Java in operator - java

For the one millionth time, I would have liked to use an IN operator in Java, similar to the IN operator in SQL. It could just be implemented as compiler syntactic sugar. So this
if (value in (a, b, c)) {
}
else if (value in (d, e)) {
}
...would really be awesome. In fact, the above is the same as the rather verbose (and not adapted for primitives) construct here:
if (Arrays.asList(a, b, c).contains(value)) {
}
else if (Arrays.asList(d, e).contains(value)) {
}
Or like this for int, long and similar types:
switch (value) {
case a:
case b:
case c:
// ..
break;
case d:
case e:
// ..
break;
}
Or maybe there could be even more efficient implementations.
Question:
Is something like this going to be part of Java 8? How can I make such a suggestion, if not? Or is there any equivalent construct that I could use right now?

You can write a helper method to do it.
public static <T> boolean isIn(T t, T... ts) {
for(T t2: ts)
if (t.equals(t2)) return true;
return false;
}
// later
if (isIn(value, a,b,c)) {
} else if (isIn(value, d,e)) {
}

Using op4j:
Op.onListFor(a,b,c).get().contains(value);
Using the same approach, you could create a helper classes Is with a method in:
class Is<T> {
private T value;
public Is( T value ) { this.value = value; }
public boolean in( T... set ) {
for( T item : set ) {
if( value.equals( item ) ) {
return true;
}
}
return false;
}
public static <T> Is<T> is( T value ) {
return new Is<T>( value );
}
}
with a static import, you can write:
if(is(value).in(a,b,c)) {
}

There has been a very old proposal for collection literals.
Currently there is Sets.newHashSet in Guava which is pretty similar to Arrays.asList.

You are looking for the Java Community Process

I doubt something like an IN operator would be made available, as there are already multiple ways of doing this(like using switch) as you yourself pointed out.
And I think requirement list for project-coin and J8 is already fully loaded to be anything like this to be considered.

Related

Java 10 ifPresentOrElse that return boolean

I am a little confused on "how to do this properly":
// return true: if present and number of lines != 0
boolean isValid(Optional<File> optFile) {
return optFile.ifPresentOrElse(f -> return !isZeroLine(f), return false);
}
private boolean isZeroLine(File f) {
return MyFileUtils.getNbLinesByFile(f) == 0;
}
I know the syntax is not correct and not compiling, but it's just for you to get the idea.
How can I turn this into 'clean code'?
i.e. avoid doing:
if (optFile.isPresent()) {//} else {//}
Dealing with boolean return type(easily inferred Predicates), one way to do that could be to use Optional.filter :
boolean isValid(Optional<File> optFile) {
return optFile.filter(this::isZeroLine).isPresent();
}
But, then using Optionals arguments seems to be a poor practice. As suggested in comments by Carlos as well, another way of implementing it could possibly be:
boolean isValid(File optFile) {
return Optional.ofNullable(optFile).map(this::isZeroLine).orElse(false);
}
On another note, ifPresentOrElse is a construct to be used while performing some actions corresponding to the presence of the Optional value something like :
optFile.ifPresentOrElse(this::doWork, this::doNothing)
where the corresponding actions could be -
private void doWork(File f){
// do some work with the file
}
private void doNothing() {
// do some other actions
}

Use Java lambda instead of 'if else'

