Java: having files containing only general methods? - java

I was wondering if there was a way to have methods separated from the main and class files (like how in c you can have .c & .h with just methods that you can import into projects).
Specifically I have a 'logical exclusive or' function that I want to use across several classes and I thought it would be good practice not to have the same function repeated across several classes.

They're called function libraries and yes you can do them. The best example is java.lang.Math.
You make a final class with a private constructor, no variables, and all static methods.
public final class FuncLib {
private FuncLib() { } // prevents instantiation
public static String formatAwesomely(String foo) {
// code
}
public static int calculateScore(BaseballGameData data) {
// code
}
}

In Java, you have to shove everything into a class. The general convention is having a class named Utils (or BooleanUtils or whatever organisation / naming convention you like) and putting generic pure functions into it as static methods.
Java 5 and later have a static import feature to make using this sort of functions less verbose.

With Java being an object-oriented language you might want to think about what your goal is. Traditionally with object-oriented design, if multiple objects really do have a single common ancestor method which is common across them, in all likely hood all of those classes should be sub-classes of that class.
Example:
Think about animals, lets say we have a dog and a cat. All animals make noises. You might have a method for "makeNoise()" which both classes need. A common setup would then to have one class of "Animal" and two sub-classes which extend the "Animal" class named "Dog" and "Cat".
In this case if the "makeNoise()" method as it stands for all animals is adequate for your more specific classes, then that is fine for them to use. Additionally, perhaps a cat and a dog make a noise in the same way (from their mouth) but in the end it is a different noise (bark vs meow) and you can choose to override your "makeNoise()" method with any class specific attributes.

Related

OOP Task (class hierarchy, inheritance, interface, etc.)

