When, where & how should queues be used? - java

I'm new to enterprise Java development, although I'm sure this question equally applies to any language or platform, such as .NET.
For the first time ever now I'm dealing with message queues, and I'm very intrigued by them. (specifically, we're using ActiveMQ). My tech lead wants ActiveMQ queues to be the front-runners to all of our databases and internal web services; thus instead of a database query being fired off from the client and going directly to the database, it gets queued up first.
My question is this: are queues the way to go with every major processing component? Do best practices dictate putting them in front of system components that usually get hit with large amounts of requests? Are there situations where queues should not be used?
Thanks for any insight here!

Here are some examples where a message queue might be useful.
Limited resources
Lets say you have a large number of users making requests to a service. If the service can only handle a small number of requests concurrently then you might use a queue as a buffer.
Service decoupling
A key enterprise integration concept is decoupling of systems in for eg a workflow. Instead of having systems talk directly to each other, they asyncronously post messages to queues. The integration component then routes and delivers the message to the appropriate system.
Message replay
In the above example queues can also provide reliable delivery and processing of requests. If one component of the workflow breaks, others are unaffected and can still operate and post messages to the broken component. When the broken component recovers it can process all the queued up messages.
They key concepts here are load throttling, loose coupling, reliability and async operation.
As to whether they are the way to go for every major component, I would say no, this is not an automatic choice, you must consider each component individually.

Queues are indeed a very powerful and useful tool, but like every tool you should only use it for the job it is intended.
IMO they are not the away to go for every major processing component.
As a general rule I would use a queue where the requesting resource does not require an immediate, synchronous response. I would not use a queue where the timeliness and order of processing is vital.
Where asynchronous processing is allowable and you wish to regulate the amount of traffic to a service then a queue may be the way to go.
See #Qwerky's answer too, he (or she) makes some good points.

Please check out this:
http://code.google.com/p/disruptor/
Not only queues are there in the wild to solve those kind of problems.
Answering your question. Queues in this case will introduce asynchronous behavior in access to your databases. In this case it is more a question of can you afford such a great impact on your legacy systems. It just might be too much of change to push everything to the queues. Please describe what is the general purpose of your systems. Then it will be easer to answer your question fully.

Message queues are fundamentally an asynchronous communication system. In this case, it means that aside from the queue that links the sender and receiver, both sender and receiver operate independently; a receiver of a message does not (and should not) require interaction with the sender. Similarly, a sender of a message does not (and should not) require interaction with receiver.
If the sender needs to wait for the result of processing a message, then a message queue may not be a good solution, as this would force an asynchronous system to be synchronous, against the core design. It might be possible to construct a synchronous communication system on top of a message queue, but the fundamental asynchronous nature of a message queue would make this conversion awkward.

Related

What is the Difference between Scheduling a Get Api call every single second, and Doing a Subscriber API?

I am Writing a Java Application where when the Data Changes an image should change,
My Colleagues are asking me to do a Scheduler where you have to call a get api every 1 second
My Suggestion is to use Pub-Sub so that whenever event happens , then only the data is changed
is Subscriber and Scheduler one and the Same?
No code
Publish/subscribe is a nicer option, theoretically.
The differences:
Polling is a kind of busy waits, with multiple clients causing superfluous network traffic. The client is active.
Publish/Subcribe needs an active server that does a push notification to all subscribers. Meanwhile there is sufficient support in HTML5/JavaScript and in java. The server is active.
Unfortunately publish/subscribe will probably be a bit harder to realize. Best would be to make a proof of concept in a separate application. Things like asynchroneous Ajax might appear.
Also some publish/subscribe libraries might still use under the hood polling at the client side, instead of push notifications.
So the colleagues' advise might be based on the simpler, unproblematic implementation.
Depending on the leeway you are given, and in the interest of architectural research: a prototype with a load test for both implementations would be fine. Hope never dies.
It's no the same:
Scheduler is when you explicitly choose when to make the request. You can to it every second, minute or whatever. Every time you create a new request.
Pub-Sub is when you create a permatent connection to the source of events, and when an event is published you consume it. You don't have here multiple requests, it's rather a socket connection.

