GWT: Multithreading - java

I'm facing this problem: after clicking on a button, I make a request to the server and get some data; then, I display the data on a new page/view. This raises a problem: the UI has to wait while the request is being made and data is being received, parsed and set on the view. This results in the user having to wait until all the data is loaded before even being able to go back, and doesn't even have the chance to cancel the call. Multithreading would solve the issue, and that's where I need help.
The HTML5 Web Workers would do the trick for me, however I don't want to "hard code" them in JSNI and have all the calls written with Javascript instead of GWT Java (RequestBuilder). I've read about DeferredCommand but I also don't think it's the answer to my issue.
Any suggestions? Or this is an impossible optimization, at the moment?

In JS, therefore GWT, there is no multithreading. Instead you should use asynchronous calls with callbacks. Normally when you use GWT RPC for communication, you issue a request and handle result in onSuccess event. Alternatively you can always use Timer to check for result periodically. I'm not sure what kind of request you are making, so hard to be specific. Probably you should check appropriate section of Communicating with the server
EDIT: I've just noticed you mention RequestBuilder. The sendRequest() should not block execution and you should process result in RequestCallback.onResponseReceived() of provided callback. Which mean you somehow continue your button event handling in that callback.

Related

Java Long Polling: Separate Thread?

Because of browser compatibility issues, I have decided to use long polling for a real time syncing and notification system. I use Java on the backend and all of the examples I've found thus far have been PHP. They tend to use while loops and a sleep method. How do I replicate this sort of thing in Java? There is a Thread.sleep() method, which leads me to...should I be using a separate thread for each user issuing a poll? If I don't use a separate thread, will the polling requests be blocking up the server?
[Update]
First of all, yes it is certainly possible to do a straightforward, long polling request handler. The request comes in to the server, then in your handler you loop or block until the information you need is available, then you end the loop and provide the information. Just realize that for each long polling client, yes you will be tying up a thread. This may be fine and perhaps this is the way you should start. However - if your web server is becoming so popular that the sheer number of blocking threads is becoming a performance problem, consider an asynchronous solution where you can keep a large numbers of client requests pending - their request is blocking, that is not responding until there is useful data, without tying up one or more threads per client.
[original]
The servlet 3.0 spec provides a standard for doing this kind asynchronous processing. Google "servlet 3.0 async". Tomcat 7 supports this. I'm guessing Jetty does also, but I have not used it.
Basically in your servlet request handler, when you realize you need to do some "long" polling, you can call a method to create an asynchronous context. Then you can exit the request handler and your thread is freed up, however the client is still blocking on the request. There is no need for any sleep or wait.
The trick is storing the async context somewhere "convenient". Then something happens in your app and you want to push data to the client, you go find that context, get the response object from it, write your content and invoke complete. The response is sent back to the client without you having to tie up a thread for each client.
Not sure this is the best solution for what you want but usually if you want to do this at period intervals in java you use the ScheduleExecutorService. There is a good example at the top of the API document. The TimeUnit is a great enum as you can specify the period time easily and clearly. So you can specify it to run every x minutes, hours etc

