Java cast interface to class - java

I have a question about interface and class implementing interface.
This is my code:
interface iMyInterface {
public iMethod1();
}
public class cMyClass implements iMyInterface {
public iMethod1() {
// some code
}
protected iMethod2() {
// some code
}
}
I would like to create an instance of iMyInterface as this :
iMyInterface i = new cMyClass();
i.iMethod1();
It's ok, but how can I call iMethod2() from my interface instance? Is this working and safe:
((cMyClass)i).iMethod2();
Thanks for help.

Yes, that will work (if you change the declaration of cMyClass to implement iMyInterface) and it's safe so long as the reference really does refer to an instance of cMyClass.
However, it's a generally bad idea. The whole point of using an interface is to be able to work with any implementation - it's to separate the abstraction from the implementation. If you're then going to require a specific implementation, you might as well make the type of i just cMyClass to start with.
So suppose instead of calling the cMyClass constructor yourself, you receive a method parameter of type iMyInterface - it's a bad idea to cast to cMyClass at that point, as it could be a different implementation of the interface.
(On a separate note, it's a good idea to start following Java naming conventions, which state that classes and interfaces should be Pascal-cased - so ditch the c and i prefixes.)

It will work (provided that cMyClass implements iMyInterface and you are in scope of protected modifier) but that is not the correct OO approch.
If you want to use iMethod2 consider:
adding it to the interface
create another interface containing that method
Use cMyClass myClass = new cMyClass();

There is some another alternative to cast Interface to a class. Here is example how.
interface iMyInterface {
void iMethod1();
}
public class cMyClass implements iMyInterface {
private iMyInterface myInterface;
public cMyClass() {
myInterface = this;
}
public void iMethod1(){
System.out.println("Print from cMyClass iMethod1()");
}
protected void iMethod2() {
System.out.println("Print from cMyClass iMethod2()");
}
/**
* Getter so we can access to the interface methods.
* #return
*/
public iMyInterface getMyInterface() {
return myInterface;
}
}
And to get values from your interface, here is the code example.
public class Main {
public static void main(String[] args) {
cMyClass myClass = new cMyClass();
myClass.getMyInterface().iMethod1();
myClass.iMethod2();
}
}
Output:
Print from cMyClass iMethod1()
Print from cMyClass iMethod2()
I think this is a good example how you can separate interface code from the class code. Just create instance of the interface and every method use through getter with that interface.

Related

Does java support "Soft" interfaces?

Consider the following scenario:
Say that you created an interface Foo:
public interface Foo {
public void bar();
}
And say that there is an old class SomeOldClass in a certain library that you want to use. It already has the bar() method, but does not explicitly implement Foo.
You have written the following code for all classed that implement Foo:
public <T extends Foo> T callBarOnThird(List<T> fooList){
return fooList.get(2).bar();
}
And now you want it to also work for SomeOldClass. You dont have access to the source code of this class, so you can't modify it.
Is there a way to declare Foo or something similar as some sort of "soft" interface, (as in where any class that implements all the required methods would be accepted as an implicit implementation of the soft interface)? If not, how would you solve this with code that is as clean as possible?
No, it does not.
You have to provide an adapter instance (there are several methods and tools to help with that, but Java does not do it "implicitly").
Java is statically typed and dynamically bind.
Dynamically bind: This means that the linking between a method signature and its implementation happens at runtime. For example.
For example
public interface MyInterface {
void doStuff();
}
public class MyFirstImpl implements MyInterface {
#Override
public void doStuff() {
// do some stuff here
}
}
public class MySecondImpl implements MyInterface {
#Override
public void doStuff() {
// do some stuff here
}
}
So if you would have the next snippet
MyInterface test; // pointing to either MyFirstImpl or MySecondImpl
test.doStuff();
The JVM will determine at runtime weather to call the doStuff method from MyFirstImpl or MySecondImpl based on the runtime type of the object.
Statically typed: This means that the JVM will check at compile time weather a there is a method to call regardless of the implementation.
For example:
public interface MyInterface {
void doStuff();
}
public class MyFirstImpl implements MyInterface {
// no override here
public void doStuff() {
// do some stuff here
}
}
public class MySecondImpl implements MyInterface {
// no override here
public void doStuff() {
// do some stuff here
}
}
So if you would have the next snippet
MyInterface test; // pointing to either MyFirstImpl or MySecondImpl
test.doStuff();
The compiler will complain because it can't ensure at compile time that regardless of the implementation of MyInterface there is a doStuff method to call (although in this case, both implementations of MyInterface define a doStuff method).
This ensures that you won't get a NoSuchMethodException at runtime, if you would pass, for example, the next implementation.
public class MySecondImpl implements MyInterface {
// no override here
// no doStuff method
}
This adds some type safety to the language at the cost of some rigidity (since you are able to determine the issue earlier than at runtime and therefore you have a shorter feedback loop, at the cost of the scenario in which all the implementations actually expose the method not working out of the box).
How you should refactor your code:
Create a wrapper over the third party library and expose the interface from the wrapper.
public interface Foo {
void bar();
}
public class ThirdPartyFooWrapper implements Foo {
private SomeOldClass oldClass;
public ThordPartyFooWrapper (SomeOldClass oldClass){
this.oldClass = oldClass;
}
#Override
public void bar() {
this.oldClass.bar();
}
}
Then, in your code use ThirdPartyFooWrapper instead of SomeOldClass.
Hope this answers your question!
Extension to Thilos answer.
You can also use the decorator to handle this
public <T extends Foo> T callBarOnThird(List<T> fooList){
return new BarDecorator(fooList.get(2)).bar();
}
Inside the decorator, you can check if given Object is the instance of Foo or not then do operations accordingly.

