EasyMock/Guice style api - java

Is there a name for the style of API that reads like a sentence? For example, in google-guice
bind(TransactionLog.class).to(DatabaseTransactionLog.class);
or in Easymock
expect(mock.voteForRemoval("Document")).andReturn((byte) 42);
I want to program an api that looks similar to what I call the 'google style' api, i.e. I want it to look like:
RowStyle(RED_BACKGROUND).when(PROP_ERROR_MESSAGE).notNull();
and would like to know pros/cons to this type of API, if it has a name, and how you would go about implementing it.

Those APIs are called "fluent API" and in our days some guys call them "internal DSL", but the first term is AFAICT more widely used (and is the older correct term).

For me, this will only work if the sequence of those operations (style(), when(), notNull() ) is strictly defined. If you can call when() after notNull(), this won't make any sence.
Normally, you just define a method with several parameters:
public void rowStyle(String condition, boolean notNull)
, but these additional calls are the good way to specify optional parameters.
So, + if you have optional parameters, - if you don't have them; + if strictly defined call sequence, - if not.

Related

How to invoke a java method without knowing parameter types using reflection in java

I'm trying to execute this string in java using reflection
String methodCall = "com.mypackage.util.MathUtil.myFunction(4,\"abc\")";
This code does the job for me (after little string parsing)
Class.forName("com.mypackage.util.MathUtil").getDeclaredMethod("myFunction", int.class, String.class).invoke(null, 4, "abc");
The problem with the above solution is that i need to know the parameter types before invoking the method, and unfortunately i don't have them.
As a solution i can get all declared methods using Class.forName("com.mypackage.util.MathUtil").getDeclaredMethods() , iterate, match name and parameter count, and manually check types with some logic to identify the appropriate method.
Can java do this heavy lifting for me with something like this
Class.forName("com.mypackage.util.MathUtil").getDeclaredMethod("myFunction").invoke(null, 4, "abc");
This code should try to match the appropriate method and can throw NoSuchMethodException or Ambiguity error when 2 or more similar methods matched. Also feel free to suggest other ways to achieve this use case.
The core problem of identifying the appropriate method with types was eliminated with the help of BeanShell.
String methodCall = "com.mypackage.util.MathUtil.randomNumbers(4,\"abc\")";
Interpreter i = new Interpreter();
String result = i.eval(methodCall).toString();
The performance of this eval execution is actually pretty good (~10-20ms) and i'm using this solution on a standalone framework, so i need not worry much. This also gives me an additional benefit to allow a complete java snippet on the framework for customisation purposes.
Special Thanks to #jCoder for the solution.

work a function using dynamic strings?

I would like to save some work on my app, is it possible to get the string, for example "level1" and then use the corresponding function, which would be level1();? my main point is not to make a huge switch-case statement, but only make a few level functions in a storage class, and whenever you level up, the string would change to "level" + number where number is the int, so lets say that right now you are in level 10, the function that would run is level10();
I hope i explained it clearly.. sorry if not.. hope you get the idea!
Thanks!
I believe you want to call a method at runtime using its name as a string.
You can do it via reflection.
Class.getMethod(String methodName, Class... parameterTypes)
Don't think of this in terms of method names, unless you want to muck around with reflection (you don't want to, and it's not necessary).
If you really do need to convert strings to method calls – and that's a big "if" – create a Map<String, Foo> where Foo implements some "callable"-like interface. Then a string-to-method lookup is simply:
Map<String, Foo> commands = /* ... */;
Foo foo = commands.get("level42");
foo.bar();
It really sounds like you should just have a
void setLevel(int level)
call. That can feel free to ignore (say) levels 11-14 or whatever... but it would be very ugly to have separate methods and invoke them by name. You can do so with reflection, but you should think about other options first.
Please see the top answer to this post:
Java dynamic function calling
I would also recommend following their advice regarding structure, to create a more object-oriented solution instead of using reflection.

Modify code at runtime to log return values in Java?

