Maximum size of a method in java? - java

I come to know that the maximum size of a method in java is 64k. And if it exceeds, we'll get a compiler warning like "Code too large to compile". So can we call this a drawback of java with this small amount of memory.
Can we increase this size limit or is it really possible to increase ?
Any more idea regarding this method size ?

In my experience the 64KB limit is only a problem for generated code. esp. when intiialising large arrays (which is done in code)
In well structured code, each method is a manageable length and is much smaller than this limit. Large pieces of data, to be loaded into arrays, can be read from a non Java files like a text or binary file.
EDIT:
It is worth nothing that the JIT won't compile methods larger than 8 K. This means the code runs slower and can impact the GC times (as it is less efficient to search the call stack of a thread with methods which are not compiled esp big ones)
If possible you want to limit your methods to 8 K rather than 64 K.

64k is quite a lot, if you exceed it you may think about reorganizing you code.
In my project I met this constraint once in generated sources. Solved by just splitting one method to several.

If your method is longer than 50 lines including inside comments - split it. In this case you will never reach any limitation (even if one exists).
I personally saw 1000 lines long methods (written by criminals that call themselves programmers :) ) but did not see such kind of limitation.

Related

How to remove the unused constants from the generated Java class file

I often use constants in my Java programs, however when taking a look at a decompiled Java class file, I noticed that all the constant's uses throughout the program was replaced by their literal values, while the original declarations and assignments at the top of the class was still present, I'm wondering if these variables are just sitting there wasting memory since they're not being used anywhere in the file. and if there's a way to restrict constants only to compile time and have them removed after the class file is generated.
The compiler is smart enough to use memory efficiently in this kind of case. And, even let's suppose that you did have wasted memory per constant, let's do a thought experiment on how much 'space' that may be, realistically.
Let's say we had a mixture of string, int, and other basic types. Each char in a string is 2 bytes in java, and an int is 4 bytes. Let's say we had 75,000 char constants and 25,000 int constants.
That is 75k * 2 so 150k bytes or ~150 kilobytes of memory for the string constants
For the ints that is 25k * 4 or 100k, so ~100 kilobyte of memory.
So a total of ~250kb.
The most basic computer you can buy these days has a minimum of 4gb of ram, more likely 8gb to 16gb.
So 250kb / 4000000kb * 100 = 0.00625% of the lowest spec modern computer.
Now if you are running some microcontroller or other limited hardware, it maaay be something, but even then it is doubtful and you probably aren't using java.
As a general rule of thumb, compilers and interpreters tend to be pretty good at their job, and trusting them to do the right thing most of the time, for most programmers and programs is good enough.
There are times when certain patterns, such as massive creation of new objects, then triggering garbage collection or other issues like that can have large performance impacts.
The key is to know where actual bottlenecks and gotchya's are within a language/computer/use patterns.
It does get more complicated once we move into the distributed space and massive scale - but again unless you are working in that kind of environment, you generally don't need to consider it.
Focus your expectations on your use case, and if you are optimizing for a 10 millisecond gain for something only a few people use, it's probably a waste of time - unless you are doing it for fun.

Which is faster: Array list or looping through all data combinations?