Since I am trying to learn more about OOP (Java) I'm working my way through some literature where I found this 'task'. Unfortunately I am having kind of a hard time since I am pretty new to OOP and I don't have any sample solution to this. Maybe some of you can give me some input so can work my way through this.
Define a class hierarchy for these classes:
quadrilateral
convex quadrilateral
trapezoid
parallelogram
rhombus
rectangle
square
Create an instance of each class if possible
Define reasonable attributes and methods in each class
Overload and override methods
Write reasonable constructors for each class
Use modifiers (abstract, static, final, public, protected and private) in a meaningful way
How could an interface be used for this task?
01 Class hierarchy
Okay, this is simple math and you can find tons of information on the hierarchy of quadrilaterals everywhere. Here is what I did:
Creating Objects of each class is no big deal, but I still have some problems with understanding all the OOP-techniques. There are some points where I don't know what would be the better way to do it... (e.g. the square which inherits from two classes, which in java is simply not possible). Also, formulas (like calculating the surface area) would be overwritten all the time anyhow (since they are different most of the time), so why would I need inheritance anyway? Couldn't I just use an interface, use it in all of those classes an force them to implement these formulas?
Greetings - Vulpecula
In real life, you probably would be better off using an interface. Deep inheritance structures like that are often frowned upon; it's generally considered good to 'prefer composition over inheritance' (http://en.wikipedia.org/wiki/Composition_over_inheritance). You might for instance have a 'quadrilateral' interface that defines 'surface area' and 'perimeter', and then have the other shapes satisfy that interface.
If this is a homework question however, then you should probably base the class hierarchy on whatever examples your textbook/teacher have provided previously. It's not about designing robust software, it's about proving to your teacher that you learned how to do things in whatever way they think you should do them.
An abstract class as the base of a moderately complicated hierarchy is not as flexible as an interface. A class--abstract or not--forces a specific type of implementation.
Without thinking too hard about it, here's one way to start:
public interface Quadrilateral {
int getTopMillimeters();
int getLeftMillimeters();
int getRightMillimeters();
int getBottomMillimeters();
}
From this raw data, you could also define
getTopLeftAngle(), getTopRightAngle(), ...
which would all compute their values based on the lengths.
I too would emphasize composition over inheritance. The end-effect can indeed be a complex inheritance structure.
For me, composition is heirarchy of "Composer" classes, which do NOT implement the interface. Such as
public class QuadrilateralComposer {
private final int iTopMM;
private final int iBtmMM;
...
public QuadrilateralComposer(int i_topMM, int i_bottomMM, ...) {
if(i_topMM < 1) {
throw new IllegalArgumentException...
}
if(i_bottomMM < 1) {
throw new IllegalArgumentException...
}
...
iTopMM = i_topMM;
iBtmMM = i_bottomMM;
...
}
public int getTopMillimeters() {
return iTopMM;
}
...
Which is then composed by an abstract class:
public class AbstractQuadrilateral implements Quadrilateral
private final QuadrilateralComposer qc;
public AbstractQuadrilateral(int i_topLen, int i_bottomLen, ...) {
gc = new QuadrilateralComposer(i_topLen, i_bottomLen, ...);
}
public int getTopLength() {
return gc.getTopLength();
}
...
Abstract classes never extend other abstract classes, they only use internal Composers (and actually implement the interface). On the other end, Composers only extend Composers, and use other composers internally.
(Three notes: Protected functions are in the Composer as public function_4prot() and are implemented as protected function(), which call the _4prot version. And sometimes the abstract class can indeed implement everything in the interface. In this case, it would be concrete [non-abstract] and be named "SimpleXYZ", instead of "AbstractXYZ". Finally, static utility functions reside in the Composer.)
If EVERY interface is designed in this way, then ANY class can easily implement ANY interface, regardless which class they must actually extend. If abstract classes extend other abstract classes, that is a lot more work for classes that need to implement the interface, but happen to--and have to--extend something else.
This is not what you asked, but learning this concept changed my code for the WAY better. Seeing it mentioned in the accepted answer made me think through all of it. I've actually been slowly drifting away from inheritance to composition over the past few years, and after reading Effective Java, it was the final nail in the inheritance coffin, as it were.
Okay, the plan now is that I am trying to resolve this without any interface first. So here's the map of inheritance:
I am ignoring the fact, that the square is not only a rectange but also a rhombus.
The abstract class (quadrilateral) will define (but not implement) methods for calculating 'surface area' and 'perimeter'. Overriding methods is easy since every shape has different formumals for calculation but I am not really sure where I could use the overloading feature.
One more thing: Using an interface, would this be the desired way?

Java: Are interfaces a better OO design than static classes?

I've read several times, for instance here
https://stackoverflow.com/a/589885/1420898,
that static members are a bad OO design and should be avoid. It also happens in the project I'm working on; they've used Interfaces + implementations for classes that seems to me should be static classes, since we just use its functions to perform some operations on other classes.
My question is, why should we use Interfaces over static classes?
In terms of using a static class versus an interface, a static class would be used as a helper, i.e. it would be a single instance of the class, whereas a class being instantiated through an interface may have many different implementations, and is generally used for multiple instance classes. You use a static class when you just want a class to do something, and not store state information particular to that call. An interface would be used more for general Object Oriented programming.
Static Classes are basically used when we want an object to be used without instantiation or making its object. Usually it happens that we place our common functions or such functions that are repeatedly used in static classes. As putting them in simple class will have lots of overhead as each time class object will be formed it will be allocating memory to all we have in it. So it reduces out overhead by using static Classes.
When comparing to interfaces while there is no as such comparison it depends on your requirements, if requirements are like above then surely u would go for static class rather than interfaces but if we have such requirement that we have several class and we want they should be following such a pattern or implementing these things before their object is formed then we would be preferring for interfaces rather than static classes.
Moreover if my functions are such that they are common but have different implementation corresponding to different classes then i would be again going for interfaces rather than static classes.
first of all, I would say, there is NO static class in java. well, except for static inner class. I thought inner class is definitely not what you meant above there.
You might wanna say, a class that not allowed to be instantiated, with static methods. Like Util classes. i.e. apache common StringUtil...
Static methods in Util classes provide only one implementation. and more important is, it should not know much detailed logic about the passed in Object.
making an example, you have interface:
interface Animal{
int totalLegs(); //here you get the animal object has how many legs
}
then you have Bird, Horse, Warm, Fly classes, implement Animal interface. and they have different impl. of totalLegs. Those implementations are related to detailed logic of the type Animal (Bird, Horse...) so it should go to interface.
And say each Animal has a field Date birthday; you want to convert the Date to a String with customized pattern. You could create a class, i.e DateUtil and method public static String getDateString(Date d, String pattern){...}
Maybe you could describe a little bit about the interface/impl. in your project. Then we could see if it is better to go to a Util class.

