Using Joda Time with IATA Time zone - java

Innovata publish the IATA Time Zone/Daylight Saving Time data for airline industry.
These files contains airport code, IATA Time Zone, start/stop date for UTC offset, UTC offset and longitude/latitude for the airport.
What is the best practice to convert an IATA Time Zone into Olson Db/Tz Database format or DateTimeZone for use with Joda Time?

Already added in a comment, but...
I suspect it would be easiest to just parse the file and create DateTimeZone instances via DateTimeZoneBuilder. You could also potentially implement ZoneInfoProvider if you didn't want to pass the zones around.

Have you considered converting the UTC offset to DateTimeZone instead?

Related

What is logic of manipulation with timezones in Java/Kotlin?

Let's assume that I have client's time saved in my database as 2020-09-22T10:50:37.276240900
I need to present this date in web-service for client app depending on client timezone, for example I need to add 2 hours to saved date if client lives in UTC+2 timezone.
So what am I doing for ?
Getting date from entity and adding timezone to time taken from database (startDate: LocalDateTime)
entity.startDate.atZone(ZoneId.of("Europe/Vienna"))
what gives me the value of ZonedDateTime 2020-09-22T10:50:37.276240900+02:00[Europe/Vienna]
This value is what I'm expecting for, basically "initial time plus 2 hours". After that I would to format this time to have output with this 2 hours of being added, some kind of this
12:50 22.09.2020
but when I do format like this
entity.startDate
.atZone(ZoneId.of("Europe/Vienna"))
.format(DateTimeFormatter.ofPattern(NotificationListener.EUROPEAN_DATE_FORMAT, Locale.ENGLISH))
where const val EUROPEAN_DATE_FORMAT = "HH:mm dd.MM.yyyy"
I get this output 10:50 22.09.2020 which looks like my format is not applied properly, so I cannot see my 2 hours.
So my questions are:
am I correct to adding timezone of client app in described way ?
how to apply timezone in more precise way and format this date to see timezone zone applied ?
LocalDateTime.atZone does not "move" the point in time. In fact it tries to present the point in time where the local time in the given timezone is exactly what the LocalDateTime shows.
In other words: if your LocalDateTime represented 10:00 at some date, then the ZonedDateTime output of atZone will also represent 10:00 local time at the specified time zone (except in cases where that local time doesn't exist due to DST changes).
So if your stored time is actually in UTC, you need to add one more step:
ZonedDateTime utcTime = entity.startDate.atZone(ZoneOffset.UTC);
ZonedDateTime localTime = utcTime.withZoneSameInstant(ZoneId.of("Europe/Vienna"));
Alternatively you can avoid calculating the localTime each time and instead configure the DateTimeFormatter to use a given time zone (which means it'll do the necessary calculations internally) using DateTimeFormatter.withZone. If you do this then you can pass the utcTime to it directly.

What is the right way to format Time between different timezones?