I'm programming something in Java, for context see this question: Markov Model descision process in Java
I have two options:
byte[MAX][4] mypatterns;
or
ArrayList mypatterns
I can use a Java ArrayList and append a new arrays whenever I create them, or use a static array by calculating all possible data combinations, then looping through to see which indexes are 'on or off'.
Essentially, I'm wondering if I should allocate a large block that may contain uninitialized values, or use the dynamic array.
I'm running in fps, so looping through 200 elements every frame could be very slow, especially because I will have multiple instances of this loop.
Based on theory and what I have heard, dynamic arrays are very inefficient
My question is: Would looping through an array of say, 200 elements be faster than appending an object to a dynamic array?
Edit>>>
More information:
I will know the maxlength of the array, if it is static.
The items in the array will frequently change, but their sizes are constant, therefore I can easily change them.
Allocating it statically will be the likeness of a memory pool
Other instances may have more or less of the data initialized than others
You right really, I should use a profiler first, but I'm also just curious about the question 'in theory'.
The "theory" is too complicated. There are too many alternatives (different ways to implement this) to analyse. On top of that, the actual performance for each alternative will depend on the the hardware, JIT compiler, the dimensions of the data structure, and the access and update patterns in your (real) application on (real) inputs.
And the chances are that it really doesn't matter.
In short, nobody can give you an answer that is well founded in theory. The best we can give is recommendations that are based on intuition about performance, and / or based on software engineering common sense:
simpler code is easier to write and to maintain,
a compiler is a more consistent1 optimizer than a human being,
time spent on optimizing code that doesn't need to be optimized is wasted time.
1 - Certainly over a large code-base. Given enough time and patience, human can do a better job for some problems, but that is not sustainable over a large code-base and it doesn't take account of the facts that 1) compilers are always being improved, 2) optimal code can depend on things that a human cannot take into account, and 3) a compiler doesn't get tired and make mistakes.
The fastest way to iterate over bytes is as a single arrays. A faster way to process these are as int or long types as process 4-8 bytes at a time is faster than process one byte at a time, however it rather depends on what you are doing. Note: a byte[4] is actually 24 bytes on a 64-bit JVM which means you are not making efficient use of your CPU cache. If you don't know the exact size you need you might be better off creating a buffer larger than you need even if you are not using all the buffer. i.e. in the case of the byte[][] you are using 6x time the memory you really need already.
Any performance difference will not be visible, when you set initialCapacity on ArrayList. You say that your collection's size can never change, but what if this logic changes?
Using ArrayList you get access to a lot of methods such as contains.
As other people have said already, use ArrayList unless performance benchmarks say it is a bottle neck.

Smart buffering in an environment with limited amount of memory Java

Dear StackOverflowers,
I am in the process of writing an application that sorts a huge amount of integers from a binary file. I need to do it as quickly as possible and the main performance issue is the disk access time, since I make a multitude of reads it slows down the algorithm quite significantly.
The standard way of doing this would be to fill ~50% of the available memory with a buffered object of some sort (BufferedInputStream etc) then transfer the integers from the buffered object into an array of integers (which takes up the rest of free space) and sort the integers in the array. Save the sorted block back to disk, repeat the procedure until the whole file is split into sorted blocks and then merge the blocks together.
The strategy for sorting the blocks utilises only 50% of the memory available since the data is essentially duplicated (50% for the cache and 50% for the array while they store the same data).
I am hoping that I can optimise this phase of the algorithm (sorting the blocks) by writing my own buffered class that allows caching data straight into an int array, so that the array could take up all of the free space not just 50% of it, this would reduce the number of disk accesses in this phase by a factor of 2. The thing is I am not sure where to start.
EDIT:
Essentially I would like to find a way to fill up an array of integers by executing only one read on the file. Another constraint is the array has to use most of the free memory.
If any of the statements I made are wrong or at least seem to be please correct me,
any help appreciated,
Regards
when you say limited, how limited... <1mb <10mb <64mb?
It makes a difference since you won't actually get much benefit if any from having large BufferedInputStreams in most cases the default value of 8192 (JDK 1.6) is enough and increasing doesn't ussually make that much difference.
Using a smaller BufferedInputStream should leave you with nearly all of the heap to create and sort each chunk before writing them to disk.
You might want to look into the Java NIO libraries, specifically File Channels and Int Buffers.
You dont give many hints. But two things come to my mind. First, if you have many integers, but not that much distinctive values, bucket sort could be the solution.
Secondly, one word (ok term), screams in my head when I hear that: external tape sorting. In early computer days (i.e. stone age) data relied on tapes, and it was very hard to sort data spread over multiple tapes. It is very similar to your situation. And indeed merge sort was the most often used sorting that days, and as far as I remember, Knuths TAOCP had a nice chapter about it. There might be some good hints about the size of caches, buffers and similar.

How to test how many bytes an object reference use in Java?

