Graphic library for plot/drow fractal on Java - java

I'm looking for a graphic library that allow me to plot a pixel point in a specific color with the purpose of draw a fractal (mandelbrot set). I've read the basic math behind fractal and I understand it, the algorithm is not difficult.
But I don't know what graphic library could I use, I don't need anything sofisticated and complex, just print a pixel set with colors. What do you suggest me? Cairo? OpenGl?.
Note: I only have experience with pygtk. I was reading the Java API and found the the fillRect method and BufferedImages but it seem a little complicate.
Thanks ;)

Unless you want to compute 3D fractals (in which case a library like JOGL Java OpenGL can help), a simple java.awt.Graphics.setColor( java.awt.Color aColor) is enough.
(as show in this program).
In other word, the default awt library in Java should be up to the task: see "Graphics: setColor(Color c)".

I have implemented both mandelbrot and the flame fractal algorithm in native java (no openGL).
The most efficient way is to just store color in an int array or similar,
and then save it as an image file (png or jpg). It is much quicker than using Graphics.

Related

How do you create and render a 3D Fractal?

So I've been assigned a recursive art project for my AP CS class and have a bunch of spare time, so I've decided to try something a little bit more ambitious.
My plan is to create a 3D fractal, either rendered and shaded in a visualization with GL, or represented via spatially mapping the respective equations' outputs to points on a cube and drawing those. If this explanation seems unclear, please check out the links at the bottom for images. Now, I don't need the fractal to be able to be modified in-program. I just need it to render a single BufferedImage, which I'll be putting directly on a JFrame.
My experience in Java, as far as this project goes, is a bit limited. I've drawn Mandelbrot and Julia set fractals before, but I have little to no experience drawing/rendering objects in 3D in Java. This is all stuff I can look up and figure out myself though, so no worries here.
Thus, the question: How does one map a fractal that should be in the 2nd dimension (e.g. log(no. of subdivided entities)*log(side length of subdivision) = 2) to the 3rd dimension (e.g. log(no. of subdivided entities)*log(side length of subdivision) = 3)? I'm lost trying to mathematically work this out, and I believe there is a more organized approach to go about this circumventing a lot of the math that already exists.
Also, if you are aware of a structured approach to render a 2D fractal, as drawn by a formula, and render it in 3D, provided the respective formula is provided (power is raised), please let me know. I've heard of Ray Tracers, no idea what they are, a brief summary would be cool.
Here are links with pictures of the result I want to obtain:
http://2008.sub.blue/assets/0000/4575/power8_large.jpg
https://www.youtube.com/watch?v=rK8jhCVlCtU
It looks like the image is an example of a Mandelbulb. The is a similar iteration formula to the Mandlebrot set but using 3D points and a novel idea of what raising a 3D point to a power means.

Draw an Image in arbitrary corners

So i have a normal image. I defined Click- and Drag-Listeners on each corner of the rectangular image. I want to freely transform each of the corners and paint it on the screen.
The AffineTransform class provides transformation possibilities but i couldn't find a way to realize this.
I have implemented the same function in android with the Matrix.setPolytoPoly method. However there is no equivalent in java swing.
Thanks!
Edit:
I would like to illustrate this process with the following image:
This should happen when i drag one corner to the upper left. Now the problem that i have is, that i don't believe that one can model such a behaviour with a pure 3x3 matrix in an easy way. I looked at the android native code to watch the behaviour, but it's actually pretty deep in the native code.
Any idea of how to do that?
Your update shows that the transformation is not affine, as parallel lines do not remain parallel. Java Advanced Imaging (JAI) provides the required projective capabilities through the abstract class Warp.

Fastest way to write every pixel on the screen/window in Java

I want to algorithmically specify every pixel on the screen (full screen) or window to paint in a Java application. I want to do an animation this way.
So, for each pixel, I'll run some type of calculation to determine what color it should be. I'll do this every frame for every pixel.
What is the highest performance (capable of highest frames per second) way to do that?
I understand graphics cards are programmable, but I'd like to stick with just coding in Java for this. If there is a straightforward way to code the algorithms in Java such that they run on the graphics card, that would be great, but I want a solution that does not involve another programming language (which I think OpenCL or such does).
I've done this type of animations before using a the PixelGrabber and MemoryImageSource combination. Here you have some documentation and samples.
Thats the technique with best performance I know. You usually work in the pixel array (do the frame animation transformations) and then render the pixels in the resulting image (Don't need to invoque getPixel/setPixel methods to set individual pixels, which, in old times, was a great optimization).
Don't have any code sample of my own right now, but I can provide one later if you're interested in using this.
As a side note, old editions of the book Java The Complete Reference make plenty use of this techique for image manipulation examples.