I want to format time like 19:19:00 to different time zones. If I use SimpleDateFormat it always takes into account the start of the epoch: 1970.01.01.
Some timezones have different offsets on the start of the epoch and now. For example, the default offset from Europe/Kiev now is UTC+0200 but in 1970 it was UTC+0300. That means if I run my server under Europe/Kiev the client which login under Europe/Berlin(UTC+0100) will see three hours different instead of two.
I can solve this problem by writing a custom formatter for java.sql.Time. But I want to ask maybe there are some common approach or Java tools/libraries which can solve it.
Another solution can be using joda-time:
TimeZone.setDefault(TimeZone.getTimeZone("Europe/Kiev"));
DateTimeZone.setDefault(DateTimeZone.forID("Europe/Kiev"));
DateTimeFormat.forPattern("HH:mm:ss.SSS")
.withZone(DateTimeZone.forID("Europe/Berlin"))
.print(Time.valueOf("19:00:00").getTime());
You can't format just a time to different time zones. You need a date.
If you want to assume that the date of that time is today, you can try this code:
ZoneId originalZone = ZoneId.of("Europe/Kiev");
ZoneId targetZone = ZoneId.of("Europe/Berlin");
LocalTime originalTime = LocalTime.parse("19:19:00");
LocalTime convertedTime = LocalDate.now(originalZone)
.atTime(originalTime)
.atZone(originalZone)
.withZoneSameInstant(targetZone)
.toLocalTime();
System.out.println(convertedTime);
Is java.time.instant an alternative for you? It handles all Timestamps internally as UTC-Time.
One way to parse it from a string is Instant.parse("2018-05-30T19:00:00")
If you want to have the time for a specific timezone you can get it with myInstant.atZone("Zone")
ZoneId originalZone = ZoneId.of("Europe/Kiev");
ZoneId targetZone = ZoneId.of("Europe/Berlin");
LocalDate assumedDate = LocalDate.now(originalZone);
String formattedTime = assumedDate.atTime(LocalTime.parse("19:19:00"))
.atZone(originalZone)
.withZoneSameInstant(targetZone)
.format(DateTimeFormatter.ofPattern("HH:mm:ss"));
System.out.println(formattedTime);
Today this printed:
18:19:00
When you know the date, you should of course use that instead of just today. In the case of Kyiv and Berlin I think they follow the same rules for summer time (DST), so the precise date may not be important. If converting between zones that don’t use the same transitions, or between a time zone that uses summer time and one that doesn’t, it’s suddenly crucial. And who knows in which of those two countries the politicians will change the rules next year? Better be safe.
Link: Oracle tutorial: Date Time explaining how to use java.time.

best way to convert datetimes in globally synchronised system architecture

We are working on a Customer Data Integration project (using Java 8), which has a central database that is kept synchronised with local databases in other countries.
When a new or updated contact request comes from a local system to our central system, a modifiedAt value is passed (which is the local datetime stamp value in their time zone)
We convert this into UTC and store it in our database. (To do this we store the time zone offsets for each system). When any system requests that contact object, we convert the stored modifiedAt value from UTC into their local datetime.
Is this the best way to do this? What about issues with daylight savings times? Does the central system need to keep track of when DST starts and stops for each of the local systems?
Thanks in advance
Don't store the timezone offset. Store the timezone itself.
The offset of "Europe/Paris" is different in the winter and in the summer, due to DST.
But if I know that the timezone is "Europe/Paris", I'm able to reliably convert any French local date to a UTC timestamp, because I can find the right offset for that local date.
(actually, I can convert almost any date reliably, because some local dates are ambiguous, when the time goes back from 3AM to 2AM).
Why don't the local systems provide a UTC timestamp directly, instead of providing a local datetime?
Totally agree with JB Nizet's answer: you should store the time zone instead of just the offset. In Java 8, you can use the ZonedDateTime class to accomplish this.
It contains methods such as:
public static ZonedDateTime of(LocalDateTime localDateTime, ZoneId zone)
which allow to easily convert a local dateTime to a zoned dateTime. Then, you can move this zoned dateTime to UTC with similar methods, i.e:
public ZonedDateTime withZoneSameInstant(ZoneId zone)
You are looking at storing two information Instant and ZoneId.
In your database, you store the time as Instant. Whenever any of your server asks for the time, you convert that to ZonedDateTime using Instant value stored in database, and ZoneId either passed by server, or stored in database as well.
This allows you to easily query databases in cases you want "All objects that were updated in last hour".
Instant to ZonedDateTime
Instant instant = Instant.now();
// Japan = UTC+9
ZonedDateTime zonedDateTime = instant.atZone(ZoneId.of("Asia/Tokyo"));
ZonedDateTime to Instant
zonedDateTime.toInstant();