Why we can't create protected methods in JAVA interfaces? [duplicate]

I know that an interface must be public. However, I don't want that.
I want my implemented methods to only be accessible from their own package, so I want my implemented methods to be protected.
The problem is I can't make the interface or the implemented methods protected.
What is a work around? Is there a design pattern that pertains to this problem?
From the Java guide, an abstract class wouldn't do the job either.
read this.
"The public access specifier indicates that the interface can be used by any class in any package. If you do not specify that the interface is public, your interface will be accessible only to classes defined in the same package as the interface."
Is that what you want?
You class can use package protection and still implement an interface:
class Foo implements Runnable
{
public void run()
{
}
}
If you want some methods to be protected / package and others not, it sounds like your classes have more than one responsibility, and should be split into multiple.
Edit after reading comments to this and other responses:
If your are somehow thinking that the visibility of a method affects the ability to invoke that method, think again. Without going to extremes, you cannot prevent someone from using reflection to identify your class' methods and invoke them. However, this is a non-issue: unless someone is trying to crack your code, they're not going to invoke random methods.
Instead, think of private / protected methods as defining a contract for subclasses, and use interfaces to define the contract with the outside world.
Oh, and to the person who decided my example should use K&R bracing: if it's specified in the Terms of Service, sure. Otherwise, can't you find anything better to do with your time?
When I have butted up against this I use a package accessible inner or nested class to implement the interface, pushing the implemented method out of the public class.
Usually it's because I have a class with a specific public API which must implement something else to get it's job done (quite often because the something else was a callback disguised as an interface <grin>) - this happens a lot with things like Comparable. I don't want the public API polluted with the (forced public) interface implementation.
Hope this helps.
Also, if you truly want the methods accessed only by the package, you don't want the protected scope specifier, you want the default (omitted) scope specifier. Using protected will, of course, allow subclasses to see the methods.
BTW, I think that the reason interface methods are inferred to be public is because it is very much the exception to have an interface which is only implemented by classes in the same package; they are very much most often invoked by something in another package, which means they need to be public.
This question is based on a wrong statement:
I know that an interface must be public
Not really, you can have interfaces with default access modifier.
The problem is I can't make the interface or the implemented methods protected
Here it is:
C:\oreyes\cosas\java\interfaces>type a\*.java
a\Inter.java
package a;
interface Inter {
public void face();
}
a\Face.java
package a;
class Face implements Inter {
public void face() {
System.out.println( "face" );
}
}
C:\oreyes\cosas\java\interfaces>type b\*.java
b\Test.java
package b;
import a.Inter;
import a.Face;
public class Test {
public static void main( String [] args ) {
Inter inter = new Face();
inter.face();
}
}
C:\oreyes\cosas\java\interfaces>javac -d . a\*.java b\Test.java
b\Test.java:2: a.Inter is not public in a; cannot be accessed from outside package
import a.Inter;
^
b\Test.java:3: a.Face is not public in a; cannot be accessed from outside package
import a.Face;
^
b\Test.java:7: cannot find symbol
symbol : class Inter
location: class b.Test
Inter inter = new Face();
^
b\Test.java:7: cannot find symbol
symbol : class Face
location: class b.Test
Inter inter = new Face();
^
4 errors
C:\oreyes\cosas\java\interfaces>
Hence, achieving what you wanted, prevent interface and class usage outside of the package.
Here's how it could be done using abstract classes.