What is the point of "final class" in Java?

I am reading a book about Java and it says that you can declare the whole class as final. I cannot think of anything where I'd use this.
I am just new to programming and I am wondering if programmers actually use this on their programs. If they do, when do they use it so I can understand it better and know when to use it.
If Java is object oriented, and you declare a class final, doesn't it stop the idea of class having the characteristics of objects?
First of all, I recommend this article: Java: When to create a final class
If they do, when do they use it so I can understand it better and know when to use it.
A final class is simply a class that can't be extended.
(It does not mean that all references to objects of the class would act as if they were declared as final.)
When it's useful to declare a class as final is covered in the answers of this question:
Good reasons to prohibit inheritance in Java?
If Java is object oriented, and you declare a class final, doesn't it stop the idea of class having the characteristics of objects?
In some sense yes.
By marking a class as final you disable a powerful and flexible feature of the language for that part of the code. Some classes however, should not (and in certain cases can not) be designed to take subclassing into account in a good way. In these cases it makes sense to mark the class as final, even though it limits OOP. (Remember however that a final class can still extend another non-final class.)
In Java, items with the final modifier cannot be changed!
This includes final classes, final variables, and final methods:
A final class cannot be extended by any other class
A final variable cannot be reassigned another value
A final method cannot be overridden
One scenario where final is important, when you want to prevent inheritance of a class, for security reasons. This allows you to make sure that code you are running cannot be overridden by someone.
Another scenario is for optimization: I seem to remember that the Java compiler inlines some function calls from final classes. So, if you call a.x() and a is declared final, we know at compile-time what the code will be and can inline into the calling function. I have no idea whether this is actually done, but with final it is a possibility.
The best example is
public final class String
which is an immutable class and cannot be extended.
Of course, there is more than just making the class final to be immutable.
If you imagine the class hierarchy as a tree (as it is in Java), abstract classes can only be branches and final classes are those that can only be leafs. Classes that fall into neither of those categories can be both branches and leafs.
There's no violation of OO principles here, final is simply providing a nice symmetry.
In practice you want to use final if you want your objects to be immutable or if you're writing an API, to signal to the users of the API that the class is just not intended for extension.
Relevant reading: The Open-Closed Principle by Bob Martin.
Key quote:
Software Entities (Classes, Modules,
Functions, etc.) should be open for
Extension, but closed for
Modification.
The final keyword is the means to enforce this in Java, whether it's used on methods or on classes.
The keyword final itself means something is final and is not supposed to be modified in any way. If a class if marked final then it can not be extended or sub-classed. But the question is why do we mark a class final? IMO there are various reasons:
Standardization: Some classes perform standard functions and they are not meant to be modified e.g. classes performing various functions related to string manipulations or mathematical functions etc.
Security reasons: Sometimes we write classes which perform various authentication and password related functions and we do not want them to be altered by anyone else.
I have heard that marking class final improves efficiency but frankly I could not find this argument to carry much weight.
If Java is object oriented, and you declare a class final, doesn't it
stop the idea of class having the characteristics of objects?
Perhaps yes, but sometimes that is the intended purpose. Sometimes we do that to achieve bigger benefits of security etc. by sacrificing the ability of this class to be extended. But a final class can still extend one class if it needs to.
On a side note we should prefer composition over inheritance and final keyword actually helps in enforcing this principle.
final class can avoid breaking the public API when you add new methods
Suppose that on version 1 of your Base class you do:
public class Base {}
and a client does:
class Derived extends Base {
public int method() { return 1; }
}
Then if in version 2 you want to add a method method to Base:
class Base {
public String method() { return null; }
}
it would break the client code.
If we had used final class Base instead, the client wouldn't have been able to inherit, and the method addition wouldn't break the API.
A final class is a class that can't be extended. Also methods could be declared as final to indicate that cannot be overridden by subclasses.
Preventing the class from being subclassed could be particularly useful if you write APIs or libraries and want to avoid being extended to alter base behaviour.
In java final keyword uses for below occasions.
Final Variables
Final Methods
Final Classes
In java final variables can't reassign, final classes can't extends and final methods can't override.
Be careful when you make a class "final". Because if you want to write an unit test for a final class, you cannot subclass this final class in order to use the dependency-breaking technique "Subclass and Override Method" described in Michael C. Feathers' book "Working Effectively with Legacy Code". In this book, Feathers said, "Seriously, it is easy to believe that sealed and final are a wrong-headed mistake, that they should never have been added to programming languages. But the real fault lies with us. When we depend directly on libraries that are out of our control, we are just asking for trouble."
If the class is marked final, it means that the class' structure can't be modified by anything external. Where this is the most visible is when you're doing traditional polymorphic inheritance, basically class B extends A just won't work. It's basically a way to protect some parts of your code (to extent).
To clarify, marking class final doesn't mark its fields as final and as such doesn't protect the object properties but the actual class structure instead.
TO ADDRESS THE FINAL CLASS PROBLEM:
There are two ways to make a class final. The first is to use the keyword final in the class declaration:
public final class SomeClass {
// . . . Class contents
}
The second way to make a class final is to declare all of its constructors as private:
public class SomeClass {
public final static SOME_INSTANCE = new SomeClass(5);
private SomeClass(final int value) {
}
Marking it final saves you the trouble if finding out that it is actual a final, to demonstrate look at this Test class. looks public at first glance.
public class Test{
private Test(Class beanClass, Class stopClass, int flags)
throws Exception{
// . . . snip . . .
}
}
Unfortunately, since the only constructor of the class is private, it is impossible to extend this class. In the case of the Test class, there is no reason that the class should be final. The Test class is a good example of how implicit final classes can cause problems.
So you should mark it final when you implicitly make a class final by making it's constructor private.
One advantage of keeping a class as final :-
String class is kept final so that no one can override its methods and change the functionality. e.g no one can change functionality of length() method. It will always return length of a string.
Developer of this class wanted no one to change functionality of this class, so he kept it as final.
The other answers have focused on what final class tells the compiler: do not allow another class to declare it extends this class, and why that is desirable.
But the compiler is not the only reader of the phrase final class. Every programmer who reads the source code also reads that. It can aid rapid program comprehension.
In general, if a programmer sees Thing thing = that.someMethod(...); and the programmer wants to understand the subsequent behaviour of the object accessed through the thing object-reference, the programmer must consider the Thing class hierarchy: potentially many types, scattered over many packages. But if the programmer knows, or reads, final class Thing, they instantly know that they do not need to search for and study so many Java files, because there are no derived classes: they need study only Thing.java and, perhaps, it's base classes.
Yes, sometimes you may want this though, either for security or speed reasons. It's done also in C++. It may not be that applicable for programs, but moreso for frameworks.
http://www.glenmccl.com/perfj_025.htm
think of FINAL as the "End of the line" - that guy cannot produce offspring anymore. So when you see it this way, there are ton of real world scenarios that you will come across that requires you to flag an 'end of line' marker to the class. It is Domain Driven Design - if your domain demands that a given ENTITY (class) cannot create sub-classes, then mark it as FINAL.
I should note that there is nothing stopping you from inheriting a "should be tagged as final" class. But that is generally classified as "abuse of inheritance", and done because most often you would like to inherit some function from the base class in your class.
The best approach is to look at the domain and let it dictate your design decisions.
As above told, if you want no one can change the functionality of the method then you can declare it as final.
Example: Application server file path for download/upload, splitting string based on offset, such methods you can declare it Final so that these method functions will not be altered. And if you want such final methods in a separate class, then define that class as Final class. So Final class will have all final methods, where as Final method can be declared and defined in non-final class.
Let's say you have an Employee class that has a method greet. When the greet method is called it simply prints Hello everyone!. So that is the expected behavior of greet method
public class Employee {
void greet() {
System.out.println("Hello everyone!");
}
}
Now, let GrumpyEmployee subclass Employee and override greet method as shown below.
public class GrumpyEmployee extends Employee {
#Override
void greet() {
System.out.println("Get lost!");
}
}
Now in the below code have a look at the sayHello method. It takes Employee instance as a parameter and calls the greet method hoping that it would say Hello everyone! But what we get is Get lost!. This change in behavior is because of Employee grumpyEmployee = new GrumpyEmployee();
public class TestFinal {
static Employee grumpyEmployee = new GrumpyEmployee();
public static void main(String[] args) {
TestFinal testFinal = new TestFinal();
testFinal.sayHello(grumpyEmployee);
}
private void sayHello(Employee employee) {
employee.greet(); //Here you would expect a warm greeting, but what you get is "Get lost!"
}
}
This situation can be avoided if the Employee class was made final. Just imagine the amount of chaos a cheeky programmer could cause if String Class was not declared as final.
Final class cannot be extended further. If we do not need to make a class inheritable in java,we can use this approach.
If we just need to make particular methods in a class not to be overridden, we just can put final keyword in front of them. There the class is still inheritable.
Final classes cannot be extended. So if you want a class to behave a certain way and don't someone to override the methods (with possibly less efficient and more malicious code), you can declare the whole class as final or specific methods which you don't want to be changed.
Since declaring a class does not prevent a class from being instantiated, it does not mean it will stop the class from having the characteristics of an object. It's just that you will have to stick to the methods just the way they are declared in the class.
Android Looper class is a good practical example of this.
http://developer.android.com/reference/android/os/Looper.html
The Looper class provides certain functionality which is NOT intended to be overridden by any other class. Hence, no sub-class here.
I know only one actual use case: generated classes
Among the use cases of generated classes, I know one: dependency inject e.g. https://github.com/google/dagger
Object Orientation is not about inheritance, it is about encapsulation. And inheritance breaks encapsulation.
Declaring a class final makes perfect sense in a lot of cases. Any object representing a “value” like a color or an amount of money could be final. They stand on their own.
If you are writing libraries, make your classes final unless you explicitly indent them to be derived. Otherwise, people may derive your classes and override methods, breaking your assumptions / invariants. This may have security implications as well.
Joshua Bloch in “Effective Java” recommends designing explicitly for inheritance or prohibiting it and he notes that designing for inheritance is not that easy.