Object detection with a generic webcam

Here’s my task which I want to solve with as little effort as possible (preferrably with QT & C++ or Java): I want to use webcam video input to detect if there’s a (or more) crate(s) in front of the camera lens or not. The scene can change from "clear" to "there is a crate in front of the lens" and back while the cam feeds its video signal to my application. For prototype testing/ learning I have 2-3 images of the “empty” scene, and 2-3 images with one or more crates.
Do you know straightforward idea how to tackle this task? I found OpenCV, but isn't this framework too bulky for this simple task? I'm new to the field of computer vision. Is this generally a hard task or is it simple and robust to detect if there's an obstacle in front of the cam in live feeds? Your expert opinion is deeply appreciated!
Here's an approach I've heard of, which may yield some success:
Perform edge detection on your image to translate it into a black and white image, whereby edges are shown as black pixels.
Now create a histogram to record the frequency of black pixels in each vertical column of pixels in the image. The theory here is that a high frequency value in the histogram in or around one bucket is indicative of a vertical edge, which could be the edge of a crate.
You could also consider a second histogram to measure pixels on each row of the image.
Obviously this is a fairly simple approach and is highly dependent on "simple" input; i.e. plain boxes with "hard" edges against a blank background (preferable a background that contrasts heavily with the box).
You dont need a full-blown computer-vision library to detect if there is a crate or no crate in front of the camera. You can just take a snapshot and make a color-histogram (simple). To capture the snapshot take a look here:
http://msdn.microsoft.com/en-us/library/dd742882%28VS.85%29.aspx
Lots of variables here including any possible changes in ambient lighting and any other activity in the field of view. Look at implementing a Canny edge detector (which OpenCV has and also Intel Performance Primitives have as well) to look for the outline of the shape of interest. If you then kinda know where the box will be, you can perhaps sum pixels in the region of interest. If the box can appear anywhere in the field of view, this is more challenging.
This is not something you should start in Java. When I had this kind of problems I would start with Matlab (OpenCV library) or something similar, see if the solution would work there and then port it to Java.
To answer your question I did something similar by XOR-ing the 'reference' image (no crate in your case) with the current image then either work on the histogram (clustered pixels at right means large difference) or just sum the visible pixels and compare them with a threshold. XOR is not really precise but it is fast.
My point is, it took me 2hrs to install Scilab and the toolkits and write a proof of concept. It would have taken me two days in Java and if the first solution didn't work each additional algorithm (already done in Mat-/Scilab) another few hours. IMHO you are approaching the problem from the wrong angle.
If really Java/C++ are just some simple tools that don't matter then drop them and use Scilab or some other Matlab clone - prototyping and fine tuning would be much faster.
There are 2 parts involved in object detection. One is feature extraction, the other is similarity calculation. Some obvious features of the crate are geometry, edge, texture, etc...
So you can find some algorithms to extract these features from your crate image. Then comparing these features with your training sample images.

How to create 3D Tag Cloud in Java

I need a suggestion/idea how to create a 3D Tag Cloud in Java (Swing)
(exactly like shown here: http://www.adesblog.com/2008/08/27/wp-cumulus-plugin/)
, could you help, please?
I'd go either with Swing and Java2D or OpenGL (JOGL).
I used OpenGL few times and drawing text is easy using JOGL's extenstions (TextRenderer).
If you choose Swing, than the hard part will be implementation of a 3D transformation. You'd have to write some sort of particle system. The particles would have to reside on a 3D sphere. You personally would be responsible of doing any 3D transformation, but using orthogonal projection that would be trivial. So it's a nice exercise - what You need is here: Wiki's spherical coord sys and here 3d to 2d projection.
After You made all of the transformation only drawing is left. And Java2D and Swing have very convenient API for this. It would boil down to pick font size and draw text at given coordinates. Custom JPanel with overriden paintComponent method would be enough to start and finish.
As for the second choice the hardest part is OpenGL API itself. It's procedural so if You're familiar mostly with Java You would have hard time using non-OO stuff. It can get used to and, to be honest, can be quite rewarding since You can do a lot with it. If you picked OpenGL than you would get all the 3D transformations for free, but still have to transform from spherical coordinate system to cartesian by yourself (first wiki article still helpful). After that it's just a matter of using some text drawing class, such as TextRenderer that comes with JOGL distribution.
So OpenGL helps You with view projection calculations and is hardware accelerated. The Java2D would require more math to use, but in my opinion, this approach seems a bit easier. Oh, and by the way - the Java2D tries to use any graphic acceleration there is (OpenGL or DirectDraw) internally. So You are shielded from certain low-level problems.
For both options You need also to bind mouse coordinates s to rotational speed of sphere. Whether it's Java2D or OpenGL the code will look very similar. Just map mouse coordinates related to the center of panel to some speed vector. At the drawing time You could use the vector to rotate the sphere accordingly.
And one more thing: if You would want to try OpenGL I'd recommend: Processing language created on MIT especially for rich graphic applets. Their 3D API, not so coincidentally, is almost the same as OpenGL, but without much of the cruft. So if You want the quickest prototype that's the best bet. Consult this discussion thread for actual example. Note: Processing is written in Java.
That's not really 3D. There are no perspective transformations or mapping the text on some 3D shape (such as, say, a sphere). What you have is a bunch of strings where each string has an associated depth (or Z order). Strings "closer" to you are painted with a stronger shade of gray and larger font size.
The motion of each string as you move the mouse is indeed a 3D shape which looks like a slanted circle around a fixed center - with the slant depending on where the mouse cursor is. That's simple math - if you figure it for one string, you figure it out for all. And then the last piece would be to scatter the strings so that they don't overlap too much, and give each one the initial weight based on their frequency.
That's what most of the code is doing. So you need to either do the math, or translate the ActionScript to Java2D blindly. And no, there is no need for JOGL.
Why don't you just download the source code, and have a look? Even if you can't write PHP, it should still be possible to read it and figure out how the algorithm works.

Categories

Resources