Recursion and Immutability - java

I'm having the hardest time trying to get my class to work properly. It's a natural number class with methods like increase and decrease. I'm trying to make it immutable, and I'm stuck. If I increment a number such that it's least significant digit isn't 9, it works fine. But once I get to the boundary case, it fails.
IE. I have a number that's 69999, I increment it and it's 7.
private SlowBigNatural(int[] natural, int nSize){
this.nSize = nSize - 1;
this.natural = new int[this.nSize];
for (int i = 0; i < this.nSize; i++) {
this.natural[i] = natural[i];
}
}
#Override
public BigNatural increment() {
int[] nClone = natural.clone();
if (nSize == 1 || nClone[nSize - 1] != HIGHEST) {
nClone[nSize - 1]++;
String nString = "";
for(int i = 0; i < nSize; i++){
nString += String.valueOf(nClone[i]);
}
BigNatural nInc = new SlowBigNatural(nString);
return nInc;
}
else {
nClone[nSize - 1] = 0;
BigNatural temp = new SlowBigNatural(nClone, nSize);
return temp.increment();
}
}

I'm a little confused as to the endianness of your BigNatural. You don't explicitly mention how you're storing your number. You can either store with the most significant digit first, or least significant digit first.
That is the number 12,345 can be stored as {1,2,3,4,5} (Big Endian) or {5,4,3,2,1} (Little Endian).
If your increment is correct then getting 7 from adding 1 to 69,999 is likely a problem with endianness.
That is {7,0,0,0,0} is 70,000 if Big Endian or 7 if Little Endian. Check the string constructor. See what endianness it expects.

The problem is in the else. You have to compose the number after increment:
else {
nClone[nSize - 1] = 0;
BigNatural temp = new SlowBigNatural(nClone, nSize);
BigNatural incremented = temp.increment();
return new SlowBigNatural(addElement(incremented.natural, 0), nSize + 1);
}
private int[] addElement(int[] arr, int element) {
int[] copy = new int[arr.length+1];
for (int index = 0; index < arr.length+1; index++){
copy[index] = arr[index-1];
}
copy[arr.length] = element;
return copy;
}

Related

binary partition an array using java

I am a beginner(first year uni student) programmer trying to solve this problem which i'm finding somewhat difficult. If you are to answer this question, don't provide me with a complex daunting algorithm that will leave me scratching my head. I'll really appreciate it if you explain it step my step (both logically/conceptually then through code)
The problem is as follows:image
I have tried to attempt it and my code only works for a certain case that i tested.
package com.company;
import java.lang.Math;
public class Main {
public static int[][] binary_partition(int array[], int k){
int x = (int) Math.pow(2,k);
int[][] partition = new int[((array.length/x)*2)][array.length/x];
int divisor = array.length/x;
if ((array.length % 2) != 0){
return partition;
}
if (divisor >= array.length-1){
return partition;
}
if (k==1){
return partition;
}
int p = 0;
for(int i=0;i<((array.length/x)*2);i++)
{
for (int j = 0; j<array.length/x;j++)
{
partition[i][j] = array[p];
p += 1;
}
}
return partition;
}
public static void main(String[] args){
int[] array = {3, 2, 4, 7, 8, 9, 2, 3};
int[][] result = binary_partition(array,2);
for (int[] x : result){
for (int y : x)
{
System.out.print(y + " ");
}
System.out.println();
}
}
}
Your question is unclear, but this solution creates a function that partitions an array with the right length into 2^k sets.
First, an interesting fact: using the bitshift operator << on an integer increases its value by a power of two. So to find out the size of your partition, you could write
int numPartitions = 1 << k; // Equivalent to getting the integer value of 2^k
With this fact, the function becomes
public static int[][] partition(int[] set, int k) {
if (set == null)
return null; // Don't try to partition a null reference
// If k = 0, the partition of the set is just the set
if (k == 0) {
int[][] partition = new int[1][set.length];
// Copy the original set into the partition
System.arraycopy(set, 0, partition[0], 0, set.length);
return partition;
}
int numPartitions = 1 << k; // The number of sets to partition the array into
int numElements = set.length / numPartitions; // The number of elements per partition
/* Check if the set has enough elements to create a partition and make sure
that the partitions are even */
if (numElements == 0 || set.length % numElements != 0)
return null; // Replace with an error/exception of your choice
int[][] partition = new int[numPartitions][numElements];
int index = 0;
for (int r = 0; r < numPartitions; r++) {
for (int c = 0; c < numElements; c++) {
partition[r][c] = set[index++]; // Assign an element to the partition
}
}
return partition;
}
There are a few lines of your code where the intention is not clear. For example, it is not clear why you are validating divisor >= array.length-1. Checking k==1 is also incorrect because k=1 is a valid input to the method. In fact, all your validation checks are not needed. All you need to validate is that array.length is divisible by x.
The main problem that you have seems to be that you mixed up the lengths of the resulting array.
The resulting array should have a length of array.length / x, and each of the subarrays should have a length of x, hence:
int[][] partition = new int[array.length/x][x];
If you also fix your bounds on the for loops, your code should work.
Your nested for loop can be rewritten as a single for loop:
for(int i = 0 ; i < array.length ; i++)
{
int index = i / x;
int subArrayIndex = i % x;
partition[index][subArrayIndex] = array[i];
}
You just need to figure out which indices a an element array[i] belongs by dividing and getting the remainder.

