test, but it might be useful in cleaning up a nebulous or poorly-documented existing system.
You can make the mock's default action to throw an exception, which means that if anyone calls something that you haven't stubbed, the test will immediately fail.
// untested pseudocode
YourObject yourObject = Mockito.mock(YourObject.class, withSettings()
.defaultAnswer(invocation -> {
throw new UnsupportedOperationException(invocation.toString());
}));
Sure, that'd work, but you'd not only be violating one of Mockito's core principles (mocks are nice by default, using EasyMock's definition of "nice"), but you'd also force yourself to only stub using doVerb (doReturn, doAnswer, etc) because calls to when(yourObject.doAnything()) would necessarily throw that exception before the call to when would even run.
Developers who are familiar with Mockito would likely say that this exception-prone cure is worse than the disease, and may be useful only for temporarily diagnosing the most tangled legacy code.
I was just asking myself the same question and... The solution using ReturnsSmartNulls will return SmartNulls instead of null... So it is meaningful for non-void methods only right ? What about void methods, the ones having side effects ?
In my opinion, if you want to make sure that your test fails when a method of your mock is called without your explicit behavior definition of it (doXXX(...).when(...) mockito methods) you can initialize your mocks with a custom default answer that will throw an exception, or better... fail your test.
For example you can add the following class inside your test class (or outside if you intend to use it elsewhere, or even use a MockitoConfiguration class as previously mentionned depending on what you want):
static class FailAnswer implements Answer<Object> {
#Override
public Object answer(InvocationOnMock invocation) {
String methodName = invocation.getMethod().getName();
String className = invocation.getMethod().getDeclaringClass().getSimpleName();
return fail(String.format("%s#%s should not have been called", className, methodName));
}
}
Then init your mock with this fake answer in your setUp method :
#BeforeEach
void setUp() {
delegateService = mock(DelegateService.class, new FailAnswer());
classUnderTest = new ClassUnderTest(delegateService);
}
Unfortunately, this solution is not compatible with #Mock annotation which only takes native predefined answers from org.mockito.Answers enum as argument. So that forces you to manually init every mock, spy, captor within the setUp method (RIP MockitoAnnotations.initMocks(this))
Benefit :
you get rid of default behavior of mockito mocks, sometimes hidding unintentionnal uses of mocks for specifics use cases (does is really matter ?)
=> You must define everything you use (inside tests or tests fixtures)
=> you don't have to make verification to make sure your test have not invoked methods it shouldn't have.
Drawbacks :
This is an unusual usage of mockito, so this makes your test less affordable
You give up on MockitoAnnotations feature
As you override mockito default stubbing, you must use the stubbing form do().when() instead of when(...).do(....), the latter providing au type-checking unlike the former.
Warning : This solution doesn't garantee your mock is called, it just garantees that the method you don't stub won't be called. It doesn't come as replacement for counting methods invocations neither.
The best answer I found is to configure Mockito to return SmartNulls.
https://static.javadoc.io/org.mockito/mockito-core/2.6.9/org/mockito/Mockito.html#RETURNS_SMART_NULLS
This implementation can be helpful when working with legacy code. Unstubbed methods often return null. If your code uses the object returned by an unstubbed call you get a NullPointerException. This implementation of Answer returns SmartNull instead of null. SmartNull gives nicer exception message than NPE because it points out the line where unstubbed method was called. You just click on the stack trace.
You can do it by mock or by default (might cause problems with other frameworks like Spring).
Manually
Writer writerMock = mock(Writer.class, RETURNS_SMART_NULLS);
Annotation
#Mock(answer = Answers.RETURNS_SMART_NULLS)
Set as Global Default
Configuration class must be in exactly this package. This might lead to strange failures with Spring.
package org.mockito.configuration;
import org.mockito.internal.stubbing.defaultanswers.ReturnsSmartNulls;
import org.mockito.stubbing.Answer;
public class MockitoConfiguration extends DefaultMockitoConfiguration {
public Answer<Object> getDefaultAnswer() {
return new ReturnsSmartNulls();
}
}
See: https://solidsoft.wordpress.com/2012/07/02/beyond-the-mockito-refcard-part-1-a-better-error-message-on-npe-with-globally-configured-smartnull/
I had problems with SpringBootRepositories and #MockBean when enabling the global default:
java.lang.ClassCastException: org.mockito.codegen.Object$MockitoMock$191495750 cannot be cast to xxx.xxx.MyObject
Example of error output
org.junit.ComparisonFailure: expected:<[DataRecordType{id=null, name='SomeRecord', pathTemplate='SomeTemplate'}]> but was:<[SmartNull returned by this unstubbed method call on a mock: dataRecordTypeRepository bean.getById(1L);]>
If you are trying to track the flow, you can use Mockito verify to check if certain call has been made.