The only inconvenient is that it makes you "subclass".
As per the java guide, you should follow that advice "most" of the times, but I think in this situation it will be ok.
public abstract class Ab {
protected abstract void method();
abstract void otherMethod();
public static void main( String [] args ) {
Ab a = new AbImpl();
a.method();
a.otherMethod();
}
}
class AbImpl extends Ab {
protected void method(){
System.out.println( "method invoked from: " + this.getClass().getName() );
}
void otherMethod(){
System.out.println("This time \"default\" access from: " + this.getClass().getName() );
}
}
Here's another solution, inspired by the C++ Pimpl idiom.
If you want to implement an interface, but don't want that implementation to be public, you can create a composed object of an anonymous inner class that implements the interface.
Here's an example. Let's say you have this interface:
public interface Iface {
public void doSomething();
}
You create an object of the Iface type, and put your implementation in there:
public class IfaceUser {
private int someValue;
// Here's our implementor
private Iface impl = new Iface() {
public void doSomething() {
someValue++;
}
};
}
Whenever you need to invoke doSomething(), you invoke it on your composed impl object.
I just came across this trying to build a protected method with the intention of it only being used in a test case. I wanted to delete test data that I had stuffed into a DB table. In any case I was inspired by #Karl Giesing's post. Unfortunately it did not work. I did figure a way to make it work using a protected inner class.
The interface:
package foo;
interface SomeProtectedFoo {
int doSomeFoo();
}
Then the inner class defined as protected in public class:
package foo;
public class MyFoo implements SomePublicFoo {
// public stuff
protected class ProtectedFoo implements SomeProtectedFoo {
public int doSomeFoo() { ... }
}
protected ProtectedFoo pFoo;
protected ProtectedFoo gimmeFoo() {
return new ProtectedFoo();
}
}
You can then access the protected method only from other classes in the same package, as my test code was as show:
package foo;
public class FooTest {
MyFoo myFoo = new MyFoo();
void doProtectedFoo() {
myFoo.pFoo = myFoo.gimmeFoo();
myFoo.pFoo.doSomeFoo();
}
}
A little late for the original poster, but hey, I just found it. :D
You can go with encapsulation instead of inheritance.
That is, create your class (which won't inherit anything) and in it, have an instance of the object you want to extend.
Then you can expose only what you want.
The obvious disadvantage of this is that you must explicitly pass-through methods for everything you want exposed. And it won't be a subclass...
I would just create an abstract class. There is no harm in it.
With an interface you want to define methods that can be exposed by a variety of implementing classes.
Having an interface with protected methods just wouldn't serve that purpose.
I am guessing your problem can be solved by redesigning your class hierarchy.
One way to get around this is (depending on the situation) to just make an anonymous inner class that implements the interface that has protected or private scope. For example:
public class Foo {
interface Callback {
void hiddenMethod();
}
public Foo(Callback callback) {
}
}
Then in the user of Foo:
public class Bar {
private Foo.Callback callback = new Foo.Callback() {
#Override public void hiddenMethod() { ... }
};
private Foo foo = new Foo(callback);
}
This saves you from having the following:
public class Bar implements Foo.Callback {
private Foo foo = new Foo(this);
// uh-oh! the method is public!
#Override public void hiddenMethod() { ... }
}
I think u can use it now with Java 9 release. From the openJdk notes for Java 9,
Support for private methods in interfaces was briefly in consideration
for inclusion in Java SE 8 as part of the effort to add support for
Lambda Expressions, but was withdrawn to enable better focus on higher
priority tasks for Java SE 8. It is now proposed that support for
private interface methods be undertaken thereby enabling non abstract
methods of an interface to share code between them.
refer https://bugs.openjdk.java.net/browse/JDK-8071453