Why BinaryGap incorrect for trailing_zeroes (with n =6 and n=328)

I Find longest sequence of zeros in binary representation of an integer but result incorrect on app.codility.com with n = 6 and n =328
https://imgur.com/rzFsjaY
public int solution(int N) {
Integer result = 1;
StringBuilder modNumber = new StringBuilder();
while (result > 0) {
result = n / 2;
modNumber.append(n % 2 + "");
n = result;
}
int length = modNumber.length();
String modString = modNumber.toString();
Integer binaryGap = 0;
List<Integer> lstResult = new ArrayList<>();
Boolean isBinaryGap = false;
if (modString.charAt(0) == '0') {
binaryGap = 0;
} else {
for (int i = 1; i < length; i++) {
char c = modString.charAt(i);
if (c == '0') {
binaryGap += 1;
isBinaryGap = true;
} else {
isBinaryGap = false;
}
if(!isBinaryGap) {
lstResult.add(binaryGap);
binaryGap = 0;
}
}
}
int max=0;
if(!lstResult.isEmpty()) {
max = lstResult.stream().collect(Collectors.summarizingInt(Integer::intValue)).getMax();
}
return max;
}
The problem is this part:
if (modString.charAt(0) == '0') {
binaryGap = 0;
} else {
I suspect your intention is to handle the case of the input being zero (so why not do that right off the bat, using the original value of N?), but you get many false positives because your technique for forming the string places the bits in order from least-significant to most-significant. The least-significant bit is zero for every even number, and you therefore report a gap of 0 for all of them, but the only even number for which that's the correct result is 0.
I'm sure that with that information you could fix your code to produce the correct results, but the problem would not even have arisen if you had chosen a simpler approach. For example, how about scanning the binary representation just once, keeping track of the current and maximum gap lengths as you go? You already perform the needed scan, but instead of just computing the result directly, you go through all that mess of building and then analyzing a string representation. Simpler code leaves less room for bugs, and when they arise, they are usually easier to spot.