With Java 8, I have this code:
if(element.exist()){
// Do something
}
I want to convert to lambda style,
element.ifExist(el -> {
// Do something
});
with an ifExist method like this:
public void ifExist(Consumer<Element> consumer) {
if (exist()) {
consumer.accept(this);
}
}
But now I have else cases to call:
element.ifExist(el -> {
// Do something
}).ifNotExist(el -> {
// Do something
});
I can write a similar ifNotExist, and I want they are mutually exclusive (if the exist condition is true, there is no need to check ifNotExist, because sometimes, the exist() method takes so much workload to check), but I always have to check two times. How can I avoid that?
Maybe the "exist" word make someone misunderstand my idea. You can imagine that I also need some methods:
ifVisible()
ifEmpty()
ifHasAttribute()
Many people said that this is bad idea, but:
In Java 8 we can use lambda forEach instead of a traditional for loop. In programming for and if are two basic flow controls. If we can use lambda for a for loop, why is using lambda for if bad idea?
for (Element element : list) {
element.doSomething();
}
list.forEach(Element::doSomething);
In Java 8, there's Optional with ifPresent, similar to my idea of ifExist:
Optional<Elem> element = ...
element.ifPresent(el -> System.out.println("Present " + el);
And about code maintenance and readability, what do you think if I have the following code with many repeating simple if clauses?
if (e0.exist()) {
e0.actionA();
} else {
e0.actionB();
}
if (e1.exist()) {
e0.actionC();
}
if (e2.exist()) {
e2.actionD();
}
if (e3.exist()) {
e3.actionB();
}
Compare to:
e0.ifExist(Element::actionA).ifNotExist(Element::actionB);
e1.ifExist(Element::actionC);
e2.ifExist(Element::actionD);
e3.ifExist(Element::actionB);
Which is better? And, oops, do you notice that in the traditional if clause code, there's a mistake in:
if (e1.exist()) {
e0.actionC(); // Actually e1
}
I think if we use lambda, we can avoid this mistake!
As it almost but not really matches Optional, maybe you might reconsider the logic:
Java 8 has a limited expressiveness:
Optional<Elem> element = ...
element.ifPresent(el -> System.out.println("Present " + el);
System.out.println(element.orElse(DEFAULT_ELEM));
Here the map might restrict the view on the element:
element.map(el -> el.mySpecialView()).ifPresent(System.out::println);
Java 9:
element.ifPresentOrElse(el -> System.out.println("Present " + el,
() -> System.out.println("Not present"));
In general the two branches are asymmetric.
It's called a 'fluent interface'. Simply change the return type and return this; to allow you to chain the methods:
public MyClass ifExist(Consumer<Element> consumer) {
if (exist()) {
consumer.accept(this);
}
return this;
}
public MyClass ifNotExist(Consumer<Element> consumer) {
if (!exist()) {
consumer.accept(this);
}
return this;
}
You could get a bit fancier and return an intermediate type:
interface Else<T>
{
public void otherwise(Consumer<T> consumer); // 'else' is a keyword
}
class DefaultElse<T> implements Else<T>
{
private final T item;
DefaultElse(final T item) { this.item = item; }
public void otherwise(Consumer<T> consumer)
{
consumer.accept(item);
}
}
class NoopElse<T> implements Else<T>
{
public void otherwise(Consumer<T> consumer) { }
}
public Else<MyClass> ifExist(Consumer<Element> consumer) {
if (exist()) {
consumer.accept(this);
return new NoopElse<>();
}
return new DefaultElse<>(this);
}
Sample usage:
element.ifExist(el -> {
//do something
})
.otherwise(el -> {
//do something else
});
You can use a single method that takes two consumers:
public void ifExistOrElse(Consumer<Element> ifExist, Consumer<Element> orElse) {
if (exist()) {
ifExist.accept(this);
} else {
orElse.accept(this);
}
}
Then call it with:
element.ifExistOrElse(
el -> {
// Do something
},
el -> {
// Do something else
});
The problem
(1) You seem to mix up different aspects - control flow and domain logic.
element.ifExist(() -> { ... }).otherElementMethod();