How to create an object of an abstract class and interface

How do I create an object of an abstract class and interface? I know we can't instantiate an object of an abstract class directly.
You can not instantiate an abstract class or an interface - you can instantiate one of their subclasses/implementers.
Examples of such a thing are typical in the use of Java Collections.
List<String> stringList = new ArrayList<String>();
You are using the interface type List<T> as the type, but the instance itself is an ArrayList<T>.
To create object of an abstract class just use new just like creating objects of other non abstract classes with just one small difference, as follows:
package com.my.test;
public abstract class MyAbstractClass {
private String name;
public MyAbstractClass(String name)
{
this.name = name;
}
public String getName(){
return this.name;
}
}
package com.my.test;
public class MyTestClass {
public static void main(String [] args)
{
MyAbstractClass ABC = new MyAbstractClass("name") {
};
System.out.println(ABC.getName());
}
}
In the same way You can create an object of interface type, just as follows:
package com.my.test;
public interface MyInterface {
void doSome();
public abstract void go();
}
package com.my.test;
public class MyTestClass {
public static void main(String [] args)
{
MyInterface myInterface = new MyInterface() {
#Override
public void go() {
System.out.println("Go ...");
}
#Override
public void doSome() {
System.out.println("Do ...");
}
};
myInterface.doSome();
myInterface.go();
}
}
There are two ways you can achieve this.
1) Either you extend / implement the Abstract class / interface in a new class, create the object of this new class and then use this object as per your need.
2) The Compiler allows you to create anonymous objects of the interfaces in your code.
For eg. ( new Runnable() { ... } );
Hope this helps.
Regards,
Mahendra Liya.
You can provide an implementation as an anonymous class:
new SomeInterface() {
public void foo(){
// an implementation of an interface method
}
};
Likewise, an anonymous class can extend a parent class instead of implementing an interface (but it can't do both).
public abstract class Foo { public abstract void foo(); }
public interface Bar { public void bar(); }
public class Winner extends Foo implements Bar {
#Override public void foo() { }
#Override public void bar() { }
}
new Winner(); // OK
"instantiate" means "create an object of".
So you can't create one directly.
The purpose of interfaces and abstract classes is to describe the behaviour of some concrete class that implements the interface or extends the abstract class.
A class that implements an interface can be used by other code that only knows about the interface, which helps you to separate responsibilities, and be clear about what you want from the object. (The calling code will only know that the object can do anything specified in the interface; it will not know about any other methods it has.)
If you are using someone else's code that expects a Fooable (where that is the name of some interface), you are not really being asked for an object of some Fooable class (because there isn't really such a class). You are only being asked for an instance of some class that implements Fooable, i.e. which declares that it can do all the things in that interface. In short, something that "can be Foo'd".
You write a class that derives from the abstract class or implements the interface, and then instantiate that.
What you know is correct. You cannot create an object of abstract class or interface since they are incomplete class (interface is not even considered as a class.)
What you can do is to implement a subclass of abstract class which, of course, must not be abstract. For interface, you must create a class which implement the interface and implement bodies of interface methods.
Here are orginal tutorial on oracle site, http://download.oracle.com/javase/tutorial/java/IandI/abstract.html and http://download.oracle.com/javase/tutorial/java/concepts/interface.html
You can not instantiate the abstract class or an interface, but you can instantiate one of their subclasses/implementers.
You can't instantiate an abstract class or an interface, you can only instantiate one of their derived classes.
In your example
MyAbstractClass ABC = new MyAbstractClass("name") {
};
You are instantiating any class that implements Suprising.
public abstract class AbstractClass { ... }
public interface InterfaceClass { ... }
// This is the concrete class that extends the abstract class above and
// implements the interface above. You will have to make sure that you implement
// any abstract methods from the AbstractClass and implement all method definitions
// from the InterfaceClass
public class Foo extends AbstractClass implements InterfaceClass { ... }
NO, we can't create object out of an interface or Abstract class because
Main intention of creating an object is to utilize the wrapped methods and data.
As interface don't have any concrete implementation hence we cannot.
For abstract class we may have concrete method or abstract method or both.
There is no way for the API developer to restrict the use of the method thats don't have implementation.
Hope help.
No, you are not creating the instance of your abstract class here. Rather you are creating an instance of an anonymous subclass of your abstract class. And then you are invoking the method on your abstract class reference pointing to subclass object.