Java: Code structure & class naming of primitive-type variants - best practices

Recently, I have been writing many classes which have, apart from generic variant, some primitive variants, for example Foo<T>, IntFoo, DoubleFoo etc. First, I used to put every variant in separate files but I soon found out that the package content has become unreadable due to large number of classes with similar names. On the other hand, putting those in a separate package often results in a loss of cohesion and extra dependencies between packages.
In the meanwhile, I have come to the idea to have the following structure:
public class Foo {
public static class TypeFoo<T> { ... }
public static class IntFoo { ... }
public static class DoubleFoo { ... }
...
}
or
public class Foo {
public static class Type<T> { ... }
public static class Int { ... }
public static class Double { ... }
}
I am interested in two things:
Does any of these two approaches result in greater overhead when using only one inner class (e.g. int-variant of the class), compared to one-class-per-file approach? Does this overhead, if any, applies when there are inner interfaces instead?
Which of these two approaches is better, if any, or if none is good, what are the alternatives?
inner classes will be more of a pain in the long run, in my opinion. if you look at the way Microsoft named their animation classes, they had the same dilemma that you did. They chose to have tons of different classes, but as a consumer of these I have found that I prefer it to be this way.
to answer your first question, there should be no overhead. When java compiles inner classes it separates them into separate *.class files anyway, so in the end the result is the same. During compilation the parser will have to sift through a lot of Foo.* references but the extra time would be negligible.
Might be completely irrelevant to what you're doing, but you could consider replacing all these classes with a Builder (or otherwise known as Fluent Interface) pattern. If these classes implement a generic interface, you shouldn't need to expose them anywhere and can still keep them inside one builder class.
A good example of this would be MapMaker which probably has zillion different inner classes but the only thing you care about is the Map or ConcurrentMap instance you get out of it.