RabbitMQ-Is it a good practice to create multiple consumers for a single queue in one application process

I just work with an new project backed by RabbitMQ, and there are multiple consumer instances created listening to the same queue when the application starts. Howerver they shares the same connections with different channels.
The messages from the queue are massive(millions messages for one single producing behavior ) so I guess the very first code author is trying to do something to make consuming faster.
I am trying to find some posts discussing on this but I can't find a very certain answer.
What I get so far is:
Each channel will have a separate dispatch thread
The operation commands on the same channel is serialized even though they are called in multiple thread
So
creating multiple consumers thus multiple channels will have multiple dispatch threads, but I don't think it provided a better performance to message dispatching since the dispatch should far from enough with one single thread.
The operation of ack will can be paralized in different channels, I am not quite sure this will give any better performances.
Since more channels consume more system resources I wonder is this practice good?
There seem to be a few things going on here, so let's try to look at this scenario from a holistic perspective.
For starters, it sounds like the original designer of this code understood some basics about RabbitMQ (or learned a few things by trial and error), but may have had trouble putting all the pieces together- hopefully I can help.
RabbitMQ connections are, in reality, AMQP-over-TCP connections (and thus are somewhere around the session layer of the OSI model). TCP connections are supposed to be opened up and used until some sort of network interruption or application shutdown closes them (and for this reason, AMQP has trouble with firewalls and other smart network devices). Using a single TCP connection for message processing activities for a single logical process is a good idea, as creating and destroying TCP connections is usually an expensive process for the computer, which leads to
RabbitMQ channels are used to multiplex communication streams in the AMQP-Over-TCP connection (and are defined in the AMQP Protocol Spec). All they do is specify an integer value (I can't remember the number of bytes, but it doesn't matter anyway) used to preface the subsequent command or response on a TCP connection. Most AMQP operations are channel-specific. For the purposes of higher-level operations, channels are treated similar to connections, as they are application-level constructs.
Now, where I think the question starts to go off the rails a bit is here:
The messages from the queue are massive(millions messages for one
single producing behavior ) so I guess the very first code author is
trying to do something to make consuming faster.
A fundamental assumption about a system which uses queues is that messages are consumed at approximately the same rate that they are produced. Queues exist to buffer uneven producing activities. The mathematics and statistics of how queues work are quite interesting, and assuming the production of messages is done in response to some real-world stimulus, your system is virtually guaranteed to behave in a predictable manner. Therefore, your design goal is to ensure that there are enough consumers to process the messages that are produced, and to respond to changing conditions as needed. Your goal should not be to "speed up" the consumers (unless they have some specific issue), but rather to have enough consumers to process the total load.
Further, the average number of items in the queue at any time should approach zero. It is usually a good idea to have overcapacity so that you don't wind up with an unstable situation where messages start accumulating in the queue (and the queue ends up looking like the Stack Overflow Close Vote Queue).
And that brings us to an attempt to answer your fundamental question, which seems to deal with threading and possibly detailed implementation of the Java client, which I will readily admit I have not used (I'm a .NET guy).
Here are some design guidelines for your software:
Ensure that a single thread uses no more than one channel.
Use one TCP connection per logical consuming process.
Balance the number of logical processes on a single physical machine such that resource contention is not a problem (you don't want to starve your consumers of computer resources).
Try to use BASIC.GET as opposed to a push-based consumer. Use of consumers is difficult in practice, and there is no performance benefit at the protocol level over a BASIC.GET. Note I do not know if the Java library has implemented these differently such that it does cause a performance difference- stranger things have been known to happen.
If you do use consumers, make sure pre-fetch is set to 0 (disabled) and that AutoAck is set to false if reliable processing is important (most applications require reliable processing). Along with this, make sure you are acknowledging messages upon completion of processing!
Periodically reboot your consuming threads, channels, and processors - or do a BASIC.Recover. There are degrees of randomness that will result in unacknowledged messages accumulating over time, and this will deal with it.
Again, if you prefer to use consumers, generally speaking to share consumers across channels is a bad idea. Each consumer should get its own channel.