Synchronous, Asynchronous and Command Client Requests with GWT and GAE

In designing my GWT/GAE app, it has become evident to me that my client-side (GWT) will be generating three types of requests:
Synchronous - "answer me right now! I'm important and require a real-time response!!!"
Asynchronous - "answer me when you can; I need to know the answer at some point but it's really not all that ugent."
Command - "I don't need an answer. This isn't really a request, it's just a command to do something or process something on the server-side."
My game plan is to implement my GWT code so that I can specify, for each specific server-side request (note: I've decided to go with RequestFactory over traditional GWT-RPC for reasons outside the scope of this question), which type of request it is:
SynchronousRequest - Synchronous (from above); sends a command and eagerly awaits a response that it then uses to update the client's state somehow
AsynchronousRequest - Asynchronous (from above); makes an initial request and somehow - either through polling or the GAE Channel API, is notified when the response is finally received
CommandRequest - Command (from above); makes a server-side request and does not wait for a response (even if the server fails to, or refuses to, oblige the command)
I guess my intention with SynchronousRequest is not to produce a totally blocking request, however it may block the user's ability to interact with a specific Widget or portion of the screen.
The added kicker here is this: GAE strongly enforces a timeout on all of its frontend instances (60 seconds). Backend instances have much more relaxed constraints for timeouts, threading, etc. So it is obvious to me that AsynchronousRequests and CommandRequests should be routed to backend instances so that GAE timeouts do not become an issue with them.
However, if GAE is behaving badly, or if we're hitting peak traffic, or if my code just plain sucks, I have to account for the scenario where a SynchronousRequest is made (which would have to go through a timeout-regulated frontend instance) and will timeout unless my GAE server code does something fancy. I know there is a method in the GAE API that I can call to see how many milliseconds a request has before its about to timeout; but although the name of it escapes me right now, it's what this "fancy" code would be based off of. Let's call it public static long GAE.timeLeftOnRequestInMillis() for the sake of this question.
In this scenario, I'd like to detect that a SynchronousRequest is about to timeout, and somehow dynamically convert it into an AsynchronousRequest so that it doesn't time out. Perhaps this means sending an AboutToTimeoutResponse back to the client, and force the client to decide about whether to resend as an AsynchronousRequest or just fail. Or perhaps we can just transform the SynchronousRequest into an AsynchronousRequest and push it to a queue where a backend instance will consume it, process it and return a response. I don't have any preferences when it comes to implementation, so long as the request doesn't fail or timeout because the server couldn't handle it fast enough (because of GAE-imposed regulations).
So then, here is what I'm actually asking here:
How can I wrap a RequestFactory call inside SynchronousRequest, AsynchronousRequest and CommandRequest in such a way that the RequestFactory call behaves the way each of them is intended? In other words, so that the call either partially-blocks (synchronous), can be notified/updated at some point down the road (asynchronous), or can just fire-and-forget (command)?
How can I implement my requirement to let a SynchronousRequest bypass GAE's 60-second timeout and still get processed without failing?
Please note: timeout issues are easily circumvented by re-routing things to backend instances, but backends don't/can't scale. I need scalability here as well (that's primarily why I'm on GAE in the first place!) - so I need a solution that deals with scalable frontend instances and their timeouts. Thanks in advance!
If the computation that you want GAE to do is going to take longer than 60 seconds, then don't wait for the results to be computed before sending a response. According to your problem definition, there is no way to get around this. Instead, clients should submit work orders, and wait for a notification from the server when the results are ready. Requests would consist of work orders, which might look something like this:
class ComputeDigitsOfPiWorkOrder {
// parameters for the computation
int numberOfDigitsToCompute;
// Used by the GAE app to contact the requester when results are ready.
ClientId clientId;
}
This way, your GAE app can respond as soon as the work order is saved (e.g. in Task Queue), and doesn't have to wait until it actually finishes calculating a billion digits of pi before responding. Your GWT client then waits for the result using the Channel API.
In order to give some work orders higher priority, you can use multiple task queues. If you want Task Queue work to scale automatically, you'll want to use push queues. Implementing priority using push queues is a little tricky, but you can configure high priority queues to have faster feed rate.
You could replace Channel API with some other notification solution, but that would probably be the most straightforward.

Modal-style programming within a Java server

For my game, I have it running on two servers (one for the game, one for the login system). They both need to interact with each other, and sometimes, ask questions about the state of something else in the other server.
For this example, the game server will be asking the login server if a player is trying to log in:
public boolean isLoggingIn(int accountId) {
//Form a packet to send.
int retVal = sendData();
return retVal > 0;
}
Obviously I'd use an int so information other than booleans can be returned.
My question is, how do I get this modal-style programming working? It'd work just like JFileChooser's getOpenDialog() function.
Also, I should mention that more than one thread can call this method at once.
I assume by modal, you mean trying to block all actions except one. I strongly suspect that this style will lead you into trouble. Modal interaction is a form of locking and therefore not very tolerant to hangups and disconnects and such. To make it tolerant, you need timeouts and cleanup code for cases when someone entered a mode and then nothing further happened. (i.e they closed their laptop, or the game crashed, they unplugged the network cable etc).
If I were you I would instead try to think of things in terms of authentication and authorization.
The quick answer - you need to expose methods on both servers as RMI-capable, and simply invoke methods like you described.
You might find it useful to review the official Oracle RMI tutorial: http://docs.oracle.com/javase/tutorial/rmi/index.html
Althought your design might be wrong - it's your design, and why not letting you shoot your head? ;)
Also, it's worth looking at Spring Security: http://static.springsource.org/spring-security/site/
If you use something like this on a thread that is supposed to handle other requests after it, it would hang up all those requests while it is blocking for a return value if the latency between the game and login servers is high. Certainly what you want instead is a callback so that your thread could handle other requests while it waits for a response.
I see no reason to halt execution of a thread until a value is received. If you need the value for an operation after it, then just copy all the code you have after the call you want to be "modal" in the callback. If you expect to send multiple requests while still waiting for a response, then send a unique "responseId" from the requester's side that the responder can include in its response. Use the "responseId" as a key for a Map with Runnables as values. When you receive a response, call remove on the Map with the responseId key and call run() on the Runnable value that is returned. MINA is supposed to asynchronous and should not block for a response packet.
If you have a really good reason for why you want to handle it all on the same thread, you can look into the java.util.concurrent package. I would implement it using a CountDownLatch of count 1, call await() after sending a request message, and call countDown() when you receive a response by MINA. You have to use an AtomicReference or an array of length 1 to hold the value you received in the response that you can read back into the waiting thread.
PS, you still doing MapleStory work?