Java abstract static Workaround

I understand that neither a abstract class nor an interface can contain a method that is both abstract and static because of ambiguity problems, but is there a workaround?
I want to have either an abstract class or an interface that mandates the inclusion of a static method in all of the classes that extend/implement this class/interface. Is there a way to do this in Java? If not, this may be my final straw with Java...
EDIT 1: The context of this problem is that I have a bunch of classes, call them Stick, Ball, and Toy for now, that have a bunch of entries in a database. I want to create a superclass/interface called Fetchable that requires a static method getFetchables() in each of the classes below it. The reason the methods in Stick, Ball, and Toy have to be static is because they will be talking to a database to retrieve all of the entries in the database for each class.
EDIT 2: To those who say you cannot do this in any language, that is not true. You can certainly do this in Ruby where class methods are inherited. This is not a case of someone not getting OO, this is a case of missing functionality in the Java language. You can try to argue that you should never need to inherit static (class) methods, but that is utterly wrong and I will ignore any answers that make such points.
You have a couple of options:
Use reflection to see if the method exists and then call it.
Create an annotation for the static method named something like #GetAllWidgetsMethod.
As others have said, try to not use a static method.
There are lots of answers about 'this does'nt make sense..' but indeed I met a similar problem just yesterday.
I wanted to use inheritance with my unit tests. I have an API and several its implementations. So I need only 1 set of unit tests for all implementations but with different setUp methods which are static.
Workaround: all tests are abstract classes, with some static fields with protected access modifier. In all implementations I added static methods which set these static fields. It works rather nice, and I avoided copy and paste.
I too am dealing with this problem. For those that insist that it "doesn't make sense", I would invite you to think outside of that semantic box for a moment. The program I am working with is inherently about reflection.
Reflection, as you know, can take three orders of magnitude longer than straight-up binary function calling. That is an inevitable problem, and the software needs to port to as many machines as possible, some of which will be 32 bit and slower than my development machine to begin with. Thus, the applicability of a class to the requested operation needs to be checked via a static method, and all of the reflective methods are run at once during module booting.
Everything works, first and foremost. I've built the entire thing. The only catch is that a module can be compiled in a .class without compile time checking to see if the identifying static function exists at all, resulting in an innately useless class. Without the identifier, and its included information, for security's sake the module is not loaded.
I clearly understand the issue with the complete definition of "abstract" and "static", and understand that they don't make sense together. However, the ability to have a class method that is compiler-enforced for inclusion is lacking in Java, and as much as I like the language, I miss it. Thus, this is a human constraint on every programmer that ever works on the software, which I'm sure we can all agree is a pain.
There's a lot of 'this makes no sense' or 'this can't be because' and 'why do you want it?' (or worse: 'you don't have to want it!') in all those answers. However, these answers also indirectly give reasons why it should be possible.
It must be differentiated between the concept and the implementation.
Sure, overriding a static method makes no sense. And it also isn't what the question was about.
It was asked for a way to force implementation of a certain static method (or constant or whatever) in every derived class of an abstract class. Why this is required it the matter of the one who wants to write an appllication with Jave, and no business of anyone else.
This has nothing to do with how the compiler compiles the method and how it is done at runtime.
Why shoudl it be possible? because there are things that are class specific (and not instance specific) and therefore should be static, while they NEED to be impleented in every single subclass (or class that implements an interface).