Binary Search w/o Library Methods

I am trying to construct a binarySearch method that goes through a sorted array, and evaluates whether a given element, given as int target, is present. It will do so by evaluating whether the mean value is greater or less than the target value, and will loop through the first or second half of the array accordingly.
I think I have the basic code down, but I am running into some problems:
int target = 0; (returns true) => correct
int target = (3, 6, 9); (returns false) => should return true
int target = (15, 19, 21, 90); returns "java.lang.ArrayIndexOutOfBoundsException: 15" => should be true
I imagine it has to do with my for statements in the respective if cases, but I have tried to debug and cannot. Also, I not permitted to use library methods.
Hopefully this question is helpful for other beginners like me. I would think it explores some java concepts like syntax, logic, and basic use Thanks for the help.
public class ArrayUtilities
{
public static void main(String[] args)
{
int[] arrayBeingSearched = {0, 3, 6, 9, 12, 15, 19, 21, 90};
int target = 90;
System.out.println("linear: " + linearSearch(arrayBeingSearched, target));
System.out.println("binary: " + binarySearch(arrayBeingSearched, target));
}
public static boolean binarySearch(int[] arrayBeingSearched, int target)
{
boolean binarySearch = false;
for (int i = 0; i < arrayBeingSearched.length; i++){
int left = 0; //array lower bound
int right = arrayBeingSearched.length - 1; //array upper bound
int middle = ((right - left) / (2)); //array mean
if(arrayBeingSearched[middle] == target){
binarySearch = true;
}
else if(arrayBeingSearched[middle] < target){
for(int j = middle + 1; j < arrayBeingSearched.length - 1; j ++){
int newLeft = arrayBeingSearched[j ++];
if(arrayBeingSearched[newLeft] == target){
binarySearch = true;
break;
}
else{
binarySearch = false;
}
}
}
else if(arrayBeingSearched[middle] > target)
for(int l = 0; l < middle - 1; l ++){
int newRight = arrayBeingSearched[l ++];
if(arrayBeingSearched[newRight] == target){
binarySearch = true;
break;
}
else{
binarySearch = false;
}
}
else{
binarySearch = false;
}
}
return binarySearch;
}
}
Okay, based on the comments, would this be a better representation? The first comment answered my question mostly but I just wanted to follow up:
public static boolean binarySearch(int[] array, int target)
{
int start = 0;
int end = array.length - 1;
while (start <= end)
{
int middle = start + (end - start)/2;
if (array[middle] == target) {
return true;
}
else if (array[middle] > target)
{
end = middle - 1;
}
else start = middle + 1;
}
return false;
}
}
This is a bad start:
for (int i = 0; i < arrayBeingSearched.length; i++)
That's a linear search, with something else within it. I haven't followed exactly what you're doing, but I think you should probably start again... with a description of binary search in front of you.
Typically a binary search loop looks something like:
int left = 0; // Inclusive lower bound
int right = arrayBeingSearch.length; // Exclusive upper bound
while (left < right) {
// Either change left, change right, or return success
// based on what you find
}
When your middle element is smaller than the target, you do this
int newLeft = arrayBeingSearched[j ++];
if(arrayBeingSearched[newLeft] == target) //...
And the equivalent when it's larger.
That is, you are taking an element of the array and using it as an index. Your array could contain only one element with a value of 1000, which is why you're running into an ArrayIndexOutOfBoundsException.
I'm sure there are other problems (see Jon's answer), but I wanted to mention that code like this:
for(int j = middle + 1; j < arrayBeingSearched.length - 1; j ++){
int newLeft = arrayBeingSearched[j ++];
will not do what you want. The for statement says that each time the program goes through the loop, it will add 1 to j (at the end of the loop code). But the next statement will use j as an index and then add 1 to it. The result is that each time you go through the loop, 1 will be added to j twice, so you're basically looking only at every other element. If this were otherwise correct (which I don't think it is), I'd say you definitely need to remove the ++ from the second line.

How to Shrink array to specified length in java keeping elements uniformaly distributed?