verify(yourMockedObject).yourMethod();
you can also use times to verify if certain call has to be made exactly some number of times.
verify(yourMockedObject, times(4)).yourMethod();
It is not a good practice to make your unit test complex. Try to test only small unit of your code at a time.
Is it a code smell to spy on an object that is being unit tested? For example say I have a LineCounter class whose job is to simply count the number of lines in a string. --
class LineCounter {
public int getNumLines(String string) {
String metadata = getStringMetadata(string);
// count lines in file
return numLines;
}
/** Expensive operation */
protected String getStringMetadata(String string) {
// do stuff with string
}
}
Now I want to write a JUnit 4 test for this to test the getNumLines method while mocking out the expensive getStringMetadata call. I decide to use Mockito's spy mechanism to have getStringMetadata return a dummy value.
class LineCounterTests {
#Test public void testGetNumLines() {
LineCounter lineCounterSpy = Mockito.spy(new LineCounter());
// Mock out expensive call to return dummy value.
Mockito.when(lineCounterSpy.getStringMetadata(Mockito.anyString()).thenReturn("foo");
assertEquals(2, lineCounterSpy.getNumLines("hello\nworld");
}
}
Is this a reasonable thing to do? I feel pretty weird testing a Spy object rather than the actual class, but I can't really think of a reason against it.
I will answer the question in two parts. First, yes it is code smell to mock or spy the class under test. That does not mean that it cannot be done correctly but that it is risk prone and should be avoided whenever possible.
WRT your specific example, I would see how the spy could be correctly used but that would be predicated on the assertion that you have elsewhere fully unit tested getStringMetadata. This then begs the question, if you have fully unit tested getStringMetadata elsewhere then you must know how to test it and therefore why not test getNumLines without the spy.
All this being said, millhouse makes a good point but either way you have to unit test the expensive code somewhere. His suggestion goes a long way to help isolate the expensive code and ensure that you only have to test / exercise it once.
In this situation, it is perfectly legitimate to stub the method that is called by the method under test. It is even the only way I can think of to test it in isolation. You just don't want to extract a single method into it's own class for the sole purpose of testing.
Beware of the side effects in the stubbed method though. It might not be sufficient to stub the returned value, if the stubbed method has side effects then you have to stub the side effects as well. It might even be a reason against it in some situations where the side effects are very complex, but that would most likely be an indication of a code smell in the implementation of the class under test itself.
To answer your question, I find it easy to find reasons for it, but hard to find reasons against it. It's the technique I use every day, it helps me split my implementation in small methods that are tested individually in complete isolation, and I haven't seen any limitation to it yet.
Perhaps I have completely fallen short in my search, but I cannot locate any documentation or discussions related to how to write a unit test for a Java class/method that in turn calls other non-private methods. Seemingly, Mockito takes the position that there is perhaps something wrong with the design (not truly OO) if a spy has to be used in order to test a method where mocking internal method calls is necessary. I'm not certain this is always true. But using a spy seems to be the only way to accomplish this. For example, why could you not have a "wrapper" style method that in turn relies on other methods for primitive functionality but additionally provides functionality, error handling, logging, or different branches dependent on results of the other methods, etc.?
So my question is two-fold:
Is it poorly designed and implemented code to have a method that internally calls other methods?
What is the best practice and/or approach in writing a unit test for such a method (assuming it is itself a good idea) if one has chosen Mockito as their mocking framework?
This might be a difficult request, but I would prefer for those who decide to answer to not merely re-publish the Mockito verbiage and/or stance on spies as I already am aware of that approach and ideology. Also, I've used Powermockito as well. To me, the issue here is that Mockito developed this framework where additional workarounds had to be created to support this need. So I suppose the question I am wanting an answer to is if spies are "bad", and Powermockito were not available, how is one supposed to unit test a method that calls other non-private methods?