Is there any way of inserting code at runtime to log return values, for instance, using instrumentation?
So far, I managed to insert code when a method exits, but I would like to log something like "method foo returned HashMap { 1 -> 2, 2 -> 3 }"
I'm looking for a general approach that can also deal with, for instance, java.io.* classes. (So in general I'll have no access to the code).
I tried using a custom classloader too, but lot of difficulties arise as I cannot modify java.* classes.
Thanks for the help!
Sergio
Check out BTrace. It's Java, and I believe it'll do what you want.
Have you considered AOP? (Aspect-oriented programming) - if by "I cannot modify java.* classes" you mean you don't have access to the uncompiled code, and cannot add configuration, etc., then that won't probably work for you. In any other case, check that link for examples using Spring-aop:
http://static.springsource.org/spring/docs/2.5.x/reference/aop.html
If not, you could consider solutions based on remote-debugging, or profiling. But they all involve "some" access to the original code, if only to enable / disable JMX access.
Well, since you're looking for everything, the only thing I can think off is using a machine agent. Machine agents hook into the low levels of the JVM itself and can be used to monitor these things.
I have not used DTrace, but it sounds like it would be able to do what you need. Adam Leventhal wrote a nice blog post about it. The link to DTrace in the blog is broken, but I'm sure a quick search and you'll come up with it.
Take a look at Spring AOP, which is quite powerful, and flexible. To start you off on the method foo, you can apply an AfterReturning advice to it as:
#Aspect
public class AfterReturningExample {
#AfterReturning(
pointcut="package.of.your.choice.YourClassName.foo()",
returning="retVal")
public void logTheFoo( Object retVal ) {
// ... logger.trace( "method 'foo' returned " + retVal ); // might need to convert "retVal" toString representation if needed
}
}
The pointcut syntax is really flexible so you can target all the sub packages, components, methods, return values given the expression.

Java source refactoring of 7000 references

I need to change the signature of a method used all over the codebase.
Specifically, the method void log(String) will take two additional arguments (Class c, String methodName), which need to be provided by the caller, depending on the method where it is called. I can't simply pass null or similar.
To give an idea of the scope, Eclipse found 7000 references to that method, so if I change it the whole project will go down. It will take weeks for me to fix it manually.
As far as I can tell Eclipse's refactoring plugin of Eclipse is not up to the task, but I really want to automate it.
So, how can I get the job done?
Great, I can copy a previous answer of mine and I just need to edit a tiny little bit:
I think what you need to do is use a source code parser like javaparser to do this.
For every java source file, parse it to a CompilationUnit, create a Visitor, probably using ModifierVisitor as base class, and override (at least) visit(MethodCallExpr, arg). Then write the changed CompilationUnit to a new File and do a diff afterwards.
I would advise against changing the original source file, but creating a shadow file tree may me a good idea (e.g. old file: src/main/java/com/mycompany/MyClass.java, new file src/main/refactored/com/mycompany/MyClass.java, that way you can diff the entire directories).
Eclipse is able to do that using Refactor -> Change Method signature and provide default values for the new parameters.
For the class parameter the defaultValue should be this.getClass() but you are right in your comment I don't know how to do for the method name parameter.
IntelliJ IDEA shouldn't have any trouble with this.
I'm not a Java expert, but something like this could work. It's not a perfect solution (it may even be a very bad solution), but it could get you started:
Change the method signature with IntelliJ's refactoring tools, and specify default values for the 2 new parameters:
c: self.getClass()
methodName: Thread.currentThread().getStackTrace()[1].getMethodName()
or better yet, simply specify null as the default values.
I think that there are several steps to dealing with this, as it is not just a technical issue but a 'situation':
Decline to do it in short order due to the risk.
Point out the issues caused by not using standard frameworks but reinventing the wheel (as Paul says).
Insist on using Log4j or equivalent if making the change.