I have source array, and I want to generate new array from the source array by removing a specified number of elements from the source array, I want the elements in the new array to cover as much as possible elements from the source array (the new elements are uniformly distributed over the source array) and keeping the first and last elements the same (if any).
I tried this :
public static void printArr(float[] arr)
{
for (int i = 0; i < arr.length; i++)
System.out.println("arr[" + i + "]=" + arr[i]);
}
public static float[] removeElements(float[] inputArr , int numberOfElementToDelete)
{
float [] new_arr = new float[inputArr.length - numberOfElementToDelete];
int f = (inputArr.length ) / numberOfElementToDelete;
System.out.println("f=" + f);
if(f == 1)
{
f = 2;
System.out.println("f=" + f);
}
int j = 1 ;
for (int i = 1; i < inputArr.length ; i++)
{
if( (i + 1) % f != 0)
{
System.out.println("i=" + i + " j= " + j);
if(j < new_arr.length)
{
new_arr[j] = inputArr[i];
j++;
}
}
}
new_arr[0] = inputArr[0];
new_arr[new_arr.length - 1] = inputArr[inputArr.length - 1];
return new_arr;
}
public static void main(String[] args)
{
float [] a = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
a = removeElements(a, 6);
printArr(a);
}
I have made a test for(removeElements(a, 5) and removeElements(a, 4) and removeElements(a, 3)) but removeElements(a, 6); gave :
arr[0]=1.0
arr[1]=3.0
arr[2]=5.0
arr[3]=7.0
arr[4]=9.0
arr[5]=11.0
arr[6]=13.0
arr[7]=15.0
arr[8]=0.0
arr[9]=16.0
the problem is (arr[8]=0.0) it must take a value ..
How to solve this? is there any code that can remove a specified number of elements (and keep the elements distributed over the source array without generating zero in some elements)?
EDIT :
examples :
removeElements(a, 1) ==> remove one element from the middle (7) {1,2,3,4,5,6,7,9,10,11,12,13,14,15,16}
removeElements(a, 2) ==> remove two elements at indexes (4,19) or (5,10) or (4,10) (no problem)
removeElements(a, 3) ==> remove three elements at indexes (4,9,14) or (4,10, 15) or(no problem also)
removeElements(a, 4) ==> remove four elements at indexes (3,7,11 , 15) or ( 3 ,7,11,14) for example ..
what I want is if I draw the values in the source array on (chart on Excel for example) and I draw the values from the new array , I must get the same line (or close to it).
I think the main problem in your code is that you are binding the selection to
(inputArr.length ) / numberOfElementToDelete
This way you are not considering the first and the last elements that you don't want to remove.
An example:
if you have an array of 16 elements and you want to delete 6 elements it means that the final array will have 10 elements but, since the first and the last are fixed, you'll have to select 8 elements out of the remaining 14. This means you'll have to select 8/14 (0,57) elements from the array (not considering the first and the last).
This means that you can initialize a counter to zero, scan the array starting from the second and sum the value of the fraction to the counter, when the value of the counter reach a new integer number (ex. at the third element the counter will reach 1,14) you'll have an element to pick and put to the new array.
So, you can do something like this (pseudocode):
int newLength = originalLength - toDelete;
int toChoose = newLength - 2;
double fraction = toChoose / (originalLength -2)
double counter = 0;
int threshold = 1;
int newArrayIndex = 1;
for(int i = 1; i < originalLength-1; i++){
**counter += fraction;**
if(integerValueOf(counter) == threshold){
newArray[newArrayIndex] = originalArray[i];
threshold++;
**newArrayIndex++;**
}
}
newArray[0] = originalArray[0];
newArray[newArray.length-1] = originalArray[originalArray.length-1];
You should check for the particular cases like originalArray of length 1 or removal of all the elements but I think it should work.
EDIT
Here is a Java implementation (written on the fly so I didn't check for nulls etc.)
public class Test {
public static void main(String[] args){
int[] testArray = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
int[] newArray = remove(testArray, 6);
for(int i = 0; i < newArray.length; i++){
System.out.print(newArray[i]+" ");
}
}
public static int[] remove(int[] originalArray, int toDelete){
if(toDelete == originalArray.length){
//avoid the removal of all the elements, save at least first and last
toDelete = originalArray.length-2;
}
int originalLength = originalArray.length;
int newLength = originalLength - toDelete;
int toChoose = newLength - 2;
int[] newArray = new int[newLength];
double fraction = ((double)toChoose) / ((double)originalLength -2);
double counter = 0;
int threshold = 1;
int newArrayIndex = 1;
for(int i = 1; i < originalLength-1; i++){
counter += fraction;
if(((int)counter) == threshold ||
//condition added to cope with x.99999999999999999... cases
(i == originalLength-2 && newArrayIndex == newLength-2)){
newArray[newArrayIndex] = originalArray[i];
threshold++;
newArrayIndex++;
}
}
newArray[0] = originalArray[0];
newArray[newArray.length-1] = originalArray[originalArray.length-1];
return newArray;
}
}
Why cant you just initialize i=0
for (int i = 0; i < inputArr.length; i++) {
if ((i + 1) % f != 0) {
Following is the output:
arr[0]=1.0
arr[1]=1.0
arr[2]=3.0
arr[3]=5.0
arr[4]=7.0
arr[5]=9.0
arr[6]=11.0
arr[7]=13.0
arr[8]=15.0
arr[9]=16.0
This is Reservoir sampling if I understand it right i.e from a large array, create a small array by randomly choosing.