Is it poorly designed and implemented code to have a method that internally calls other methods?
Not really. But I'd say that, in this situation, the method that calls the others should be tested as if the others where not already tested separately.
That is, it protects you from situations where your public methods stops calling the other ones without you noticing it.
Yes, it makes for (sometimes) a lot of test code. I believe that this is the point: the pain in writing the tests is a good clue that you might want to consider extracting those sub-methods into a separate class.
If I can live with those tests, then I consider that the sub-methods are not to be extracted yet.
What is the best practice and/or approach in writing a unit test for such a method (assuming it is itself a good idea) if one has chosen Mockito as their mocking framework?
I'd do something like that:
public class Blah {
public int publicMethod() {
return innerMethod();
}
int innerMethod() {
return 0;
}
}
public class BlahTest {
#Test
public void blah() throws Exception {
Blah spy = spy(new Blah());
doReturn(1).when(spy).innerMethod();
assertThat(spy.publicMethod()).isEqualTo(1);
}
}
To me, this question relates strongly to the concept of cohesion.
My answer would be:
It is ok to have methods (public) that call other methods (private) in a class, in fact very often that is what I think of as good code. There is a caveat to this however in that your class should still be strongly cohesive. To me that means the 'state' of your class should be well defined, and the methods (think behaviours) of your class should be involved in changing your classes state in predictable ways.
Is this the case with what you are trying to test? If not, you may be looking at one class when you should be looking at two (or more).
What are the state variables of the class you're trying to test?
You might find that after considering the answers to these types of questions, your code becomes much easier to test in the way you think it should be.
If you really need (or want) to avoid calling the lower-level methods again, you can stub them out instead of mocking them. For example, if method A calls B and C, you can do this:
MyClass classUnderTest = new MyClass() {
#Override
public boolean B() {return true;}
#Override
public int C() {return 0;}
};
doOtherCommonSetUp(classUnderTest);
String result = classUnderTest.A("whatever");
assertEquals("whatIWant", result);
I've used this quite a quite a bit with legacy code where extensive refactoring could easily lead to the software version of shipwright's disease: Isolate something difficult to test into a small method, and then stub that out.
But if the methods being called are fairly innocuous and don't requiring mocking, I just let them be called again without worrying that I am covering every path within them.
The real question should be:
What do I really want to test?
And actually the answer should be:
The behaviour of my object in response to outside changes
That is, depending on the way one can interact with your object, you want to test every possible single scenario in a single test. This way, you can make sure that your class reacts according to your expectations depending on the scenario you're providing your test with.
Is it poorly designed and implemented code to have a method that internally calls other methods?
Not really, and really not! These so called private methods that are called from public members are namely helper methods. It is totally correct to have helper methods!
Helper methods are there to help break some more complex behaviours into smaller pieces of reusable code from within the class itself. Only it knows how it should behave and return the state accordingly through the public members of your class.
It is unrare to see a class with helper methods and normally they are necessary to adopt an internal behaviour for which the class shouldn't react from the outside world.
What is the best practice and/or approach in writing a unit test for such a method (assuming it is itself a good idea) if one has chosen Mockito as their mocking framework?
In my humble opinion, you don't test those methods. They get tested when the public members are tested through the state that you expect out of your object upon a public member call. For example, using the MVP pattern, if you want to test user authentication, you shall not test every private methods, since private methods might as well call other public methods from an object on which depend the object under test and so forth. Instead, testing your view:
#TestFixture
public class TestView {
#Test
public void test() {
// arrange
string expected = "Invalid login or password";
string login = "SomeLogin";
string password = "SomePassword";
// act
viewUnderTest.Connect(login, password);
string actual = viewUnderTest.getErrorMessage;
// assert
assertEqual(expected, actual);
}
}
This test method describes the expected behaviour of your view once the, let's say, connectButton is clicked. If the ErrorMessage property doesn't contain the expected value, this means that either your view or presenter doesn't behave as expected. You might check whether the presenter subscribed to your view's Connect event, or if your presenter sets the right error message, etc.
The fact is that you never need to test whatever is going on in your private methods, as you shall adjust and bring corrections on debug, which in turn causes you to test the behaviour of your internal methods simultaneously, but no special test method should be written expressly for those helper method.