^ ^
control flow method business logic method
(2) It is unclear how methods after a control flow method (like ifExist, ifNotExist) should behave. Should they be always executed or be called only under the condition (similar to ifExist)?
(3) The name ifExist implies a terminal operation, so there is nothing to return - void. A good example is void ifPresent(Consumer) from Optional.
The solution
I would write a fully separated class that would be independent of any concrete class and any specific condition.
The interface is simple, and consists of two contextless control flow methods - ifTrue and ifFalse.
There can be a few ways to create a Condition object. I wrote a static factory method for your instance (e.g. element) and condition (e.g. Element::exist).
public class Condition<E> {
private final Predicate<E> condition;
private final E operand;
private Boolean result;
private Condition(E operand, Predicate<E> condition) {
this.condition = condition;
this.operand = operand;
}
public static <E> Condition<E> of(E element, Predicate<E> condition) {
return new Condition<>(element, condition);
}
public Condition<E> ifTrue(Consumer<E> consumer) {
if (result == null)
result = condition.test(operand);
if (result)
consumer.accept(operand);
return this;
}
public Condition<E> ifFalse(Consumer<E> consumer) {
if (result == null)
result = condition.test(operand);
if (!result)
consumer.accept(operand);
return this;
}
public E getOperand() {
return operand;
}
}
Moreover, we can integrate Condition into Element:
class Element {
...
public Condition<Element> formCondition(Predicate<Element> condition) {
return Condition.of(this, condition);
}
}
The pattern I am promoting is:
work with an Element;
obtain a Condition;
control the flow by the Condition;
switch back to the Element;
continue working with the Element.
The result
Obtaining a Condition by Condition.of:
Element element = new Element();
Condition.of(element, Element::exist)
.ifTrue(e -> { ... })
.ifFalse(e -> { ... })
.getOperand()
.otherElementMethod();
Obtaining a Condition by Element#formCondition:
Element element = new Element();
element.formCondition(Element::exist)
.ifTrue(e -> { ... })
.ifFalse(e -> { ... })
.getOperand()
.otherElementMethod();
Update 1:
For other test methods, the idea remains the same.
Element element = new Element();
element.formCondition(Element::isVisible);
element.formCondition(Element::isEmpty);
element.formCondition(e -> e.hasAttribute(ATTRIBUTE));
Update 2:
It is a good reason to rethink the code design. Neither of 2 snippets is great.
Imagine you need actionC within e0.exist(). How would the method reference Element::actionA be changed?
It would be turned back into a lambda:
e0.ifExist(e -> { e.actionA(); e.actionC(); });
unless you wrap actionA and actionC in a single method (which sounds awful):
e0.ifExist(Element::actionAAndC);
The lambda now is even less 'readable' then the if was.
e0.ifExist(e -> {
e0.actionA();
e0.actionC();
});
But how much effort would we make to do that? And how much effort will we put into maintaining it all?
if(e0.exist()) {
e0.actionA();
e0.actionC();
}
If you are performing a simple check on an object and then executing some statements based on the condition then one approach would be to have a Map with a Predicate as key and desired expression as value
for example.
Map<Predicate<Integer>,Supplier<String>> ruleMap = new LinkedHashMap <Predicate<Integer>,Supplier<String>>(){{
put((i)-> i<10,()->"Less than 10!");
put((i)-> i<100,()->"Less than 100!");
put((i)-> i<1000,()->"Less than 1000!");
}};
We could later stream the following Map to get the value when the Predicate returns true which could replace all the if/else code
ruleMap.keySet()
.stream()
.filter((keyCondition)->keyCondition.test(numItems,version))
.findFirst()
.ifPresent((e)-> System.out.print(ruleMap.get(e).get()));
Since we are using findFirst() it is equivalent to if/else if /else if ......