Message Bus versus Quasar/HTTP for internal Microservice Calls

I am looking to optimize a microservice architecture that currently uses HTTP/REST for internal node-to-node communication.
One option is implementing backpressure capability into the services, (eg) by integrating something like Quasar into the stack. This would no doubt improve things. But I see a couple challenges. One is, the async client threads are transient (in memory) and on client failure (crash), these retry threads will be lost. The second, in theory, if a target server is down for some time, the client could eventually reach OOM attempting retry because threads are ultimately limited, even Quasar Fibers.
I know it's a little paranoid, but I'm wondering if a queue-based alternative would be more advantageous at very large scale.
It would still work asynchronously like Quasar/fibers, except a) the queue is centrally managed and off the client JVM, and b) the queue can be durable, so that in the event client and or target servers go down, no in flight messages are lost.
The downside to queue of course is that there are more hops and it slows down the system. But I'm thinking there is probably a sweet spot where Quasar ROI peaks and a centralized and durable queue becomes more critical to scale and HA.
My question is:
Has this tradeoff been discussed? Are there any papers on using a
centralized external queue / router approach for intraservice
communication.
TL;DR; I just realized I could probably phrase this question as:
"When is it appropriate to use Message Bus based intraservice
communication as opposed to direct HTTP within a microservice
architecture."
I've seen three general protocol design patterns with microservices architectures, when running at scale:
Message bus architecture, using a central broker such as ActiveMQ or Apache Qpid.
"Resilient" HTTP, where some additional logic is built on HTTP to make it more resilient. Typical approaches here are Hystrix (Java), or SmartStack/Baker St (smart proxy).
Point-to-point asynchronous messaging using something like NSQ, ZMQ, or Qpid Proton.
By far the most common design pattern is #2, with a little bit of #1 mixed in when a queue is desirable.
In theory, #3 offers the best of both worlds (resiliency AND scale AND performance) but the technologies are all somewhat immature. It turns out that with #2 you can get really very far (e.g., Netflix uses Hystrix everywhere).
To answer your question directly, I'd say that #1 is very rarely used as an exclusive design pattern because it creates a single bottleneck for your entire system. #1 is common for a subset of the system. For most people, I'd recommend #2 today.

Potential pitfalls in using a JMS queue?