Overriding a method

public class Testing extends JDialog {
public MyClass myClass;
public Testing() {
}
}
given the above code, is it possible to override a method in myClass in Testing class?
say myClass has a method named computeCode(), will it be possible for me to override it's implementations in Testing? sorry it's been a long time since I've coded.
if you want to override a method from MyClass then your testing class must extend that. for overriding a method one must complete IS-A relationship whereas your code comes under HAS-A relationship.
Yes, it is generally possible (note that as others have correctly mentioned - you'd need to extend it to override the method). Refer to this sample:
public class Animal {
public void testInstanceMethod() {
System.out.println("The instance method in Animal.");
}
}
public class Cat extends Animal {
public void testInstanceMethod() {
System.out.println("The instance method in Cat.");
}
public static void main(String[] args) {
Cat myCat = new Cat();
Animal myAnimal = myCat;
myAnimal.testInstanceMethod();
}
}
Not only is it possible, but it is a key feature in polymorphism an code reusability.
Note, however, that MyClass.computeCode might be final - in this case, it cannot be overridden.
You override methods of classes that you extend. Therefore, in your example your Testing class could override the various existing methods of JDialog. If you wanted to override computeCode() from MyClass (assuming it's not final), you should make Testing extend MyClass.
public class Testing extends MyClass
{
#Override
public int computeCode()
{
return 1;
}
}
You can override a class's method only in a subclass (a class that extends the class whose method you want to override). However, given your skeletal code, you can (within Testing) have a nested class that extends MyClass and force an instance of that nested class into the myClass instance variable... so, the answer must be "yes".
Whether that's the best choice (as opposed to using interfaces, rather than subclassing concrete classes, and relying on Dependency Injection to get the implementations most suited for your testing), that's a different question (and my answer would be, unless you're testing legacy code that you can't seriously refactor until it's well test-covered... then, probably not;-).
See, if you want to override method from MyClass then you need to extend it.
As per your code, it seems you want to make a wrapper wround MyClass.
Wrapper means, calling implemented class method will call method of MyClass.
I am just clearing how wrapping works as below.
public class Testing extends JDialog {
public MyClass myClass;
public Testing() {
}
public void someMethod() {
//Add some more logic you want...
...
..
myClass.computeCode();
}
}
thanks.
The wording of the question is confused and lost.
Here are some key points:
You can't #Override something that you didn't inherit to begin with
You can't #Override something that is final
Here's a small example:
import java.util.*;
public class OverrideExample {
public static void main(String[] args) {
List<String> list = new ArrayList<String>(
Arrays.asList("a", "b", "c")
) {
#Override public String toString() {
return "I'm a list and here are my things : " + super.toString();
}
};
System.out.println(list);
// prints "I'm a list and here are my things : [a, b, c]"
}
}
Here, we have an anonymous class that #Override the toString() method inherited from java.util.ArrayList.
Note that here, it's not class OverrideExample that overrides the ArrayList.toString(); it's the anonymous class that (implicitly) extends ArrayList that does.
All the above answers are valid. But, if you want to extend JDialog but still if you want to override a method of another class it is possible through interfaces. Interfaces won't have method definitions but will have method declarations. More about interfaces, you can read at http://java.sun.com/docs/books/tutorial/java/concepts/interface.html
In your case, you can make use of interface like this
public interface MyInterface{
public void myMethod();
}
public class Testing extends javax.swing.JDialog implements MyIterface{
public void myMethod(){
// code for your method
}
}
Since Testing class has already inherited JDialog, there is no way let it inherit MyClass again unless to implement an interface. What you can do is to use some design pattern. However this is not overriding, since there is no inheritance. The Adapter is the one you need. Again you are losing the flexibility of polymorphism.
public class Testing extends JDialog {
MyClass myClass = new MyClass();
public Testing() {
}
public void methodA(){
myClass.methodA();
}
}
class MyClass {
public void methodA(){}
}

Practical side of the ability to define a class within an interface in Java?