Handling asynchronous saving with the possibility of time-critical errors?

So, to explain this, I'll start out by going through the application stack.
The system is running JSP with jQuery on top, talking through a controller layer with a service layer, which in turn utilizes a persistence layer implemented in Hibernate.
Now, traditionally, errors like having overlapping contracts has been handled through throwing exceptions up through the layers until they're translated into an error message for the user.
Now I have an object that at any given time can only be tied to one contract. At the moment, when I save a contract, I look at all of these objects and check if they're already covered by an existing contract. However, since multiple clients can be saving at any given time, this introduces the risk of getting past the check on two separate contracts, leading to one object being tied to two contracts at the same time.
To combat this, the idea was to use a queue, put objects into the queue from the main thread, and then have a separate thread take them out one by one, saving them.
However, here's the problem. For one, I would like the user to know that the saving is currently happening, for another, if by accident the scenario before happens, and two contracts with the same object covering the same time is in the queue, the second one will fail, and this needs to be sent back to the user.
My initial attempt was to keep data fields on the object put into the queue, and then check against those in a blocking wait, and then throw an exception or report success based on what happens. That deadlocked the system completely.
Anyone able to point me in the right direction with regards to techniques and patterns I should be using for this?
I can't really tell why you have a deadlock without seeing your code. I can think of some other options though:
Poll the thread to see its state (not as good).
Use some kind of eventing system. You would have an event listener (OverlappingContractEventListener perhaps) and then you would trigger the event from the thread when the scenario happens. The event handler would need to persist this information somehow.
If you are going for this approach, then on the client side you will need to poll.
You can poll a specific controller (using setInterval and AJAX) that looks up the corresponding information for the object to see what state its in. This information should have been persisted by your event listener.
You can use web workers (this is supported in Chrome, Firefox, Safari, and Opera. IE will support it in 10) and perform the polling in the background.
There is one other way that doesn't involve eventing. It depends on you figuring out the source of your deadlock though. Once you fix the source of your deadlock you can do one of two things:
Perform an AJAX call to the controller. The controller will wait for the service to return information. The code to issue feedback to the user will be inside the success handler of your controller.
Use a web worker to perform the call in the background. The web worker would also perform an AJAX call and wait for the response.
Shouldn't you be doing the check for duplicate contracts in the database? Depending on the case, you can do this with a constraint, trigger, o stored procedure. If it fails, send an exception up the stack. That's normally the way to handle things like this. You can then catch the exception in jQuery and display an error:
jQuery Ajax error handling, show custom exception messages
Hope this helps.

If a REST web service call fails, should a message or event queue be used to retry later?

I'm building a web service with a RESTful interface (lets call it MY_API). This service relies on another RESTful webservice to handle certain aspects (calling it OTHER_API). I'd like to determine what types of best practices I should consider using to handle failures of OTHER_API.
Scenario
My UI is a single page javascript application. There are some fairly complex actions a user can take, which can easily take the user a minute or two to complete. When they are done, they click the SAVE button and MY_API is called to save the data.
MY_API has everything it needs to persist the information submitted by the user. However, there is an action that must take place that is handled by OTHER_API. For instance, OTHER_API might handle sending out an emails. Or perhaps it handles adding line items to my user's billing statement. In both cases, these are critical things than must be completed, but they don't have to happen right now, they just need to happen eventually.
If OTHER_API fails, I don't want to simply tell the user their action has failed, as they spent a lot of time doing it and this will make the experience less than optimal.
Questions
So should I create some sort of Message or Event Queue that can save these failed REST requests to OTHER_API and process them later?
Any advice or suggestions on techniques to go about saving REST requests for delayed processing?
Is there a recommended open source message queue solution that would work for this type of scenario with JSON-based REST web services? Java is preferred as my backend is written in it.
Are there other techniques I should consider?
Rather than approach this by focusing on the failure state, it'd be faster and more robust to recognize that these actions should be performed asynchronously and out-of-band from the request by the UI. You should indeed use a message/event/job queue, and just pop those jobs right onto that queue as quickly as possible, and respond to the original request as quickly as possible. Once you've done that, the asynchronous job can be performed independently of the original request, and at its own pace — including with retries as needed.
If you want your API to indicate that there are aspects of the request which have not completed, you can use the HTTP response Status Code 202 (Accepted).

Categories

Resources