I've been asked to design and implement a system for receiving a high volume of automated sensor data from a large number of devices. This data will be produced at regular intervals and sent to the server as xml in an http post. The devices will keep resending the same data if they don't receive a specific acknowledgment from the server. Some potentially heavy duty processing of this data will need to occur before it's inserted to a number of tables in the main database via a transaction, and additionally some data points will need to be enqueued to be re-directed to other external urls.
I'm planning on using a Java application server (leaning towards GlassFish) with a servlet to receive the incoming data. I'd like to implement some kind of queuing mechanism to store the data temporarily so that the response back to the sensor isn't dependent on all the intermediate processing. Separate independent queues are also a requirement for the data re-direction piece. After doing some research the two main options seem to be:
1) Install a database on the app server and use tables for the various queues. The queues would be processed by a Java application, either running in the app server or standalone as it's own service.
2) Use a database backed JMS solution to implement the queuing.
I'm not that familiar with JMS but from what I've read it seems to be the better solution in this case. The primary requirement is that no sensor data ever be lost or dropped from the queue before being processed and that it be processed more or less sequentially. We'd also like to make it easy to halt the processing of some of the queues at certain times but still have them accumulate data and for these messages to never automatically expire.
With strategy 1 it's obvious to me how to meet these requirements but it may be less robust and scalable, and more complex to develop than strategy 2, since I'll need to write my own multi-threaded code to handle the various independent queues. I'm wondering what the potential pitfalls could be in using JMS queues for this purpose since I've never worked with them before.
Data integrity is a big issue so I need to make sure JMS can guarantee no data loss in the event of a server reboot, power outage, or if the queue gets very large for some reason. For instance could a problem completing transactions to the main database for a period of time potentially cause the JVM to run out of memory, crash, and lose all accumulated data? (This would be the nightmare scenario).
Also, I was wondering if there would be any way to pause the JMS queue processing via an app server admin tool or to easily see what's in the queue (I would be enqueuing an object which would be the message xml plus some other data, including timestamp received, etc.) I've read a few posts on here that deal with related issues but wanted to get some direct feedback. Basically I'd like to know of instances (if any) where JMS is not an appropriate queuing solution and if this is one of those cases. Any advice is greatly appreciated.
Kaleb's answer talks about the benefits of JMS quite eloquently, but since you're asking about pitfalls, here's what I can think of.
Not all JMS implementations are equal. In theory you can use whatever implementation suits your needs, but unless you're prepared to do some serious load testing and failure condition testing, you can't know that a particular implementation isn't going to fail under your particular use case.
Most JMS use a transactional datastore like a relational database as their back end. That means that rather than writing directly to whatever datastore you're familiar with, you have to rely on the JMS implementation's extra layer between you and that stored messages.
While swapping JMS implementations to find the one that perfectly fits your needs may seem like a simple endeavor because of the homogeneous JMS API, the critical features for failure handling, JMS server monitoring, and all the other cool stuff that exists above and beyond messaging is going to be a hassle to deal with if you do change your implementation.
That said, I think you'd be crazy to write to the DB yourself instead of going with JMS. On the first point, ActiveMQ is a venerable JMS server used in many enterprise environments. On the second point, the fact is you'd just end up writing that extra layer yourself in order to implement messaging, and your code won't have the benefit of thousands of eyes (or a set of paid developers who's sole job it is to respond to customers and make sure the JMS implementation is solid). On the third point, well the same ends up being true of your backend datastore. Use JMS, you'll save yourself trouble in the long run.
If you want to go the JMS route, a standalone JMS-compatible message broker (separate from your app server) would be a good choice. Message brokers range from free open-source (like ActiveMQ at http://activemq.apache.org/ or OpenMQ at https://mq.dev.java.net/), to large-scale commercial solutions (IBM's WebSphere MQ at http://www-01.ibm.com/software/integration/wmq/ is one of the largest).
Message brokers offer guaranteed delivery (provided the server's up and listening), and you can do quite a bit to ensure that the system is fail-safe including integrated backup broker servers and instant power backup. Broker queues can eventually run out of room if your app server isn't picking up the messages, but you can assign huge queue depth (100's of GB) and have the server send alerts if the messages aren't getting processed and the queue reaches a certain percentage.
Your Java app would then run on a different server entirely, and would connect to the broker and pull messages off of the queue as fast as possible. If the app server crashes or stops picking up messages for any other reason, the broker would just keep all messages in that queue until the app server begins picking them up again.
You will be wanting to implement a poison message queue in your implementation - this is the place that messages unable to be processed after some number of retries will arrive.
You will probably need to write some code that can examine the messages in that queue and re-send them to the appropriate destination after fixing whatever is causing them to fail.
If sequence of message processing is important, a message ending up in the poison queue could mean all processing is halted until that message is corrected.
As far as fault tolerance goes, you can have multiple instances of the consuming services subscribe to the same queue or topic, providing an ability to continue processing even if one or more instances goes down.
Finally, have a watchdog process that pings the various consumers on your message queue, and if one doesn't respond, have it send a message that results in a new instance being started. In this way, your message processing environment can be somewhat self regulating.