Use Eclipse refactoring in sensible chunks to make the changes and deal with the varying defaults.
I have used Eclipse refactoring on quite large changes for fixing old smelly code - nowadays it is fairly robust.
Maybe I'm being naive, but why can't you just overload the method name?
void thing(paramA) {
thing(paramA, THE_DEFAULT_B, THE_DEFAULT_C)
}
void thing(paramA, paramB, paramC) {
// new method
}
Do you really need to change the calling code and the method signature? What I'm getting at is it looks like the added parameters are meant to give you the calling class and method to add to your log data. If the only requirement is just adding the calling class/method to the log data then Thread.currentThread().getStackTrace() should work. Once you have the StackTraceElement[] you can get the class name and method name for the caller.
If the lines you need replaced fall into a small number of categories, then what you need is Perl:
find -name '*.java' | xargs perl -pi -e 's/log\(([^,)]*?)\)/log(\1, "foo", "bar")/g'
I'm guessing that it wouldn't be too hard to hack together a script which would put the classname (derived from the filename) in as the second argument. Getting the method name in as the third argument is left as an exercise to the reader.
Try refactor using intellij. It has a feature called SSR (Structural Search and Replace). You can refer classes, method names, etc for a context. (seanizer's answer is more promising, I upvoted it)
I agree with Seanizer's answer that you want a tool that can parse Java. That's necessary but not sufficient; what you really want is a tool that can carry out a reliable mass-change.
To do this, you want a tool that can parse Java, can pattern match against the parsed code, install the replacement call, and spit out the answer without destroying the rest of the source code.
Our DMS Software Reengineering Toolkit can do all of this for a variety of languages, including Java. It parses complete java systems of source, builds abstract syntax trees (for the entire set of code).
DMS can apply pattern-directed, source-to-source transformations to achieve the desired change.
To achieve the OP's effect, he would apply the following program transformation:
rule replace_legacy_log(s:STRING): expression -> expression
" log(\s) " -> " log( \s, \class\(\), \method\(\) ) "
What this rule says is, find a call to log which has a single string argument, and replace it with a call to log with two more arguments determined by auxiliary functions class and method.
These functions determine the containing method name and containing class name for the AST node root where the rule finds a match.
The rule is written in "source form", but actually matches against the AST and replaces found ASTs with the modified AST.
To get back the modified source, you ask DMS to simply prettyprint (to make a nice layout) or fidelity print (if you want the layout of the old code preserved). DMS preserves comments, number radixes, etc.\
If the exisitng application has more than one defintion of the "log" function, you'll need to add a qualifier:
... if IsDesiredLog().
where IsDesiredLog uses DMS's symbol table and inheritance information to determine if the specific log refers to the definition of interest.
Il fact your problem is not to use a click'n'play engine that will allow you to replace all occurences of
log("some weird message");
by
log(this.getClass(), new Exception().getStackTrace()[1].getMethodName());
As it has few chances to work on various cases (like static methods, as an example).
I would tend to suggest you to take a look at spoon. This tool allows source code parsing and transformation, allowing you to achieve your operation in a -obviously code based- slow, but controlled operation.
However, you could alos consider transforming your actual method with one exploring stack trace to get information or, even better, internally use log4j and a log formatter that displays the correct information.
I would search and replace log( with log(#class, #methodname,
Then write a little script in any language (even java) to find the class name and the method names and to replace the #class and #method tokens...
Good luck
If the class and method name are required for "where did this log come from?" type data, then another option is to print out a stack trace in your log method. E.g.
public void log(String text)
{
StringWriter sw = new StringWriter();
PrintWriter pw = new PrintWriter(sw, true);
new Throwable.printStackTrace(pw);
pw.flush();
sw.flush();
String stackTraceAsLog = sw.toString();
//do something with text and stackTraceAsLog
}