How to check multiple objects for nullity?

Often, I can see a code constructs like following:
if(a == null || b == null || c == null){
//...
}
I wonder if there is any widely used library (Google, Apache, etc.) to check against nullity for multiple objects at once, e.g.:
if(anyIsNull(a, b, c)){
//...
}
or
if(allAreNulls(a, b, c)){
//...
}
UPDATE:
I perfectly know how to write it by myself
I know it can be the result of the poor program structure but it's not a case here
Let's make it more challenging and replace original example with something like this:
if(a != null && a.getFoo() != null && a.getFoo().getBar() != null){
//...
}
UPDATE 2:
I've created a pull request for Apache Commons Lang library to fix this gap:
Issue: https://issues.apache.org/jira/browse/LANG-781
PR: https://github.com/apache/commons-lang/pull/108
These will be incorporated in commons-lang, version 3.5:
anyNotNull (Object... values)
allNotNull (Object... values)
In Java 8, you could use Stream.allMatch to check whether all of the values match a certain condition, such as being null. Not much shorter, but maybe a bit easier to read.
if (Stream.of(a, b, c).allMatch(x -> x == null)) {
...
}
And analogeously for anyMatch and noneMatch.
About your "more challenging example": In this case, I think there is no way around writing a lazy-evaluated conjunction of null-checks, like the one you have:
if (a != null && a.getFoo() != null && a.getFoo().getBar() != null) {
...
}
Any of the other approaches, using streams, lists, or var-arg methods, would try to evaluate a.getFoo() before a has been tested not to be null. You could use Optional with map and method pointers, that will be lazily evaluated one after the other, but whether this makes it any more readable is debatable and may vary from case to case (particularly for longer class names):
if (Optional.ofNullable(a).map(A::getFoo).map(B::getBar).isPresent()) {
...
}
Bar bar = Optional.ofNullable(a).map(A::getFoo).map(B::getBar).orElse(null);
Another alternative might be to try to access the innermost item, but I have a feeling that this is not considered good practice, either:
try {
Bar bar = a.getFoo().getBar();
...
catch (NullPointerException e) {
...
}
Particularly, this will also catch any other NPEs after accessing that element -- either that, or you have to put only the Bar bar = ... in the try and everything else in another if block after the try, nullifying any (questionable) gains in readability or brevity.
Some languages have a Safe Navigation Operator, but it seems like Java is not one of them. This way, you could use a notation like a?.getFoo()?.getBar() != null, where a?.getFoo() will just evaluate to null if a is null. You could emulate behavior like this with a custom function and a lambda, though, returning an Optional or just a value or null if you prefer:
public static <T> Optional<T> tryGet(Supplier<T> f) {
try {
return Optional.of(f.get());
} catch (NullPointerException e) {
return Optional.empty();
}
}
Optional<Bar> bar = tryGet(() -> a.getFoo().getBar(););
EDIT 2018: As of Apache Commons lang 3.5, there has been ObjectUtils.allNotNull() and ObjectUtils.anyNotNull().
No.
None of Apache Commons Lang (3.4), Google Guava (18) and Spring (4.1.7) provide such a utility method.
You'll need to write it on your own if you really, really need it. In modern Java code, I'd probably consider need for such a construct a code smell, though.
You could also use something like the following method. It allows you to pass as many parameters as you want:
public static boolean isAnyObjectNull(Object... objects) {
for (Object o: objects) {
if (o == null) {
return true;
}
}
return false;
}
You call it with as many parameters as you like:
isAnyObjectNull(a, b, c, d, e, f);
You could do something similar for areAllNull.
public static boolean areAllObjectsNull(Object... objects) {
for (Object o: objects) {
if (o != null) {
return false;
}
}
return true;
}
Note: you could also use the ternary operator instead of if (o == null). The two methods shown here have no error handling. Adjust it to your needs.
Objects.requireNonNull
It is possible with help of Objects class and its requireNonNull method.
public static void requireNonNull(Object... objects) {
for (Object object : objects) {
Objects.requireNonNull(object);
}
}
Apache commons-lang3 since version 3.11 has method ObjectUtils.allNull(Object... values)
ObjectUtils.allNull(obj1, obj2, obj3);
I was looking for a solution, but I don't have apache as a dependency yet and it felt silly to me to add it just for the allNonNull method. Here is my plain vanilla java solution using Predicate#and() / Predicate#or() like this:
private static boolean allNonNull(A a) {
Predicate<A> isNotNull = Objects::nonNull;
Predicate<A> hasFoo = someA -> someA.foo != null;
Predicate<A> hasBar = someA -> someA.foo.bar != null;
return Optional.ofNullable(a)
.filter(isNotNull.and(hasFoo.and(hasBar)))
.isPresent();
}
Note: for the anyNonNull, simply use the or() method instead of and().
When invoked, would give the following output:
System.out.println(isValid(new A(new Foo(new Bar())))); // true
System.out.println(isValid(new A(new Foo(null)))); // false
System.out.println(isValid(new A(null))); // false
System.out.println(isValid(null)); // false
Class definitions used:
public static class A {
public A(Foo foo) {
this.foo = foo;
}
Foo foo;
}
public static class Foo {
public Foo(Bar bar) {
this.bar = bar;
}
Bar bar;
}
public static class Bar { }
Simply as that:
Stream.of(a,b,c).allMatch(Objects::nonNull)
You can create a list of you objects and use yourList.contains(null) in it.
List < Object > obList = new ArrayList < Object > ();
String a = null;
Integer b = 2;
Character c = '9';
obList.add(a);
obList.add(b);
obList.add(c);
System.out.println("List is " + obList);
if (obList.contains(null)) {
System.out.println("contains null");
} else {
System.out.println("does not contains null");
}
DEMO