JODA daylightsaving conversion

In one of my projects, I have to convert UTC DateTime to user specific Date and Time. I am using xml to get time offset and daylight saving parameters.
for example offset="GMT+2" dst="true"
if this is the case, then I have to convert the utc DateTime to GMT+2 considering daylight saving.
I read many blog posts and articles but didnt fully understand how to do this time and date conversion. Can somebody please show me an example using JODA DateTime or anything similar in java.
Thanks,
If you have a DateTime instance in any given DateTimeZone you can convert it to another time zone with just dateTime.toDateTime(otherTimeZone).

android java time

i'm building an android application which have a chat.
in this chat i each message to have its time sent signature.
my question is as follow:
lets say that the time in my country is X. my friend is abroad and his time is X minus 7 hours.
i'm sending him a message at 16:00 local time.
i want to avoid the situation that he will get at 09:00 a message which it signature will be 16:00 (which is a time in future if you're looking in the eyes of that friend in his country).
is there a way that in my phone the message will be written as 16:00 and in his phone it will be written as 09:00 ? i there a way to convert a time to a local time ?
System.currentTimeMillis() does give you the number of milliseconds since January 1, 1970 00:00:00 UTC. Date object does not save your local timezone.
You can use DateFormats to convert Dates to Strings in any timezone:
DateFormat df = DateFormat.getTimeInstance();
df.setTimeZone(TimeZone.getTimeZone("gmt"));
String gmtTime = df.format(new Date());
linked response
You should keep all time communications using UTC time. Then localize it for display based on the devices current timezone setting.
Use a long to save your time information as milliseconds since "epoch" (which is January 1, 1970, 00:00:00 GMT). It can be retreived with the Date.getTime() method and new Date objects are easily created using the Date(long millis) constructor. The Date objects are then displayed using the local timezone settings on each device.
EDIT:
Epoch is a defined point in time which is expressed differently in different time zones: 1970-01-01 00:00:00 GMT but
1969-12-31 19:00:00 EST. The timestamp is just the number of milliseconds elapsed since that time. So, for example the timestamp 1341169200 corresponds to 2012-07-01 19:00:00 GMT and 2012-07-01 14:00:00 EST.
You will need to save the time zone which your message will be saved in, and transfer it (or send the unix epoch time) and then on the other side make sure you read it in with the Locale time (using the Android documentation for things like http://developer.android.com/reference/java/util/Calendar.html can help).
Take a look at the answer over here:
https://stackoverflow.com/a/6094475/346232
You need to change the time to UTC and then convert on the device to the timezone.
Avoid java.util.Date/.Calendar
The java.util.Date/.Calendar classes bundled with Java (and Android) are notoriously troublesome, flawed in both design and implementation.
Joda-Time
The Joda-Time library is the way to go. This library inspired the java.time package now built into Java 8 (not available on Android).
UTC
As other answers suggested, the best practice (generally) is to keep your business logic and data storage/communication in UTC time zone (which some think of as no time zone or an "anti" time zone). Adjust to a specific time zone only when expected by the user or data-consumer.
Time Zone
The DateTime class in Joda-Time represents a date-time value along with an assigned time zone.
Note that it is best to specify a time zone in all your operations. Otherwise you will be implicitly relying on the JVM’s current default time zone. This is risky because that zone can change – even at runtime at any moment by any code in any thread of any app running within your app’s JVM. And use proper time zone names, never the 3-4 letter codes.
Example Code
Example code in Joda-Time 2.7.
DateTime sent = DateTime.now( DateTimeZone.getDefault() ) ;
DateTime sentUtc = nowMine.withZone( DateTimeZone.UTC ) ; // Generally, use this for your work, including communicating to other threads and apps and such.
When ready to display to the other user, adjust to the expected time zone.
DateTimeZone zone = DateTimeZone.forID( "America/Montreal" ) ; // Or DateTimeZone.getDefault() if you want to rely on their JVM’s current default. To be absolutely sure of expected time zone, you really must ask the user.
DateTime sentMontréal = sentUtc.withZone( zone );
To generate a textual representation of those date-time objects, search the many Questions and Answers on StackOverflow.com on that subject. Search for terms like "joda" and "DateTimeFormatter" and "DateTimeFormat".

Categories

Resources