Why does java/javascript/python force the use of () after a method name, even if it takes no arguments?

One of my most common bugs is that I can never remember whether something is a method or a property, so I'm constantly adding or removing parentheses.
So I was wondering if there was good logic behind making the difference between calling on an object's properties and methods explicit.
Obviously, it allows you to have properties and methods that share the same name, but I don't think that comes up much.
The only big benefit I can come up with is readability. Sometimes you might want to know whether something is a method or a property while you're looking at code, but I'm having trouble coming up with specific examples when that would be really helpful. But I am a n00b, so I probably just haven't encountered such a situation yet. I'd appreciate examples of such a situation.
Also, are there other languages where the difference isn't explicit?
Anyways, if you could answer, it will help me be less annoyed every time I make this mistake ^-^.
UPDATE:
Thanks everyone for the awesome answers so far! I only have about a week's worth of js, and 1 day of python, so I had no idea you could reference functions without calling them. That's awesome. I have a little more experience with java, so that's where I was mostly coming from... can anyone come up with an equally compelling argument for that to be the case in java, where you can't reference functions? Aside from it being a very explicit language, with all the benefits that entails :).
All modern languages require this because referencing a function and calling a function are separate actions.
For example,
def func():
print "hello"
return 10
a = func
a()
Clearly, a = func and a = func() have very different meanings.
Ruby--the most likely language you're thinking of in contrast--doesn't require the parentheses; it can do this because it doesn't support taking references to functions.
In languages like Python and JavaScript, functions are first–class objects. This means that you can pass functions around, just like you can pass around any other value. The parentheses after the function name (the () in myfunc()) actually constitute an operator, just like + or *. Instead of meaning "add this number to another number" (in the case of +), () means "execute the preceding function". This is necessary because it is possible to use a function without executing it. For example, you may wish to compare it to another function using ==, or you may wish to pass it into another function, such as in this JavaScript example:
function alertSomething(message) {
alert(message);
}
function myOtherFunction(someFunction, someArg) {
someFunction(someArg);
}
// here we are using the alertSomething function without calling it directly
myOtherFunction(alertSomething, "Hello, araneae!");
In short: it is important to be able to refer to a function without calling it — this is why the distinction is necessary.
At least in JS, its because you can pass functions around.
var func = new Function();
you can then so something like
var f = func
f()
so 'f' and 'func' are references to the function, and f() or func() is the invocation of the function.
which is not the same as
var val = f();
which assigns the result of the invocation to a var.
For Java, you cannot pass functions around, at least like you can in JS, so there is no reason the language needs to require a () to invoke a method. But it is what it is.
I can't speak at all for python.
But the main point is different languages might have reasons why syntax may be necessary, and sometimes syntax is just syntax.
I think you answered it yourself:
One of my most common bugs is that I can never remember whether something is a method or a property, so I'm constantly adding or removing parentheses.
Consider the following:
if (colorOfTheSky == 'blue')
vs:
if (colorOfTheSky() == 'blue')
We can tell just by looking that the first checks for a variable called colorOfTheSky, and we want to know if its value is blue. In the second, we know that colorOfTheSky() calls a function (method) and we want to know if its return value is blue.
If we didn't have this distinction it would be extremely ambiguous in situations like this.
To answer your last question, I don't know of any languages that don't have this distinction.
Also, you probably have a design problem if you can't tell the difference between your methods and your properties; as another answer points out, methods and properties have different roles to play. Furthermore it is good practice for your method names to be actions, e.g. getPageTitle, getUserId, etc., and for your properties to be nouns, e.g., pageTitle, userId. These should be easily decipherable in your code for both you and anyone who comes along later and reads your code.
If you're having troubles, distinguishing between your properties and methods, you're probably not naming them very well.
In general, your methods should have a verb in them: i.e. write, print, echo, open, close, get, set, and property names should be nouns or adjectives: name, color, filled, loaded.
It's very important to use meaningful method and property names, without it, you'll find that you'll have difficulty reading your own code.
In Java, I can think of two reasons why the () is required:
1) Java had a specific design goal to have a "C/C++ like" syntax, to make it easy for C and C++ programmers to learn the language. Both C and C++ require the parentheses.
2) The Java syntax specifically requires the parentheses to disambiguate a reference to an attribute or local from a call to a method. This is because method names and attribute / local names are declared in different namespaces. So the following is legal Java:
public class SomeClass {
private int name;
private int name() { ... }
...
int norm = name; // this one
}
If the () was not required for a method call, the compiler would not be able to tell if the labeled statement ("this one") was assigning the value of the name attribute or the result of calling the name() method.
The difference isn't always explicit in VBA. This is a call to a Sub (i.e. a method with no return value) which takes no parameters (all examples are from Excel):
Worksheets("Sheet1").UsedRange.Columns.AutoFit
whereas this is accessing an attribute then passing it as a parameter:
MsgBox Application.Creator
As in the previous example, parentheses are also optional around parameters if there is no need to deal with the return value:
Application.Goto Worksheets("Sheet2").Range("A1")
but are needed if the return value is used:
iRows = Len("hello world")
Because referencing and calling a method are two different things. Consider X.method being the method of class X and x being an instance of X, so x.method == 'blue' would'nt ever be able to be true because methods are not strings.
You can try this: print a method of an object:
>>> class X(object):
... def a(self):
... print 'a'
...
>>> x=X()
>>> print x.a
<bound method X.a of <__main__.X object at 0x0235A910>>
Typically properties are accessors, and methods perform some sort of action. Going on this assumption, it's cheap to use a property, expensive to use a method.
Foo.Bar, for example, would indicate to me that it would return a value, like a string, without lots of overhead.
Foo.Bar() (or more likely, Foo.GetBar()), on the other hand, implies needing to retrieve the value for "Bar", perhaps from a database.
Properties and methods have different purposes and different implications, so they should be differentiated in code as well.
By the way, in all languages I know of the difference in syntax is explicit, but behind the scenes properties are often treated as simply special method calls.

Categories

Resources