Integer to binary array

I'm trying to convert an integer to a 7 bit Boolean binary array. So far the code doesn't work:
If i input say integer 8 to be converted, instead of 0001000 I get 1000000, or say 15 I should get 0001111 but I get 1111000. The char array is a different length to the binary array and the positions are wrong.
public static void main(String[] args){
String maxAmpStr = Integer.toBinaryString(8);
char[] arr = maxAmpStr.toCharArray();
boolean[] binaryarray = new boolean[7];
for (int i=0; i<maxAmpStr.length(); i++){
if (arr[i] == '1'){
binaryarray[i] = true;
}
else if (arr[i] == '0'){
binaryarray[i] = false;
}
}
System.out.println(maxAmpStr);
System.out.println(binaryarray[0]);
System.out.println(binaryarray[1]);
System.out.println(binaryarray[2]);
System.out.println(binaryarray[3]);
System.out.println(binaryarray[4]);
System.out.println(binaryarray[5]);
System.out.println(binaryarray[6]);
}
Any help is appreciated.
There's really no need to deal with strings for this, just do bitwise comparisons for the 7 bits you're interested in.
public static void main(String[] args) {
int input = 15;
boolean[] bits = new boolean[7];
for (int i = 6; i >= 0; i--) {
bits[i] = (input & (1 << i)) != 0;
}
System.out.println(input + " = " + Arrays.toString(bits));
}
I would use this:
private static boolean[] toBinary(int number, int base) {
final boolean[] ret = new boolean[base];
for (int i = 0; i < base; i++) {
ret[base - 1 - i] = (1 << i & number) != 0;
}
return ret;
}
number 15 with base 7 will produce {false, false, false, true, true, true, true} = 0001111b
number 8, base 7 {false, false, false, true, false, false, false} = 0001000b
Hints: Think about what happens when you get a character representation that's less than seven characters.
In particular, think about how the char[] and boolean[] arrays "line up"; there will be extra elements in one than the other, so how should the indices coincide?
Actual answer: At the moment you're using the first element of the character array as the first element of the boolean array, which is only correct when you're using a seven-character string. In fact, you want the last elements of the arrays to coincide (so that the zeros are padded at the front not at the end).
One way to approach this problem would be to play around with the indices within the loop (e.g. work out the size difference and modify binaryarray[i + offset] instead). But an even simpler solution is just to left pad the string with zeros after the first line, to ensure it's exactly seven characters before converting it to the char array.
(Extra marks: what do you do when there's more than 7 characters in the array, e.g. if someone passes in 200 as an argument? Based on both solutions above you should be able to detect this case easily and handle it specifically.)
What you get when you do System.out.println(maxAmpStr); is "1000" in case of the 8.
So, you only get the relevant part, the first "0000" that you expected is just ommitted.
It's not pretty but what you could do is:
for (int i=0; i<maxAmpStr.length(); i++)
{
if (arr[i] == '1')
{
binaryarray[i+maxAmpStr.length()-1] = true;
}
else if (arr[i] == '0')
{
binaryarray[i+maxAmpStr.length()-1] = false;
}
}
Since nobody here has a answer with a dynamic array length, here is my solution:
public static boolean[] convertToBinary(int number) {
int binExpo = 0;
int bin = 1;
while(bin < number) { //calculates the needed digits
bin = bin*2;
binExpo++;
}
bin = bin/2;
boolean[] binary = new boolean[binExpo]; //array with the right length
binExpo--;
while(binExpo>=0) {
if(bin<=number) {
binary[binExpo] = true;
number =number -bin;
bin = bin/2;
}else {
binary[binExpo] = false;
}
binExpo--;
}
return binary;
}
The char-array is only as long as needed, so your boolean-array might be longer and places the bits at the wrong position. So start from behind, and when your char-array is finished, fill your boolean-array with 0's until first position.
Integer.toBinaryString(int i) does not pad. For e.g. Integer.toBinaryString(7) prints 111 not 00000111 as you expect. You need to take this into account when deciding where to start populating your boolean array.
15.ToBinaryString will be '1111'
You are lopping through that from first to last character, so the first '1' which is bit(3) is going into binaryArray[0] which I'm assuming should be bit 0.
You ned to pad ToBinaryString with leading zeros to a length of 7 (8 ??)
and then reverse the string, (or your loop)
Or you could stop messing about with strings and simply use bit wise operators
BinaryArray[3] = (SomeInt && 2^3 != 0);
^ = power operator or if not (1 << 3) or whatever is left shift in Java.
public static boolean[] convertToBinary(int b){
boolean[] binArray = new boolean[7];
boolean bin;
for(int i = 6; i >= 0; i--) {
if (b%2 == 1) bin = true;
else bin = false;
binArray[i] = bin;
b/=2;
}
return binArray;
}
public static String intToBinary(int num) {
int copy = num;
String sb = "";
for(int i=30; i>=0; i--) {
sb = (copy&1) + sb;
copy = copy >>>=1;
}
return sb;
}
AND the number with 1
Append the vale to a string
do unsigned right shift
repeat steps 1-3 for i=30..0
String maxAmpStr = Integer.toBinaryString(255);
char[] arr = maxAmpStr.toCharArray();
boolean[] binaryarray = new boolean[20];
int pivot = binaryarray.length - arr.length;
int j = binaryarray.length - 1;
for (int i = arr.length - 1; i >= 0; i--) {
if (arr[i] == '1') {
binaryarray[j] = true;
} else if (arr[i] == '0') {
binaryarray[j] = false;
}
if (j >= pivot)
j--;
}
System.out.println(maxAmpStr);
for (int k = 0; k < binaryarray.length; k++)
System.out.println(binaryarray[k]);
}

Categories

Resources