When I try to move graphical objects across the screen at steps which are not whole numbers (for example, 0.5 pixels per frame) this results in choppy and 'laggy' movement; as the object will simply move 1 pixel every two frames.
I understand why this is happening as the x / y values of an object must be Integers, but I wonder if there is anyway to create smooth slow movement, such as there is in Adobe Flash.
Graphics2D allows you to draw at sub-pixel accuracy and as long as your actual object is drawn using its primitive (as opposed to being a fixed bitmap), this should actually have a visible effect.
Make sure that the KEY_ANTIALIASING rendering hint is set to VALUE_ANTIALIASING_ON
Related
In short, I'm making a simulation where I have a bunch of creatures that can see each other. The way I want to do this is to capture an area around each creature and give it to their neural network, and make them evolve to recognize their surroundings. I am coding this using LibGDX, and I don't plan on making screenshots every single frame because I can imagine that that is already a very poor idea. However, the problem is that I don't know how to get the pixels inside a defined square without capturing the entire screen and then cherry picking what I want for each creature, which will cause a MASSIVE lag spike, since the area these creatures will be in is 2000x2000, and therefore 12 million different values (4 million RGB values).
Each creature is about 5 pixels (width and height), so my idea is to give them a 16x16 area around them, which is why iterating through the entire frame buffer won't work, it would pointlessly iterate through millions of values before finding the ones I asked for.
I would also need to be able to take pictures outside of the screen (as in, the part outside the window's boundaries), if that is even possible.
How can I achieve this? I'm aiming for performance, but I do not mind distributing the load between multiple frames or even multithreading.
The problem is you can't query pixels in a framebuffer.
You can capture a texture from a framebuffer, and you can convert a texture to a pixmap.
libgdx TextureRegion to Pixmap
You can then getPixel(int x, int y) against the pixmap.
However, maybe going the other way would be better.
Start with a pixmap, work with the pixmap, and for each frame convert the pixmap to a texture and render that texture fullscreen. This also removes the need for the creatures environment to match the screen resolution (although you could still set it up like that).
I was wondering if there is a way to plot a point using a double value in the built in java graphics utility. I am making a simple clock but I want it to be as precise as possible. The method drawLine(int, int, int, int) in Graphics obviously won't take a double as a parameter. Is there a work-around to this?
P.S. The doubles in question are the change in x and y for each hand on the clock as 1 second passes.
Graphics2D has an internal AffineTransform Matrix that you can alter. I have not tested the following code, but i think this or a variant might get close to what you want (Although really, the pixels are all at integer positions...)
Graphics2D g; // get a Graphics2D from somewhere
g.rotate(Math.PI/4);
g.drawLine(0,0,1,0); //draw a line at 45°
// now you should probably rotate back...
Pixels only exist at integer positions. think of it like a chess board, each square is only one colour and it means nothing to say half a square.
There are some things you can do (bi linear interpolation for example) to draw in between pixels but all they do is modify all the pixels around the point according to a suitable algorithm and the position you select.
If you want higher resolution then the simplest thing is just to increase the resolution of the image you are using. More pixels gives more possible precision, until you reach the limits of your display device...
I am trying write some lighting code for a Java2D isometric game I am writing - I have found a few algorithms I want to try implementing - one of which I found here:
here
The problem is that this sort of algorithm would require some optimal pixel-shading effect that I haven't found a way of achieving via Java2D. Preferably some method via the graphics hardware but if that isn't possible - at least a method of achieving the same effect quickly in software.
If that isn't possible, could someone direct me to a more optimal algorithm with Java2D in mind? I have considered per-tile lighting - however I find the drawPolygon method isn't hardware accelerated and thus performs very slowly.
I want to try and avoid native dependencies or the requirement for elevated permissions in an applet.
Thanks
I did a lot of research since I posted this question - there are tons of alternatives and JavaFX does intend (on a later release) to include its own shader language for those interested. There is also a ofcourse LWJGL that will allow you to load your own shaders onto the GPU.
However, if you're stuck in Java2D (as I am) it is still possible to implement lighting in an isometric game it is just 'awkward' because you cannot perform the light shading on a per-pixel level.