Is there a way to create an AND/OR/ETC. Boolean statement that is comparing with the same value without redefining the value? [duplicate]

This question already has answers here:
Best way to format multiple 'or' conditions in an if statement
(8 answers)
Closed 1 year ago.
Basically, what I want to do is check two integers against a given value, therefore, classically what you would do is something like this:
//just to get some values to check
int a, b;
a = (int)(Math.random()*5);
b = (int)(Math.random()*5);
//the actual thing in question
if(a == 0 || b == 0)
{
//Then do something
}
But is there a more concise format to do this? Possibly similar to this (which returns a bad operand type):
//just to get some values to check
int a, b;
a = (int)(Math.random()*5);
b = (int)(Math.random()*5);
//the actual thing in question
if((a||b) == 0)
{
//Then do something
}
You can do the following in plain java
Arrays.asList(a, b, c, d).contains(x);
Unfortunately there is no such construct in Java.
It this kind of comparison is frequent in your code, you can implement a small function that will perform the check for you:
public boolean oneOfEquals(int a, int b, int expected) {
return (a == expected) || (b == expected);
}
Then you could use it like this:
if(oneOfEquals(a, b, 0)) {
// ...
}
If you don't want to restrict yourselft to integers, you can make the above function generic:
public <T> boolean oneOfEquals(T a, T b, T expected) {
return a.equals(expected) || b.equals(expected);
}
Note that in this case Java runtime will perform automatic boxing and unboxing for primitive types (like int), which is a performance loss.
As referenced from this answer:
In Java 8+, you might use a Stream and anyMatch. Something like
if (Stream.of(b, c, d).anyMatch(x -> x.equals(a))) {
// ... do something ...
}
Note that this has the chance of running slower than the other if checks, due to the overhead of wrapping these elements into a stream to begin with.
I think that a bit-wise OR:
if ((a | b) == 0) . . .
would work if you want to check specifically for 0. I'm not sure if this saves any execution time. More to the point, it makes for cryptic code, which will make the future maintainer of this code curse you (even if its yourself). I recommend sticking with the more-typing option.
Bah. I misread OP's original logic.
Another go...
If you want to test whether any one of many variables is equal to an expected value, a generic function might work:
public <T> boolean exists(T target, T... values) {
for (T value : values) {
if (target == null) {
if (value == null) {
return true;
}
} else if (target.equals(value)) {
return true;
}
}
return false;
}
This will work for any number of objects of one type. Primitives will be autoboxed so it will work with them as well. Your original code will be something like:
if (test(0, a, b)) {
// do something
}
(A better method name would be desperately needed to even consider whether this an improvement over what you have now. Even if the test expands to 3 or 4 variables, I question the need for this kind of thing.) Note that this also works with arrays:
int[] values = { . . . };
if (test(0, values)) { . . .
and it can be used to test whether an array (or any of a collection of variables) is null.
if(a == 0 || b == 0)
{
//Then do something
}
Why not keep it readable? What is not concise about this? On the other hand,
a = (int)(Math.random()*5);
involves an unnecessary cast. Why not just use Random and invoke nextInt()?
For this example, you can do
if (a * b == 0)
or for more variables
if (a * b * c * d == 0)
while more concise it may not be as clear. For larger values, you need to cast to a long to avoid an overflow.
You could put the integers in a set and see if it contains the given value. Using Guava:
if(newHashSet(a, b).contains(0)){
// do something
}
But two simple int comparisons are probably easier to understand in this case.
Here's a modification of #buc's answer that can take any number of any arguments:
public <T> boolean oneOfEquals(T expected, T... os) {
for (T o : os) {
if (expected.equals(o)) return true;
}
return false;
}
Even if you have used the bit-wise operation as Ted suggested, the expressions are not equal, since one requires at least one of the variables to be zero and the second requires both of them to be zero.
Regarding your question, there is no such shortcut in Java.
You can try this code:
public static boolean match (Object ref, Object... objects)
{
if (ref == null)
return false;
//
for (Object obj : objects)
if (obj.equals (ref))
return true;
//
return false;
} // match
So if you can check this way:
if (match (reference, "123", "124", "125"))
; // do something
In Java 8 we can achieve the same by using the below method:
private boolean methodName(int variant,int... args){
if(args.length > 0){ return Arrays.stream(args).anyMatch( x -> x == variant); }
return false;
}
The given method will return true if the variant will match any possible input(s). This is used for or condition.
In the same way, if you want to do &&(and) condition then you just need to used other Java 8 methods:
Note: These methods take Predicate as an argument.
anyMatch: return true the moment the first predicate returns true otherwise false.
allMatch: return true if all the predicates return true otherwise false.
noneMatch: return true if none of the predicates return true otherwise false.
Performance Note: This is good when you have enough amount of data to
check as it has some overhead but it works really well when you use
this for enough amount of data. normal way is good for just two
conditions.
There is no special syntax for that. You could make a function for that. Assuming at least Java 1.5:
public <T> boolean eitherOneEquals(T o1, T o2, T expectedValue) {
return o1.equals(expectedValue) || o2.equals(expectedValue);
}
if(eitherOneEquals(o1, o2, expectedValue)) {
// do something...
}