I would like to test how many bytes an object reference use in the Java VM that I'm using. Do you guys know how to test this?
Thanks!
Taking the question literally, on most JVMs, all references on 32-bit JVMs take 4 bytes, one 64-bit JVMs, a reference takes 8 bytes unless -XX:+UseCompressedOops has been used, in which case it takes 4-bytes.
I assume you are asking how to tell how much space an Object occupies. You can use Instrumentation (not a simple matter) but this will only give you a shallow depth. Java tends you break into many objects something which is C++ might be a single structure so it is not as useful.
However, ifyou have a memory issue, I suggest you a memory profiler. This will give you the shallow and deep space objects use and give you a picture across the whole system. This is often more useful as you can start with the biggest consumers and optimise those as even if you have been developing Java for ten years+ you will only be guessing where is the best place to optimise unless you have hard data.
Another way to get the object size if you don't want to use a profiler is to allocate a large array and see how much memory is consumed, You have to do this many times to get a good idea what the average size is. I would set the young space very high to avoid GCs confusing your results e.g. -XX:NewSize=1g
It can differ from JVM to JVM but "Sizeof for Java" says
You might recollect "Java Tip 130: Do You Know Your Data Size?" that described a technique based on creating a large number of identical class instances and carefully measuring the resulting increase in the JVM used heap size. When applicable, this idea works very well, and I will in fact use it to bootstrap the alternate approach in this article.
If you need to be fairly accurate, check out the Instrumentation framework.
This one is the one I use. Got to love those 16-byte references !
alphaworks.ibm.heapanalyzer

determining java memory usage

Hmmm. Is there a primer anywhere on memory usage in Java? I would have thought Sun or IBM would have had a good article on the subject but I can't find anything that looks really solid. I'm interested in knowing two things:
at runtime, figuring out how much memory the classes in my package are using at a given time
at design time, estimating general memory overhead requirements for various things like:
how much memory overhead is required for an empty object (in addition to the space required by its fields)
how much memory overhead is required when creating closures
how much memory overhead is required for collections like ArrayList
I may have hundreds of thousands of objects created and I want to be a "good neighbor" to not be overly wasteful of RAM. I mean I don't really care whether I'm using 10% more memory than the "optimal case" (whatever that is), but if I'm implementing something that uses 5x as much memory as I could if I made a simple change, I'd want to use less memory (or be able to create more objects for a fixed amount of memory available).
I found a few articles (Java Specialists' Newsletter and something from Javaworld) and one of the builtin classes java.lang.instrument.getObjectSize() which claims to measure an "approximation" (??) of memory use, but these all seem kind of vague...
(and yes I realize that a JVM running on two different OS's may be likely to use different amounts of memory for different objects)
I used JProfiler a number of years ago and it did a good job, and you could break down memory usage to a fairly granular level.
As of Java 5, on Hotspot and other VMs that support it, you can use the Instrumentation interface to ask the VM the memory usage of a given object. It's fiddly but you can do it.
In case you want to try this method, I've added a page to my web site on querying the memory size of a Java object using the Instrumentation framework.
As a rough guide in Hotspot on 32 bit machines:
objects use 8 bytes for
"housekeeping"
fields use what you'd expect them to
use given their bit length (though booleans tend to be allocated an entire byte)
object references use 4 bytes
overall obejct size has a
granularity of 8 bytes (i.e. if you
have an object with 1 boolean field
it will use 16 bytes; if you have an
object with 8 booleans it will also
use 16 bytes)
There's nothing special about collections in terms of how the VM treats them. Their memory usage is the total of their internal fields plus -- if you're counting this -- the usage of each object they contain. You need to factor in things like the default array size of an ArrayList, and the fact that that size increases by 1.5 whenever the list gets full. But either asking the VM or using the above metrics, looking at the source code to the collections and "working it through" will essentially get you to the answer.
If by "closure" you mean something like a Runnable or Callable, well again it's just a boring old object like any other. (N.B. They aren't really closures!!)
You can use JMP, but it's only caught up to Java 1.5.
I've used the profiler that comes with newer versions of Netbeans a couple of times and it works very well, supplying you with a ton of information about memory usage and runtime of your programs. Definitely a good place to start.
If you are using a pre 1.5 VM - You can get the approx size of objects by using serialization. Be warned though.. this can require double the amount of memory for that object.
See if PerfAnal will give you what you are looking for.
This might be not the exact answer you are looking for, but the bosts of the following link will give you very good pointers. Other Question about Memory
I believe the profiler included in Netbeans can moniter memory usage also, you can try that

Categories

Resources