How it Looks:
I have achieved a (highly unpolished - after some polishing I can assure you it will look great) effect for casting shadows, depth sorting the light map, and applying the lighting without experiencing a drop in frame-rate. Here is how it looks:
You'll see in this screen-shot a diffuse light (not shaded in but that step I'd say is relatively easy in contrast to the steps to get there) casting shadows - the areas behind the entities that obstructs the light's passage BUT also in the bounds of the light's maximum fall-out is shaded in as the ambient lighting but in reality this area is passed to the lights rendering routine to factor in the amount of obstruction that has occurred so that the light can apply a prettier gradient (or fading effect of some sort.)
The current implementation of the diffuse lighting is to just simply render obstructed regions the ambient colour and render non-obstructed regions the light's colour - obviously though you'd apply a fading effect as you got further from the light (that part of the implementation I haven't done yet - but as I said it is relatively easy.)
How I did it:
I don't guarantee this is the most optimal method, but for those interested:
Essentially, this effect is achieved by using a lot of Java shape operations - the rendering of the light map is accelerated by using a VolatileImage.
When the light map is being generated, the render routine does the following:
Creates an Area object that contains a Rectangle that covers the
entirety of the screen. This area will contain your ambient
lighting.
It then iterates through the lights asking them what their
light-casting Area would be if there were no obstructions in the way.
It takes this area object and searches the world for Actors\Tiles
that are contained within that area that the light would be cast in.
For every tile that it finds that obstructs view in the light's casting area, it will calculate the difference in the light source's position and the obstruction's
position (essentially creating a vector that points AT the
obstruction from the light source - this is the direction you want to cast your shadow) This pointing vector (in world
space) needs to be translated to screen space.
Once that has been done, a perpendicular to that vector is taken and
normalized. This essentially gives you a line you can travel up or
down on by multiplying it by any given length to travel the given direction in. This vector is
perpendicular to the direction you want to cast your shadow over.
Almost done, you consturct a polygon that consists of four points.
The first two points are at the the base of the screen coordinate of
your obstruction's center point. To get the first point, you want to
travel up your perpendicular vector (calculated in 5) a quantity of
half your tile's height [ this is a relatively accurate
approximation though I think this part of the algorithm is slightly
incorrect - but it has no noticable decay on the visual effect] -
then ofcourse add to that the obstructions origin. To get the
second, you do the same but instead travel down.
The remainder of the two points are calculated exactly the same way -
only these points need to be projected outward in the direction of
your shadow's projection vector calculated in 4. - You can choose any large amount to project it outwards by - just as long as it reaches at least outside of you light's casting area (so if you just want to do it stupidly multiply your shadow projection vector by a factor of 10 and you should be safe)
From this polygon you just constructed, construct an area, and then
invoke the "intersect" method with your light's area as the first
argument - this will assure that your shadows area doesn't reach
outside of the bounds of the area that your light casts over.
Subtract from your light's casting the shadow area you constructed
above. At this point you now have two areas - the area where the
light casts unobstructed, and the area the light casts over
obstructed - if your Actors have a visibility obstruction factor
that you used to determine that a particular actor was obstructing
view - you also have the grade at which it obstructs the view that
you can apply later when you are drawing in the light effect (this will allow you to chose between a darker\brighter shade depending on how much light is being obstructed
Subtract from your ambient light area you constructed in (1) both
the light area, and the obstructed light area so you don't apply
the ambient light to areas where the lighting effect will take over
and render into
Now you need to merge your light map with your depth-buffered world's render routine
Now that you've rendered you're light map and it is contained inside of a volatile image, you need to throw it into your world's render routine and depth-sorting algorithm. Since the back-buffer and the light map are both volatileimages, rendering the light map over the world is relatively optimal.
You need to construct a polygon that is essentially a strip that contains what a vertical strip of your world tiles would be rendered into (look at my screen shot, you'll see an array of thin diagonal lines seperating these strips. These strips are what I am referring). You can than render parts of this light map strip by strip (render it over the strip after you've rendered the last tile in that strip since - obviously - the light map has to be applied over the map). You can use the same image-map just use that strip as a clip for Graphics - you will need to translate that strip polygon down per render of a strip.
Anyway, like I said I don't guarantee this is the most optimal way - but so far it is working fine for me.
The light map is applied p
I have a graphics application in JAVA, which is made up of many different shapes (lines, circles, arcs, etc, which are drawn via the Graphics.drawLine(), drawArc()... methods). I would like to create mouse-over events on many, if not all of the drawn objects.