Let's say there is an abstract class 'Being'. Now there are subclasses like 'animals' and 'plants'.
Now there are only mammals and fishes allowed for animals. This information is specific to the animals class, not to any instance nor doe sit belong to any superclass or subclass. However, this information must be provided by teh class, not an instance, because it is required to properly construct an animal instance. So it MUST be there and it CANNOT be in the instance.
In fact, Java has such a thing- Every object has a class specific field 'class'. It is class-specific, not inherited, no override and it must be there. Well the compiler creates it implicitly, but obviously the compiler CAN do it. So why not allowing this for own fields too.
After all, it is just a matter of definition how the combination 'abstract static' is interpreted when the compiler checks the intheritance chain for abstract functions.
Nobody was ever demanding that there should be an inheritance of the superclass class functions (which could still make some sense, depending on what this function actually does - after all classes inherit static functions of their superclasses, even though you might get a warning that you should access it directly when you call it by the subclass))
But to summarize: the Java language offers no way to do it at compile time while there is no reason (othe rthan plain dogmatic) to not doing so.
The only way is to write a static final function to the abstract class that tries to find the static function/field of the subclass when it is loaded (or loads all existing subclasses and checks them). If properly made, it gives a runtime error on first use. Complex and dirty but better than nothing. At least it prevents bugs where you get the information from the wrong superclass.
It won't work for interfaces, though.
A type system allows you to express some constraints among types, but it's limited. That's why javadocs are littered with constraints in human language, asking people to follow rules that the compiler cannot check.
if you want to extend it beyond what language provides natively, you can write your own static analysis tool. that is not uncommon. for example: findbug. also IDEs do that too, they checking thing beyond what language dictates. you can write a plug in to enforce that a subclass must have a static method of such signature.
in your case, it's not worth it. have javadoc in the superclass urge implementors to include a static method, that's good enough.
I'll provide a convoluted way of expressing your constraint anyway, but DO NO DO IT. people get really carried away of make everything checkable at compile time, at the price of making code unreadable.
interface WidgetEnumerator
{
List getAllWidgets();
}
public class Abs<T extends WidgetEnumerator>
{
static List getAllWidgets(Class<? extends Abs> clazz){ ... }
}
public class Sub extends Abs<SubWidgetEnumerator>
{
}
public class SubWidgetEnumerator implements WidgetEnumerator
{
public List getAllWidgets() { ... }
}
How it works: for any subclass of Abs, it is forced to provide an implementation of WidgetEnumerator. subclass author cannot forget that. Now invocation Abs.getAllWidgets(Sub.class) contains sufficient information to resolve that implementation, i.e. SubWidgetEnumerator. It is done through reflection, but it is type safe, there are no string literals involved.
I think I can give you a better answer after seeing your edits--your best bet is probably a factory pattern. (Not lovely, but better than singleton).
abstract class Widget
public static Widget[] getAllWidgetsOfType(Class widgetType) {
if(widgetType instanceof ...)
}
class Ball extends Widget
class Stick extends Widget
class Toy extends Widget
This is not a very good way to do it, but it's typical. Hibernate is the tool you would normally use to solve this problem, this is exactly what it's designed for.
The big problem is that it requires editing the base class whenever you add a new class of a given type. This can't be gotten around without reflection. If you want to use reflection, then you can implement it this way (Psuedocode, I'm not going to look up the exact syntax for the reflection, but it's not much more complex than this):
public static Widget[] getAllWidgetsOfType(Class widgetType) {
Method staticMethod=widgetType.getStaticMethod("getAllInstances");
return staticMethod.invoke();
}
This would give the solution you were asking for (to be bothered by the need to modify the base class each time you add a child class is a good instinct).
You could also make it an instance method instead of a static. It's not necessary, but you could then prototype the method (abstract) in Widget.