Reducing if-else statements in Java

I have the following code:
void f(String t)
{
if(t.equals("a"))
{
someObject.setType(ObjectType.TYPE_A);
}
else if(t.equals("b"))
{
someObject.setType(ObjectType.TYPE_B);
}
// 50 more similar code
}
Is there any simple way to rewrite the if-else condition so as not to have that much code?
You should use something to eliminate the repetition of someObject.setType(ObjectType....)) If ObjectType is an enum, then write a method there similar to valueOf that will achieve that. See if you like this kind of solution:
void f(String t) { someObject.setType(ObjectType.byName(t)); }
enum ObjectType {
TYPE_A, TYPE_B;
public static ObjectType byName(String name) {
return valueOf("TYPE_" + name.toUpperCase());
}
}
Use a Map (which you'll have to populate) that maps from String to whatever type your ObjectType.TYPE_x values are.
I would add this as a functionality of the enum:
public enum ObjectType {
TYPE_A("a"),
TYPE_B("b");
private String stringType;
private ObjectType(String stringType) {
this.stringType = stringType;
}
public String getStringType() {
return this.stringType;
}
public static ObjectType fromStringType(String s) {
for (ObjectType type : ObjectType.values()) {
if (type.stringType.equals(s)) {
return type;
}
}
throw new IllegalArgumentException("No ObjectType with stringType " + s);
}
}
...
void f(String t) {
someObject.setType(ObjectType.fromStringType(t));
}
If you can refactor t into a char, you could use switch instead (Java 6):
void f(char t) {
switch(t) {
case 'a`:
someObject.setType(ObjectType.TYPE_A);
break;
case 'b':
someObject.setType(ObjectType.TYPE_B);
break;
// ...
}
}
As Marko pointed out, you could go with String too in Java 7.
It isn't that much shorter, but more elegant. Moreover, I think it might be faster too, as switch works close to O(1) with jump tables (Can somebody confirm whether this is true?), whether a number of if statements is O(n).
Fore more complex implementations than just a single setType you might think of a State Pattern implementation too.
1.You can go for Switch statement if you have number of if conditions more than 3.
2.you can convert your if else statements to ternary operations
The other suggestions are great - particularly smarter enums and maps. But the first most basic refactoring I would tackle here is to extract a method to return the enum directly and have the caller perform nothing more than the setType to that method's return value.
void f(String t) {
final ObjectType type = findType(t);
if (type != null)
someObject.setType(type);
}
ObjectType findType(String t) {
if (t.equals("a")) return ObjectType.TYPE_A;
if (t.equals("b")) return ObjectType.TYPE_B;
// 50 more similar code
}
In some cases this will be sufficient in and of itself; in others the findType() method may lead you to a simple map- or enum-based solution.

Categories

Resources