What I was thinking was to store some sort of bitmap with metadata in it, and use that to figure out which object the mouse is over. Is there a way to do this in Java? (looping through all the objects per mouse move doesn't seem viable).
Thanks,
John
Key-color solution
(moved from comment)
Create an off-screen graphics buffer (like BufferedImage), same size as subject image.
Draw all objects into this buffer. Each object with one own color. Depending on object count you can optimize image buffer: For example use 8-bit graphics.
Read resulting image buffer by pixel (example Java - get pixel array from image). Determine pixel color at current mouse position, and map color index (or RGB value) to the source object.
Pros:
The solution is "pixel-accurate": Object boundaries are exact - pixel to pixel.
Easy to solve overlapping objects problem. Just draw them at the desired order.
Object complexity is not limited. Theoretically bitmaps are also possible.
Cons:
To move one object, the complete off-screen buffer must be repainted
Number of objects can be limited when using low-bit image buffer
It depends on your specifications. You do not mention if those shapes are allowed to overlap, to move, how many of them can exist etc.
Solution a) The easiest approach that comes to mind is to implement each shape as a JComponent descedant (e.g. JPanel). So you would have a CirclePanel, an ArcPanel etc that extend JPanel and each one of them paints itself in the same way it is being done now.
Having the shapes as a JComponent allows you to add a MouseListener to each panel that would then handle the mouseEntered(), mouseExited() events.
Solution b) If on the other hand you need to draw all the shapes on a single component's area (as I understand is the case now) then you still do not need to iterate over all the shapes. You just need to introduce an algorithm to categorize the shapes based on their position, to be able to exclude them fast inside your "isMouseOver(Shape s)" test procedure.
For example lets say you divide the area to 2 equal sub-areas left and right (let's call them tiles). When you create each shape you test which tile they intersect to, and you store this information both in the shape and in the corresponding tile.
Now when you need to test if the mouse is over a shape, you decide which tile the mouse is over. This way you only have to check shapes that intersect either the left or the right tile. Assuming that your shapes are distributed uniformly on the screen, you have just rejected 50% of the shapes with one test.
Depending on how many shapes you have, you could use 4 or 8 tiles, or you could even create/delete tiles dynamically (e.g. based on how many objects tend to gather in one area of the screen or not).
I would suggest to try the first solution because it is easier and a cleaner approach. If you decide that it does not fit your needs, you could then go for an approach similar to the second one.
I have rendered a 3D scene in OpenGL viewed from the gluOrtho perspective. In my application I am looking at the front face of a cube of volume 100x70x60mm (which I have as 1000x700x600 pixels). Inside this cube I have rendered a simple blue sphere which sits exactly in the middle and 'fills' the cube (radius 300 pixels).
I now want to read the color value of pixels (in 3D) at specific points within the cube; i.e. I wish to know if say point (100,100,-200) is blue or blank (black).
glReadPixels only allows 2D extraction of color and I have tried it with the DEPTH_COMPONENT but am unsure what this should return in byte form? Is there a way to combine the two? Am I missing something?
I am using Eclipse with Java and JOGL.
This can't be done in the context of OpenGL--you'll need some sort of scene graph or other space partitioning scheme working in concert with your application's data structures.
The reason is simple: the frame buffer only stores the color and depth of the fragment nearest to the eye at each pixel location (assuming a normal GL_LESS depth function). The depth value stored in the Z-buffer is used to determine if each subsequent fragment is closer or farther from the eye than the existing fragment, and thus whether the new fragment should replace the old or not. The frame buffer only stores color and depth values from the most recent winner of the depth test, not the entire set of fragments that would have mapped to that pixel location. Indeed, there would be no way to bound the amount of graphics memory required if that were the case.
You're not the first to fall for this misconception, so I say it the most blunt way possible: OpenGL doesn't work that way. OpenGL never(!) deals with objects or any complex scenes. The only thing OpenGL knows about are framebuffers, shaders and single triangles. Whenever you draw an object, usually composed of triangles, OpenGL will only see each triangle at a time. And once something has been drawn to the framebuffer, whatever has been there before is lost.
There are algorithms based on the concepts of rasterizers (like OpenGL is) that decompose a rendered scene into it's parts, depth peeling would be one of them.