Again, all this is unnecessary and sloppy compared to Hibernate...
Edit: If you passed in a live "Empty" instance of a ball, stick or toy instead of it's "Class" object, you could then just call an inherited method and not use reflection at all. This would also work but you have to expand the definition of a Widget to include an "Empty" instance used as a key.
Static methods are relevant to an entire class of object, not the individual instances. Allowing a static method to be overridden breaks this dictum.
The first thing I would consider is to access your database from a non-static context. This is actually the norm for Java apps.
If you absolutely must use a static method, then have it parameterised with instance specific arguments (of a generic type) to allow the different subclasses to interact with it. Then call that single static method from you polymorphic methods.
No. You can't do that. If you're willing to compromise and make the method non-static or provide an implementation of the static method in your abstract class, you'll be able to code this in Java.
Is there a way to do this in Java?
I don't think there is a way to do this in any language. There's no point to it, since static methods belong to a class and can't be called polymorphically. And enabling polymorphic calls is the only reason for interfaces and abstract classes to exist.
Create a context interface containing your method with a name that matches your problem domain. (Name it "World" if you absolutely have to, but most of the time there's a better name)
Pass around implementation instances of the context object.
Ok, maybe my question was poorly asked, it seems like most of you didn't get what I was trying to do. Nonetheless, I have a solution that is somewhat satisfactory.
In the abstract super class, I am going to have a static method getAllWidgets(Class type). In it I'll check the class you passed it and do the correct fetching based on that. Generally I like to avoid passing around classes and using switches on stuff like this, but I'll make an exception here.
static methods can't be abstract because they aren't virtual. Therefore anywhere that calls them has to have the concrete type with the implementation. If you want to enforce that all implementations of an interface have a certain static method, then that suggests a unit test is required.
abstract class A
{
public static void foo()
{
java.lang.System.out.println("A::foo");
}
public void bar()
{
java.lang.System.out.println("A::bar");
}
}
class B extends A
{
public static void foo()
{
java.lang.System.out.println("B::foo");
}
public void bar()
{
java.lang.System.out.println("B::bar");
}
}
public class Main
{
public static void main(String[] args)
{
B b = new B();
b.foo();
b.bar();
A a = b;
a.foo();
a.bar();
}
}
For what it is worth I know exactly what you are trying to do.
I found this article while searching for the reasons I can't do it either.
In my case I have HUNDREDS of classes that inherit from a central base base and I want simply to get a reference like this:
ValueImSearchingFor visf = StaticClass.someArbitraryValue()
I do NOT want to write/maintain someArbitraryValue() for each and every one of hundreds of the inherited classes -- I just want to write logic once and have it calc a Unique Class-Sepcific value for each and every future written class WITHOUT touching the base class.
Yes I completely get OO - I've been writing Java for about as long as it's been available.
These specific classes are more like "Definitions" as opposed to actual Objects and I don't want to instantiate one every time I just need to see what someArbitraryValue() actually is.
Think of it as a PUBLIC STATIC FINAL that allows you to run a Method ONCE to set it initially. (Kinda like you can do when you define an Enum actually...)
I'd make a WidgetCollection class with an abstract Widget inner class.
You can extend the WidgetCollection.Widget class for each of your types of Widget.
No static methods necessary.
Example (not compiled or tested):
class WidgetCollection<W extends Widget> {
Set<W> widgets = new HashSet<W>();
Set<W> getAll() {
return widgets;
}
abstract class Widget {
Widget() {
widgets.add(this);
}
abstract String getName();
}
public static void main(String[] args) {
WidgetCollection<AWidget> aWidgets = new WidgetCollection<AWidget>();
a.new AWidget();
Set<AWidget> widgets = aWidgets.getAll();
}
}
class AWidget extends Widget {
String getName() {
return "AWidget";
}
}
It doesn't make sense to do what you're asking:
Why can't static methods be abstract in Java

Categories

Resources