Critically efficient server

I am developing a client-server based application for financial alerts, where the client can set a value as the alert for a chosen financial instrument , and when this value will be reached the monitoring server will somehow alert the client (email, sms ... not important) .The server will monitor updates that come from a data generator program. Now, the server has to be very efficient as it has to handle many clients (possible over 50-100.000 alerts ,with updates coming at 1,2 seconds) .I've written servers before , but never with such imposed performances and I'm simply afraid that a basic approach(like before) will just not do it . So how should I design the server ?, what kind of data structures are best suited ?..what about multithreading ?....in general what should I do (and what I should not do) to squeeze every drop of performance out of it ?
Thanks.
I've worked on servers like this before. They were all written in C (or fairly simple C++). But they were even higher performance -- handling 20K updates per second (all updates from most major stock exchanges).
We would focus on not copying memory around. We were very careful in what STL classes we used. As far as updates, each financial instrument would be an object, and any clients that wanted to hear about that instrument would subscribe to it (ie get added to a list).
The server was multi-threaded, but not heavily so -- maybe a thread handing incoming updates, one handling outgoing client updates, one handling client subscribe/release notifications (don't remember that part -- just remember it had fewer threads than I would have expected, but not just one).
EDIT: Oh, and before I forget, the number of financial transactions happening is growing at an exponential rate. That 20K/sec server was just barely keeping up and the architects were getting stressed about what to do next year. I hear all major financial firms are facing similar problems.
You might want to look into using a proven message queue system, as it sounds like this is basically what you are doing in your application.
Projects like Apache's ActiveMQ or RabbitMQ are already widely used and highly tuned, and should be able to support the type of load you are talking about outside of the box.
I would think that squeezing every drop of performance out of it is not what you want to do, as you really never want that server to be under load significant enough to take it out of a real-time response scenario.
Instead, I would use a separate machine to handle messaging clients, and let that main, critical server focus directly on processing input data in "real time" to watch for alert criteria.
Best advice is to design your server so that it scales horizontally.
This means distributing your input events to one or more servers (on the same or different machines), that individually decide whether they need to handle a particular message.
Will you be supporting 50,000 clients on day 1? Then that should be your focus: how easily can you define a single client's needs, and how many clients can you support on a single server?
Second-best advice is not to artificially constrain yourself. If you say "we can't afford to have more than one machine," then you've already set yourself up for failure.
Beware of any architecture that needs clustered application servers to get a reasonable degree of performance. London Stock Exchange had just such a problem recently when they pulled an existing Tandem-based system and replaced it with clustered .Net servers.
You will have a lot of trouble getting this type of performance from a single Java or .Net server - really you need to consider C or C++. A clustered architecture is much more error prone to build and deploy and harder to guarantee uptime from.
For really high volumes you need to think in terms of using asynchronous I/O for networking (i.e. poll(), select() and asynchronous writes or their Windows equivalents), possibly with a pool of worker threads. Read up about the C10K problem for some more insight into this.
There is a very mature C++ framework called ACE (Adaptive Communications Environment) which was designed for high volume server applications in telecommunications. It may be a good foundation for your product - it has support for quite a variety of concurrency models and deals with most of the nuts and bolts of synchronisation within the framework. You might find that the time spent learning how to drive this framework pays you back in less development and easier implementation and testing.
One Thread for the receiving of instrument updates which will process the update and put it in a BlockingQueue.
One Thread to take the update from the BlockingQueue and hand it off to the process that handles that instrument, or set of instruments. This process will need to serialize the events to an instrument so the customer will not receive notices out-of-order.
This process (Thread) will need to iterated through the list of customers registered to receive notification and create a list of customers who should be notified based on their criteria. The process should then hand off the list to another process that will notify the customer of the change.
The notification process should iterate through the list and send each notification event to another process that handles how the customer wants to be notified (email, etc.).
One of the problems will be that with 100,000 customers synchronizing access to the list of customers and their criteria to be monitored.
You should try to find a way to organize the alerts as a tree and be able to quickly decide what alerts can be triggered by an update.
For example let's assume that the alert is the level of a certain indicator. Said indicator can have a range of 0, n. I would groups the clients who want to be notified of the level of the said indicator in a sort of a binary tree. That way you can scale it properly (you can actually implement a subtree as a process on a different machine) and the number of matches required to find the proper subset of clients will always be logarithmic.
Probably the Apache Mina network application framework as well as Apache Camel for messages routing are the good start point. Also Kilim message-passing framework looks very promising.

Categories

Resources