What would be the practical side of the ability to define a class within an interface in Java:
interface IFoo
{
class Bar
{
void foobar ()
{
System.out.println("foobaring...");
}
}
}
I can think of another usage than those linked by Eric P: defining a default/no-op implementation of the interface.
./alex
interface IEmployee
{
void workHard ();
void procrastinate ();
class DefaultEmployee implements IEmployee
{
void workHard () { procrastinate(); };
void procrastinate () {};
}
}
Yet another sample — implementation of Null Object Pattern:
interface IFoo
{
void doFoo();
IFoo NULL_FOO = new NullFoo();
final class NullFoo implements IFoo
{
public void doFoo () {};
private NullFoo () {};
}
}
...
IFoo foo = IFoo.NULL_FOO;
...
bar.addFooListener (foo);
...
I think this page explains one example pretty well. You would use it to tightly bind a certain type to an interface.
Shamelessly ripped off from the above link:
interface employee{
class Role{
public String rolename;
public int roleId;
}
Role getRole();
// other methods
}
In the above interface you are binding the Role type strongly to the employee interface(employee.Role).
One use (for better or worse) would be as a workaround for the fact that Java doesn't support static methods in interfaces.
interface Foo {
int[] getData();
class _ {
static int sum(Foo foo) {
int sum = 0;
for(int i: foo.getData()) {
sum += i;
}
return sum;
}
}
}
Then you'd call it with:
int sum = Foo._.sum(myFoo);
I can say without hesitation that I've never done that. I can't think of a reason why you would either. Classes nested within classes? Sure, lots of reasons to do that. In those cases I tend to consider those inner classes to be an implementation detail. Obviously an interface has no implementation details.
One place this idiom is used heavily is in XMLBeans. The purpose of that project is to take an XML Schema and generate a set of Java classes that you can use bidirectionally to work with XML documents corresponding to the schema. So, it lets you parse XML into xml beans or create the xml beans and output to xml.
In general, most of the xml schema types are mapped to a Java interface. That interface has within it a Factory that is used to generate instances of that interface in the default implementation:
public interface Foo extends XmlObject {
public boolean getBar();
public boolean isSetBar();
public void setBar(boolean bar);
public static final SchemaType type = ...
public static final class Factory {
public static Foo newInstance() {
return (Foo)XmlBeans.getContextTypeLoader().newInstance(Foo.type, null);
}
// other factory and parsing methods
}
}
When I first encountered this it seemed wrong to bind all this implementation gunk into the interface definition. However, I actually grew to like it as it let everything get defined in terms of interfaces but have a uniform way to get instances of the interface (as opposed to having another external factory / builder class).
I picked it up for classes where this made sense (particularly those where I had a great deal of control over the interface/impls) and found it to be fairly clean.
I guess you could define a class that is used as the return type or parameter type for methods within the interface. Doesn't seem particularly useful. You might as well just define the class separately. The only possible advantage is that it declares the class as "belonging" to the interface in some sense.
Google Web Toolkit uses such classes to bind 'normal' interface to asynchronous call interface:
public interface LoginService extends RemoteService {
/**
* Utility/Convenience class.
* Use LoginService.App.getInstance() to access static instance of LoginServiceAsync
*/
class App {
public static synchronized LoginServiceAsync getInstance() {
...
}
}
}
With a static class inside an interface you have the possibility to shorten a common programming fragment: Checking if an object is an instance of an interface, and if so calling a method of this interface. Look at this example:
public interface Printable {
void print();
public static class Caller {
public static void print(Object mightBePrintable) {
if (mightBePrintable instanceof Printable) {
((Printable) mightBePrintable).print();
}
}
}
}
Now instead of doing this:
void genericPrintMethod(Object obj) {
if (obj instanceof Printable) {
((Printable) obj).print();
}
}
You can write:
void genericPrintMethod(Object obj) {
Printable.Caller.print(obj);
}
Doing this seems to have "Bad design decision" written all over it.
I would urge caution whenever it seems like a good idea to create a non-private nested class. You are almost certainly better off going straight for an outer class. But if you are going to create a public nested class, it doesn't seem any more strange to put it in an interface than a class. The abstractness of the outer class is not necessarily related to the abstractness of a nested class.
This approach can be used to define many classes in the same file. This has worked well for me in the past where I have many simple implementations of an interface. However, if I were to do this again, I would use an enum which implements an interface which would have been a more elegant solution.

Categories

Resources